- Browse by Author
Browsing by Author "Chen, Lan"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Adapting AlphaLISA high throughput screen to discover a novel small-molecule inhibitor targeting protein arginine methyltransferase 5 in pancreatic and colorectal cancers(Impact Journals, 2017-05-23) Prabhu, Lakshmi; Wei, Han; Chen, Lan; Demir, Özlem; Sandusky, George; Sun, Emily; Wang, John; Mo, Jessica; Zeng, Lifan; Fishel, Melissa; Safa, Ahmad; Amaro, Rommie; Korc, Murray; Zhang, Zhong-Yin; Lu, Tao; Pharmacology and Toxicology, School of MedicinePancreatic ductal adenocarcinoma (PDAC) and colorectal cancer (CRC) are notoriously challenging for treatment. Hyperactive nuclear factor κB (NF-κB) is a common culprit in both cancers. Previously, we discovered that protein arginine methyltransferase 5 (PRMT5) methylated and activated NF-κB. Here, we show that PRMT5 is highly expressed in PDAC and CRC. Overexpression of PRMT5 promoted cancer progression, while shRNA knockdown showed an opposite effect. Using an innovative AlphaLISA high throughput screen, we discovered a lead compound, PR5-LL-CM01, which exhibited robust tumor inhibition effects in both cancers. An in silico structure prediction suggested that PR5-LL-CM01 inhibits PRMT5 by binding with its active pocket. Importantly, PR5-LL-CM01 showed higher anti-tumor efficacy than the commercial PRMT5 inhibitor, EPZ015666, in both PDAC and CRC. This study clearly highlights the significant potential of PRMT5 as a therapeutic target in PDAC and CRC, and establishes PR5-LL-CM01 as a promising basis for new drug development in the future.Item CHEMICAL GENOMICS CORE FACILITY(Office of the Vice Chancellor for Research, 2015-04-17) Chen, Lan; Wu, Li; Gunawan, Andrea; Zhang, Zhong-YinThe Chemical Genomics Core Facility (CGCF) is a shared facility of the IU Simon Cancer Center and IU School of Medicine. The mission of CGCF is to provide excellence and innovation in high throughput screening (HTS) and medicinal chemistry. The core is fully equipped for automated high throughput screening and modern chemical synthesis. We have a series of state-of-art liquid handling robots, a variety of plate readers capable of measuring absorbance, fluorescence, fluorescence polarization, luminescence, time-resolved fluorescence and AlphaLISA. We have recently acquired a high content analysis (HCA or HCS) platform, which greatly enhanced our capability in image based cellular assays. Facility for chemical synthesis includes different HPLCs, LC-MS, NMR, flushing column systems, peptide synthesizer and microwave reactor. Our compound collection is about 230,000 including structurally diverse, pharmacophore-rich drug-like compounds, known drugs and bioactives, natural products and their derivatives. As the first core facility of its kind to be established in an academic setting in Indiana, we have a proven record of providing screening expertise and synthetic service to researchers across Indiana and beyond. This shared facility enables investigators to discover small molecule tools for basic research, therapeutic development and diagnostic applications. The CGCF has been designed to be highly flexible in order to meet the needs of multiple users employing a range of assays. Facility staff works closely with each investigator through all stages of the drug discovery process, providing an opportunity for students and fellows to gain experience and training in high throughput screening and medicinal chemistry at the facility.Item Development and validation of a high-throughput cell-based screen to identify activators of a bacterial two-component signal transduction system(ACC, 2015-07) van Rensburg, Julia J.; Fortney, Kate R.; Chen, Lan; Krieger, Andrew J.; Lima, Bruno P.; Wolfe, Alan J.; Katz, Barry P.; Zhang, Zhong-Yin; Spinola, Stanley M.; Department of Microbiology and Immunology, IU School of MedicineCpxRA is a two-component signal transduction system (2CSTS) found in many drug-resistant Gram-negative bacteria. In response to periplasmic stress, CpxA autophosphorylates and donates a phosphoryl group to its cognate response regulator, CpxR. Phosphorylated CpxR (CpxR-P) upregulates genes involved in membrane repair and downregulates multiple genes that encode virulence factors, which are trafficked across the cell membrane. Mutants that constitutively activate CpxRA in Salmonella enterica serovar Typhimurium and Haemophilus ducreyi are avirulent in mice and humans, respectively. Thus, the activation of CpxRA has high potential as a novel antimicrobial/antivirulence strategy. Using a series of Escherichia coli strains containing a CpxR-P-responsive lacZ reporter and deletions in genes encoding CpxRA system components, we developed and validated a novel cell-based high-throughput screen (HTS) for CpxRA activators. A screen of 36,000 compounds yielded one hit compound that increased reporter activity in wild-type cells. This is the first report of a compound that activates, rather than inhibits, a 2CSTS. The activity profile of the compound against CpxRA pathway mutants in the presence of glucose suggested that the compound inhibits CpxA phosphatase activity. We confirmed that the compound induced the accumulation of CpxR-P in treated cells. Although the hit compound contained a nitro group, a derivative lacking this group retained activity in serum and had lower cytotoxicity than that of the initial hit. This HTS is amenable for the screening of larger libraries to find compounds that activate CpxRA by other mechanisms, and it could be adapted to find activators of other two-component systems.Item Development of AlphaLISA high throughput technique to screen for small molecule inhibitors targeting protein arginine methyltransferases(Royal Society of Chemistry, 2017-11-21) Prabhu, Lakshmi; Chen, Lan; Wei, Han; Demir, Özlem; Safa, Ahmad; Zeng, Lifan; Amaro, Rommie E.; O’Neil, Bert H.; Zhang, Zhongyin; Lu, Tao; Pharmacology and Toxicology, School of MedicineThe protein arginine methyltransferase (PRMT) family of enzymes comprises nine family members in mammals. They catalyze arginine methylation, either monomethylation or symmetric/asymmetric dimethylation of histone and non-histone proteins. PRMT methylation of its substrate proteins modulates cellular processes such as signal transduction, transcription, and mRNA splicing. Recent studies have linked overexpression of PRMT5, a member of the PRMT superfamily, to oncogenesis, making it a potential target for cancer therapy. In this study, we developed a highly sensitive (Z' score = 0.7) robotic high throughput screening (HTS) platform to discover small molecule inhibitors of PRMT5 by adapting the AlphaLISA™ technology. Using biotinylated histone H4 as a substrate, and S-adenosyl-l-methionine as a methyl donor, PRMT5 symmetrically dimethylated H4 at arginine (R) 3. Highly specific acceptor beads for symmetrically dimethylated H4R3 and streptavidin-coated donor beads bound the substrate, emitting a signal that is proportional to the methyltransferase activity. Using this powerful approach, we identified specific PRMT5 inhibitors P1608K04 and P1618J22, and further validated their efficacy and specificity for inhibiting PRMT5. Importantly, these two compounds exhibited much more potent efficacy than the commercial PRMT5 inhibitor EPZ015666 in both pancreatic and colorectal cancer cells. Overall, our work highlights a novel, powerful, and sensitive approach to identify specific PRMT5 inhibitors. The general principle of this HTS screening method can not only be applied to PRMT5 and the PRMT superfamily, but may also be extended to other epigenetic targets. This approach allows us to identify compounds that inhibit the activity of their respective targets, and screening hits like P1608K04 and P1618J22 may serve as the basis for novel drug development to treat cancer and/or other diseases.Item Exploring the Existing Drug Space for Novel pTyr Mimetic and SHP2 Inhibitors(American Chemical Society, 2015-07-09) He, Rongjun; Yu, Zhi-Hong; Zhang, Ruo-Yu; Wu, Li; Gunawan, Andrea M.; Lane, Brandon S.; Shim, Joong S.; Zeng, Li-Fan; He, Yantao; Chen, Lan; Wells, Clark D.; Liu, Jun O.; Zhang, Zhong-Yin; Department of Biochemistry & Molecular Biology, IU School of MedicineProtein tyrosine phosphatases (PTPs) are potential therapeutic targets for many diseases. Unfortunately, despite considerable drug discovery efforts devoted to PTPs, obtaining selective and cell permeable PTP inhibitors remains highly challenging. We describe a strategy to explore the existing drug space for previously unknown PTP inhibitory activities. This led to the discovery of cefsulodin as an inhibitor of SHP2, an oncogenic phosphatase in the PTP family. Crystal structure analysis of SHP2 interaction with cefsulodin identified sulfophenyl acetic amide (SPAA) as a novel phosphotyrosine (pTyr) mimetic. A structure-guided and SPAA fragment-based focused library approach produced several potent and selective SHP2 inhibitors. Notably, these inhibitors blocked SHP2-mediated signaling events and proliferation in several cancer cell lines. Thus, SPAA may serve as a new platform for developing chemical probes for other PTPs.Item Inhibition of PRMT5 by market drugs as a novel cancer therapeutic avenue(Elsevier, 2023-01) Prabhu, Lakshmi; Martin, Matthew; Chen, Lan; Demir, Özlem; Jin, Jiamin; Huang, Xiumei; Motolani, Aishat; Sun, Mengyao; Jiang, Guanglong; Nakshatri, Harikrishna; Fishel, Melissa L.; Sun, Steven; Safa, Ahmad; Amaro, Rommie E.; Kelley, Mark R.; Liu, Yunlong; Zhang, Zhong-Yin; Lu, Tao; Radiation Oncology, School of MedicineMarket drugs, such as Food and Drug Administration (FDA) or European Medicines Agency (EMA)-approved drugs for specific indications provide opportunities for repurposing for newer therapeutics. This potentially saves resources invested in clinical trials that verify drug safety and tolerance in humans prior to alternative indication approval. Protein arginine methyltransferase 5 (PRMT5) overexpression has been linked to promoting the tumor phenotype in several cancers, including pancreatic ductal adenocarcinoma (PDAC), colorectal cancer (CRC), and breast cancer (BC), making PRMT5 an important target for cancer therapy. Previously, we showed that PRMT5-mediated methylation of the nuclear factor (NF)-κB, partially contributes to its constitutive activation observed in cancers. In this study, we utilized an AlphaLISA-based high-throughput screening method adapted in our lab, and identified one FDA-approved drug, Candesartan cilexetil (Can, used in hypertension treatment) and one EMA-approved drug, Cloperastine hydrochloride (Clo, used in cough treatment) that had significant PRMT5-inhibitory activity, and their anti-tumor properties were validated using cancer phenotypic assays . Furthermore, PRMT5 selective inhibition of methyltransferase activity was confirmed by reduction of both NF-κB methylation and its subsequent activation upon drug treatment. Using prediction, we identified critical residues on PRMT5 targeted by these drugs that may interfere with its enzymatic activity. Finally, Clo and Can treatment have exhibited marked reduction in tumor growth . Overall, we provide basis for pursuing repurposing Clo and Can as anti-PRMT5 cancer therapies. Our study offers potential safe and fast repurposing of previously unknown PRMT5 inhibitors into clinical practice.Item Molecular Basis of Gain-of-Function LEOPARD Syndrome-Associated SHP2 Mutations(American Chemical Society, 2014-07-01) Yu, Zhi-Hong; Zhang, Ruo-Yu; Walls, Chad D.; Chen, Lan; Zhang, Sheng; Wu, Li; Liu, Sijiu; Zhang, Zhong-Yin; Department of Biochemistry & Molecular Biology, IU School of MedicineThe Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 2 (SHP2) is a critical signal transducer downstream of growth factors that promotes the activation of the RAS-ERK1/2 cascade. In its basal state, SHP2 exists in an autoinhibited closed conformation because of an intramolecular interaction between its N-SH2 and protein tyrosine phosphatase (PTP) domains. Binding to pTyr ligands present on growth factor receptors and adaptor proteins with its N-SH2 domain localizes SHP2 to its substrates and frees the active site from allosteric inhibition. Germline mutations in SHP2 are known to cause both Noonan syndrome (NS) and LEOPARD syndrome (LS), two clinically similar autosomal dominant developmental disorders. NS-associated SHP2 mutants display elevated phosphatase activity, while LS-associated SHP2 mutants exhibit reduced catalytic activity. A conundrum in how clinically similar diseases result from mutations to SHP2 that have opposite effects on this enzyme’s catalytic functionality exists. Here we report a comprehensive investigation of the kinetic, structural, dynamic, and biochemical signaling properties of the wild type as well as all reported LS-associated SHP2 mutants. The results reveal that LS-causing mutations not only affect SHP2 phosphatase activity but also induce a weakening of the intramolecular interaction between the N-SH2 and PTP domains, leading to mutants that are more readily activated by competing pTyr ligands. Our data also indicate that the residual phosphatase activity associated with the LS SHP2 mutant is required for enhanced ERK1/2 activation. Consequently, catalytically impaired SHP2 mutants could display gain-of-function properties because of their ability to localize to the vicinity of substrates for longer periods of time, thereby affording the opportunity for prolonged substrate turnover and sustained RAS-ERK1/2 activation.Item SHP2 phosphatase as a novel therapeutic target for melanoma treatment(Impact Journals, 2016-11-08) Zhang, Ruo-Yu; Yu, Zhi-Hong; Zeng, Lifan; Zhang, Sheng; Bai, Yunpeng; Miao, Jinmin; Chen, Lan; Xie, Jingwu; Zhang, Zhong-Yin; Department of Biochemistry & Molecular Biology, IU School of MedicineMelanoma ranks among the most aggressive and deadly human cancers. Although a number of targeted therapies are available, they are effective only in a subset of patients and the emergence of drug resistance often reduces durable responses. Thus there is an urgent need to identify new therapeutic targets and develop more potent pharmacological agents for melanoma treatment. Herein we report that SHP2 levels are frequently elevated in melanoma, and high SHP2 expression is significantly associated with more metastatic phenotype and poorer prognosis. We show that SHP2 promotes melanoma cell viability, motility, and anchorage-independent growth, through activation of both ERK1/2 and AKT signaling pathways. We demonstrate that SHP2 inhibitor 11a-1 effectively blocks SHP2-mediated ERK1/2 and AKT activation and attenuates melanoma cell viability, migration and colony formation. Most importantly, SHP2 inhibitor 11a-1 suppresses xenografted melanoma tumor growth, as a result of reduced tumor cell proliferation and enhanced tumor cell apoptosis. Taken together, our data reveal SHP2 as a novel target for melanoma and suggest SHP2 inhibitors as potential novel therapeutic agents for melanoma treatment.Item Small Molecules Target the Interaction between Tissue Transglutaminase and Fibronectin(American Association for Cancer Research, 2019-06-01) Sima, Livia Elena; Yakubov, Bakhtiyor; Zhang, Sheng; Condello, Salvatore; Grigorescu, Arabela A.; Nwani, Nkechiyere G.; Chen, Lan; Schiltz, Gary E.; Arvanitis, Constandina; Zhang, Zhong-Yin; Matei, Daniela; Medicine, School of MedicineTissue transglutaminase (TG2) is a multi-functional protein, with enzymatic, GTP-ase and scaffold properties. TG2 interacts with fibronectin (FN) through its N-terminus domain, stabilizing integrin complexes, which regulate cell adhesion to the matrix. Through this mechanism, TG2 participates in key steps involved in metastasis in ovarian and other cancers. High throughput screening identified several small molecule inhibitors (SMIs) for the TG2/FN complex. Rational medicinal chemistry optimization of the hit compound (TG53) led to second generation analogues (MT1–6). ELISA demonstrated that these analogues blocked TG2/FN interaction and bio-layer interferometry (BLI) showed that the SMIs bound to TG2. The compounds also potently inhibited cancer cell adhesion to FN and decreased outside-in signaling mediated through the focal adhesion kinase (FAK). Blockade of TG2/FN interaction by the small molecules caused membrane ruffling, delaying the formation of stable focal contacts and mature adhesions points and disrupted organization of the actin cytoskeleton. In an in vivo model measuring intraperitoneal (ip) dissemination, MT4 and MT6 inhibited the adhesion of ovarian cancer (OC) cells to the peritoneum. Pre-treatment with MT4 also sensitized OC cells to paclitaxel. The data support continued optimization of the new class of SMIs that block the TG2/FN complex at the interface between cancer cells and the tumor niche.