- Browse by Author
Browsing by Author "Chen, Qiuyan"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item ACKR3–arrestin2/3 complexes reveal molecular consequences of GRK-dependent barcoding(bioRxiv, 2023-07-19) Chen, Qiuyan; Schafer, Christopher T.; Mukherjee, Somnath; Gustavsson, Martin; Agrawal, Parth; Yao, Xin-Qiu; Kossiakoff, Anthony A.; Handel, Tracy M.; Tesmer, John J. G.; Biochemistry and Molecular Biology, School of MedicineAtypical chemokine receptor 3 (ACKR3, also known as CXCR7) is a scavenger receptor that regulates extracellular levels of the chemokine CXCL12 to maintain responsiveness of its partner, the G protein-coupled receptor (GPCR), CXCR4. ACKR3 is notable because it does not couple to G proteins and instead is completely biased towards arrestins. Our previous studies revealed that GRK2 and GRK5 install distinct distributions of phosphates (or "barcodes") on the ACKR3 carboxy terminal tail, but how these unique barcodes drive different cellular outcomes is not understood. It is also not known if arrestin2 (Arr2) and 3 (Arr3) bind to these barcodes in distinct ways. Here we report cryo-electron microscopy structures of Arr2 and Arr3 in complex with ACKR3 phosphorylated by either GRK2 or GRK5. Unexpectedly, the finger loops of Arr2 and 3 directly insert into the detergent/membrane instead of the transmembrane core of ACKR3, in contrast to previously reported "core" GPCR-arrestin complexes. The distance between the phosphorylation barcode and the receptor transmembrane core regulates the interaction mode of arrestin, alternating between a tighter complex for GRK5 sites and heterogenous primarily "tail only" complexes for GRK2 sites. Arr2 and 3 bind at different angles relative to the core of ACKR3, likely due to differences in membrane/micelle anchoring at their C-edge loops. Our structural investigations were facilitated by Fab7, a novel Fab that binds both Arr2 and 3 in their activated states irrespective of receptor or phosphorylation status, rendering it a potentially useful tool to aid structure determination of any native GPCR-arrestin complex. The structures provide unprecedented insight into how different phosphorylation barcodes and arrestin isoforms can globally affect the configuration of receptor-arrestin complexes. These differences may promote unique downstream intracellular interactions and cellular responses. Our structures also suggest that the 100% bias of ACKR3 for arrestins is driven by the ability of arrestins, but not G proteins, to bind GRK-phosphorylated ACKR3 even when excluded from the receptor cytoplasmic binding pocket.Item An Eight Amino Acid Segment Controls Oligomerization and Preferred Conformation of the two Non-visual Arrestins(Elsevier, 2021) Chen, Qiuyan; Zhuo, Ya; Sharma, Pankaj; Perez, Ivette; Francis, Derek J.; Chakravarthy, Srinivas; Vishnivetskiy, Sergey A.; Berndt, Sandra; Hanson, Susan M.; Zhan, Xuanzhi; Brooks, Evan K.; Altenbach, Christian; Hubbell, Wayne L.; Klug, Candice S.; Iverson, T. M.; Gurevich, Vsevolod V.; Biochemistry and Molecular Biology, School of MedicineG protein coupled receptors signal through G proteins or arrestins. A long-standing mystery in the field is why vertebrates have two non-visual arrestins, arrestin-2 and arrestin-3. These isoforms are ~75% identical and 85% similar; each binds numerous receptors, and appear to have many redundant functions, as demonstrated by studies of knockout mice. We previously showed that arrestin-3 can be activated by inositol-hexakisphosphate (IP6). IP6 interacts with the receptor-binding surface of arrestin-3, induces arrestin-3 oligomerization, and this oligomer stabilizes the active conformation of arrestin-3. Here, we compared the impact of IP6 on oligomerization and conformational equilibrium of the highly homologous arrestin-2 and arrestin-3 and found that these two isoforms are regulated differently. In the presence of IP6, arrestin-2 forms "infinite" chains, where each promoter remains in the basal conformation. In contrast, full length and truncated arrestin-3 form trimers and higher-order oligomers in the presence of IP6; we showed previously that trimeric state induces arrestin-3 activation (Chen et al., 2017). Thus, in response to IP6, the two non-visual arrestins oligomerize in different ways in distinct conformations. We identified an insertion of eight residues that is conserved across arrestin-2 homologs, but absent in arrestin-3 that likely accounts for the differences in the IP6 effect. Because IP6 is ubiquitously present in cells, this suggests physiological consequences, including differences in arrestin-2/3 trafficking and JNK3 activation. The functional differences between two non-visual arrestins are in part determined by distinct modes of their oligomerization. The mode of oligomerization might regulate the function of other signaling proteins.Item Atypical Chemokine Receptor 3 "Senses" CXC Chemokine Receptor 4 Activation Through GPCR Kinase Phosphorylation(Aspet, 2023) Schafer, Christopher T.; Chen, Qiuyan; Tesmer, John J. G.; Handel, Tracy M.; Biology, School of ScienceAtypical chemokine receptor 3 (ACKR3) is an arrestin-biased receptor that regulates extracellular chemokine levels through scavenging. The scavenging process restricts the availability of the chemokine agonist CXCL12 for the G protein-coupled receptor (GPCR) CXCR4 and requires phosphorylation of the ACKR3 C-terminus by GPCR kinases (GRKs). ACKR3 is phosphorylated by GRK2 and GRK5, but the mechanisms by which these kinases regulate the receptor are unresolved. Here we determined that GRK5 phosphorylation of ACKR3 results in more efficient chemokine scavenging and β-arrestin recruitment than phosphorylation by GRK2 in HEK293 cells. However, co-activation of CXCR4-enhanced ACKR3 phosphorylation by GRK2 through the liberation of Gβγ, an accessory protein required for efficient GRK2 activity. The results suggest that ACKR3 "senses" CXCR4 activation through a GRK2-dependent crosstalk mechanism, which enables CXCR4 to influence the efficiency of CXCL12 scavenging and β-arrestin recruitment to ACKR3. Surprisingly, we also found that despite the requirement for phosphorylation and the fact that most ligands promote β-arrestin recruitment, β-arrestins are dispensable for ACKR3 internalization and scavenging, suggesting a yet-to-be-determined function for these adapter proteins. Since ACKR3 is also a receptor for CXCL11 and opioid peptides, these data suggest that such crosstalk may also be operative in cells with CXCR3 and opioid receptor co-expression. Additionally, kinase-mediated receptor cross-regulation may be relevant to other atypical and G protein-coupled receptors that share common ligands. SIGNIFICANCE STATEMENT: The atypical receptor ACKR3 indirectly regulates CXCR4-mediated cell migration by scavenging their shared agonist CXCL12. Here, we show that scavenging and β-arrestin recruitment by ACKR3 are primarily dependent on phosphorylation by GRK5. However, we also show that CXCR4 co-activation enhances the contribution of GRK2 by liberating Gβγ. This phosphorylation crosstalk may represent a common feedback mechanism between atypical and G protein-coupled receptors with shared ligands for regulating the efficiency of scavenging or other atypical receptor functions.Item G protein–coupled receptor interactions with arrestins and GPCR kinases: The unresolved issue of signal bias(Elsevier, 2022) Chen, Qiuyan; Tesmer, John J. G.; Biochemistry and Molecular Biology, School of MedicineG protein-coupled receptor (GPCR) kinases (GRKs) and arrestins interact with agonist-bound GPCRs to promote receptor desensitization and downregulation. They also trigger signaling cascades distinct from those of heterotrimeric G proteins. Biased agonists for GPCRs that favor either heterotrimeric G protein or GRK/arrestin signaling are of profound pharmacological interest because they could usher in a new generation of drugs with greatly reduced side effects. One mechanism by which biased agonism might occur is by stabilizing receptor conformations that preferentially bind to GRKs and/or arrestins. In this review, we explore this idea by comparing structures of GPCRs bound to heterotrimeric G proteins with those of the same GPCRs in complex with arrestins and GRKs. The arrestin and GRK complexes all exhibit high conformational heterogeneity, which is likely a consequence of their unusual ability to adapt and bind to hundreds of different GPCRs. This dynamic behavior, along with the experimental tactics required to stabilize GPCR complexes for biophysical analysis, confounds these comparisons, but some possible molecular mechanisms of bias are beginning to emerge. We also examine if and how the recent structures advance our understanding of how arrestins parse the "phosphorylation barcodes" installed in the intracellular loops and tails of GPCRs by GRKs. In the future, structural analyses of arrestins in complex with intact receptors that have well-defined native phosphorylation barcodes, such as those installed by the two nonvisual subfamilies of GRKs, will be particularly illuminating.Item Generation of Highly Selective, Potent, and Covalent G Protein-Coupled Receptor Kinase 5 Inhibitors(American Chemical Society, 2021) Rowlands, Rachel A.; Chen, Qiuyan; Bouley, Renee A.; Avramova, Larisa V.; Tesmer, John J. G.; White, Andrew D.; Biochemistry and Molecular Biology, School of MedicineThe ability of G protein-coupled receptor (GPCR) kinases (GRKs) to regulate the desensitization of GPCRs has made GRK2 and GRK5 attractive targets for treating diseases such as heart failure and cancer. Previously, our work showed that Cys474, a GRK5 subfamily-specific residue located on a flexible loop adjacent to the active site, can be used as a covalent handle to achieve selective inhibition of GRK5 over GRK2 subfamily members. However, the potency of the most selective inhibitors remained modest. Herein, we describe a successful campaign to adapt an indolinone scaffold with covalent warheads, resulting in a series of 2-haloacetyl containing compounds that react quickly and exhibit three orders of magnitude selectivity for GRK5 over GRK2 and low nanomolar potency. They however retain a similar selectivity profile across the kinome as the core scaffold, which was based on Sunitinib.Item Short Arrestin-3-Derived Peptides Activate JNK3 in Cells(MDPI, 2022-08-04) Perry-Hauser, Nicole A.; Kaoud, Tamer S.; Stoy, Henriette; Zhan, Xuanzhi; Chen, Qiuyan; Dalby, Kevin N.; Iverson, Tina M.; Gurevich, Vsevolod V.; Gurevich, Eugenia V.; Biochemistry and Molecular Biology, School of MedicineArrestins were first discovered as suppressors of G protein-mediated signaling by G protein-coupled receptors. It was later demonstrated that arrestins also initiate several signaling branches, including mitogen-activated protein kinase cascades. Arrestin-3-dependent activation of the JNK family can be recapitulated with peptide fragments, which are monofunctional elements distilled from this multi-functional arrestin protein. Here, we use maltose-binding protein fusions of arrestin-3-derived peptides to identify arrestin elements that bind kinases of the ASK1-MKK4/7-JNK3 cascade and the shortest peptide facilitating JNK signaling. We identified a 16-residue arrestin-3-derived peptide expressed as a Venus fusion that leads to activation of JNK3α2 in cells. The strength of the binding to the kinases does not correlate with peptide activity. The ASK1-MKK4/7-JNK3 cascade has been implicated in neuronal apoptosis. While inhibitors of MAP kinases exist, short peptides are the first small molecule tools that can activate MAP kinases.Item Structural Basis of Arrestin Binding to Cell Membranes(2024-04) Miller, Kyle Warren; Chen, Qiuyan; Takagi, Yuichiro; Georgiadis, Millie M.; Hurley, Thomas D.Two non-visual arrestins, arrestin2 (Arr2) and arrestin3 (Arr3), selectively interact with activated and phosphorylated G protein-coupled receptors (GPCRs) and play crucial roles in regulating many important physiological processes. Arrestins also engage the lipid bilayer surrounding activated GPCRs, which further potentiates arrestin activation and regulates GPCR trafficking in cells. Because of this, structural and functional understanding of arrestins would provide insight in enhancing arrestin’s GPCR desensitization for various diseases where constitutively active GPCR mutants play a role including congenital endocrine disorders and familial gestational hyperthyroidism. To better understand the membrane binding role of arrestins, we performed in vitro binding assays and demonstrated that Arr2 selectively binds to nanodiscs containing Phosphatidylinositol 4,5-bisphosphate (PIP2) even in the absence of different binding sites. Our cryo-electron microscopy (Cryo-EM) structure of Arr2 in complex with PIP2 nanodisc reveals that multiple structural elements of Arr2, including the finger loop, C domain and C-edge loop, contribute to membrane binding. Eliminating one individual site does not significantly impact Arr2 binding to the nanodisc. Moreover, a preactivated variant of Arr2 shows increased binding to the nanodisc than wildtype. We also labeled four potential membrane binding sites with monobromobimane (mBrB) and detected different levels of fluorescence increase in the presence of nanodisc containing various types of phospholipids. Overall, our study provides detailed structural evidence on how arrestins engage the membrane via multiple contact points and how this can impact arrestin-mediated signaling.Item Structures of rhodopsin in complex with G protein-coupled receptor kinase 1(Springer Nature, 2021) Chen, Qiuyan; Plasencia, Manolo; Li, Zhuang; Mukherjee, Somnath; Patra, Dhableswar; Chen, Chun-Liang; Klose, Thomas; Yao, Xin-Qiu; Kossiakoff, Anthony A.; Chang, Leifu; Andrews, Philip C.; Tesmer, John J. G.; Biochemistry and Molecular Biology, School of MedicineG-protein-coupled receptor (GPCR) kinases (GRKs) selectively phosphorylate activated GPCRs, thereby priming them for desensitization1. Although it is unclear how GRKs recognize these receptors2-4, a conserved region at the GRK N terminus is essential for this process5-8. Here we report a series of cryo-electron microscopy single-particle reconstructions of light-activated rhodopsin (Rho*) bound to rhodopsin kinase (GRK1), wherein the N terminus of GRK1 forms a helix that docks into the open cytoplasmic cleft of Rho*. The helix also packs against the GRK1 kinase domain and stabilizes it in an active configuration. The complex is further stabilized by electrostatic interactions between basic residues that are conserved in most GPCRs and acidic residues that are conserved in GRKs. We did not observe any density for the regulator of G-protein signalling homology domain of GRK1 or the C terminus of rhodopsin. Crosslinking with mass spectrometry analysis confirmed these results and revealed dynamic behaviour in receptor-bound GRK1 that would allow the phosphorylation of multiple sites in the receptor tail. We have identified GRK1 residues whose mutation augments kinase activity and crosslinking with Rho*, as well as residues that are involved in activation by acidic phospholipids. From these data, we present a general model for how a small family of protein kinases can recognize and be activated by hundreds of different GPCRs.