- Browse by Author
Browsing by Author "Chen, Yi-Chun"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Altered β-Cell Prohormone Processing and Secretion in Type 1 Diabetes(American Diabetes Association, 2021) Rodriguez-Calvo, Teresa; Chen, Yi-Chun; Verchere, C. Bruce; Haataja, Leena; Arvan, Peter; Leete, Pia; Richardson, Sarah J.; Morgan, Noel G.; Qian, Wei-Jun; Pugliese, Alberto; Atkinson, Mark; Evans-Molina, Carmella; Sims, Emily K.; Pediatrics, School of MedicineAnalysis of data from clinical cohorts, and more recently from human pancreatic tissue, indicates that reduced prohormone processing is an early and persistent finding in type 1 diabetes. In this article, we review the current state of knowledge regarding alterations in islet prohormone expression and processing in type 1 diabetes and consider the clinical impact of these findings. Lingering questions, including pathologic etiologies and consequences of altered prohormone expression and secretion in type 1 diabetes, and the natural history of circulating prohormone production in health and disease, are considered. Finally, key next steps required to move forward in this area are outlined, including longitudinal testing of relevant clinical populations, studies that probe the genetics of altered prohormone processing, the need for combined functional and histologic testing of human pancreatic tissues, continued interrogation of the intersection between prohormone processing and autoimmunity, and optimal approaches for analysis. Successful resolution of these questions may offer the potential to use altered prohormone processing as a biomarker to inform therapeutic strategies aimed at personalized intervention during the natural history of type 1 diabetes and as a pathogenic anchor for identification of potential disease-specific endotypes.Item Glucolipotoxic Stress-Induced Mig6 Desensitizes EGFR Signaling and Promotes Pancreatic Beta Cell Death(MDPI, 2023-05-04) Chen, Yi-Chun; Lutkewitte, Andrew J.; Basavarajappa, Halesha D.; Fueger, Patrick T.; Pediatrics, School of MedicineA loss of functional beta cell mass is a final etiological event in the development of frank type 2 diabetes (T2D). To preserve or expand beta cells and therefore treat/prevent T2D, growth factors have been considered therapeutically but have largely failed to achieve robust clinical success. The molecular mechanisms preventing the activation of mitogenic signaling pathways from maintaining functional beta cell mass during the development of T2D remain unknown. We speculated that endogenous negative effectors of mitogenic signaling cascades impede beta cell survival/expansion. Thus, we tested the hypothesis that a stress-inducible epidermal growth factor receptor (EGFR) inhibitor, mitogen-inducible gene 6 (Mig6), regulates beta cell fate in a T2D milieu. To this end, we determined that: (1) glucolipotoxicity (GLT) induces Mig6, thereby blunting EGFR signaling cascades, and (2) Mig6 mediates molecular events regulating beta cell survival/death. We discovered that GLT impairs EGFR activation, and Mig6 is elevated in human islets from T2D donors as well as GLT-treated rodent islets and 832/13 INS-1 beta cells. Mig6 is essential for GLT-induced EGFR desensitization, as Mig6 suppression rescued the GLT-impaired EGFR and ERK1/2 activation. Further, Mig6 mediated EGFR but not insulin-like growth factor-1 receptor nor hepatocyte growth factor receptor activity in beta cells. Finally, we identified that elevated Mig6 augmented beta cell apoptosis, as Mig6 suppression reduced apoptosis during GLT. In conclusion, we established that T2D and GLT induce Mig6 in beta cells; the elevated Mig6 desensitizes EGFR signaling and induces beta cell death, suggesting Mig6 could be a novel therapeutic target for T2D.Item Mig6 haploinsufficiency protects mice against streptozotocin-induced diabetes(Springer, 2014-10) Chen, Yi-Chun; Colvin, E. Scott; Griffin, Katherine E.; Maier, Bernhard F.; Fueger, Patrick T.; Department of Cellular and Integrative Physiology, IU School of MedicineAIMS/HYPOTHESIS: EGF and gastrin co-administration reverses type 1 diabetes in rodent models. However, the failure of this to translate into a clinical treatment suggests that EGF-mediated tissue repair is a complicated process and warrants further investigation. Thus, we aimed to determine whether EGF receptor (EGFR) feedback inhibition by mitogen-inducible gene 6 protein (MIG6) limits the effectiveness of EGF therapy and promotes type 1 diabetes development. METHODS: We treated Mig6 (also known as Errfi1) haploinsufficient mice (Mig6 (+/-)) and their wild-type littermates (Mig6 (+/+)) with multiple low doses of streptozotocin (STZ), and monitored diabetes development via glucose homeostasis tests and histological analyses. We also investigated MIG6-mediated cytokine-induced desensitisation of EGFR signalling and the DNA damage repair response in 832/13 INS-1 beta cells. RESULTS: Whereas STZ-treated Mig6 (+/+) mice became diabetic, STZ-treated Mig6 (+/-) mice remained glucose tolerant. In addition, STZ-treated Mig6 (+/-) mice exhibited preserved circulating insulin levels following a glucose challenge. As insulin sensitivity was similar between Mig6 (+/-) and Mig6 (+/+) mice, the preserved glucose tolerance in STZ-treated Mig6 (+/-) mice probably results from preserved beta cell function. This is supported by elevated Pdx1 and Irs2 mRNA levels in islets isolated from STZ-treated Mig6 (+/-) mice. Conversely, MIG6 overexpression in isolated islets compromises glucose-stimulated insulin secretion. Studies in 832/13 cells suggested that cytokine-induced MIG6 hinders EGFR activation and inhibits DNA damage repair. STZ-treated Mig6 (+/-) mice also have increased beta cell mass recovery. CONCLUSIONS/INTERPRETATION: Reducing Mig6 expression promotes beta cell repair and abates the development of experimental diabetes, suggesting that MIG6 may be a novel therapeutic target for preserving beta cellsItem Stress-inducible Mig6 promotes pancreatic beta cell destruction in the pathogenesis of diabetes(2014-12-08) Chen, Yi-Chun; Fueger, Patrick T.; Day, Richard N.; Elmendorf, Jeffrey S.Pancreatic insulin-secreting beta cell failure is central to the development of diabetes. Therapeutic applications targeted at understanding and manipulating beta cell destruction mechanisms should enhance the preservation of functional beta cell mass and prevent diabetes. To this end, we have demonstrated that diabetogenic assaults (e.g., endoplasmic reticulum stress, glucolipotoxicity, and pro-inflammatory cytokines) attenuate the activation of beta cell pro-survival signaling pathways via a stress-inducible molecule called Mitogen-inducible gene 6 (Mig6). We discovered that the overabundance of Mig6 exacerbates stress-induced beta cell apoptosis and inhibits insulin secretion. Conversely, the deficiency of Mig6 partially protected beta cells from DNA damage-induced cell death. Further, we established that Mig6 haploinsufficient mice retained islet integrity and function and exhibited greater beta cell mass recovery following treatment with multiple low doses of the beta cell toxin streptozotocin. These data suggest that Mig6 may be a therapeutic target for beta cell preservation in diabetes.