- Browse by Author
Browsing by Author "Campana, Gonzalo"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Heterogeneity of Hepatic Stellate Cells in Fibrogenesis of the Liver: Insights from Single-Cell Transcriptomic Analysis in Liver Injury(MDPI, 2021-08-19) Zhang, Wenjun; Conway, Simon J.; Liu, Ying; Snider, Paige; Chen, Hanying; Gao, Hongyu; Liu, Yunlong; Isidan, Kadir; Lopez, Kevin J.; Campana, Gonzalo; Li, Ping; Ekser, Burcin; Francis, Heather; Shou, Weinian; Kubal, Chandrashekhar; Pediatrics, School of MedicineBackground & Aims: Liver fibrosis is a pathological healing process resulting from hepatic stellate cell (HSC) activation and the generation of myofibroblasts from activated HSCs. The precise underlying mechanisms of liver fibrogenesis are still largely vague due to lack of understanding the functional heterogeneity of activated HSCs during liver injury. Approach and Results: In this study, to define the mechanism of HSC activation, we performed the transcriptomic analysis at single-cell resolution (scRNA-seq) on HSCs in mice treated with carbon tetrachloride (CCl4). By employing LRAT-Cre:Rosa26mT/mG mice, we were able to isolate an activated GFP-positive HSC lineage derived cell population by fluorescence-activated cell sorter (FACS). A total of 8 HSC subpopulations were identified based on an unsupervised analysis. Each HSC cluster displayed a unique transcriptomic profile, despite all clusters expressing common mouse HSC marker genes. We demonstrated that one of the HSC subpopulations expressed high levels of mitosis regulatory genes, velocity, and monocle analysis indicated that these HSCs are at transitioning and proliferating phases at the beginning of HSCs activation and will eventually give rise to several other HSC subtypes. We also demonstrated cell clusters representing HSC-derived mature myofibroblast populations that express myofibroblasts hallmark genes with unique contractile properties. Most importantly, we found a novel HSC cluster that is likely to be critical in liver regeneration, immune reaction, and vascular remodeling, in which the unique profiles of genes such as Rgs5, Angptl6, and Meg3 are highly expressed. Lastly, we demonstrated that the heterogeneity of HSCs in the injured mouse livers is closely similar to that of cirrhotic human livers. Conclusions: Collectively, our scRNA-seq data provided insight into the landscape of activated HSC populations and the dynamic transitional pathway from HSC to myofibroblasts in response to liver injury.Item Skin Regeneration Using Dermal Substrates that Contain Autologous Cells and Silver Nanoparticles to Promote Antibacterial Activity: In Vitro Studies(AMSUS, 2017-03) Zieger, Michael A. J.; Ochoa, Manuel; Rahimi, Rahim; Campana, Gonzalo; Tholpady, Sunil; Ziaie, Babak; Sood, Rajiv; Surgery, School of MedicineWe hypothesized that the addition of silver nanoparticles (AgNP) to a dermal substrate would impart antibacterial properties without inhibiting the proliferation of contained cells. Our in vitro model was based on the commercial substrate, Integra. The substrate was prepared by simple immersion into 0 to 1% suspension of AgNP (75 or 200 nm diameter) followed by rinsing for 20 minutes and sterilization under an ultraviolet C lamp. A total of 107 human adipose stem cells per cubic centimeter were injected and after 1 hour, 6 × 105 keratinocytes/cm2 were seeded and cultured for up to 14 days. Constructs were evaluated using a metabolic assay (WST-1), and hematoxylin and eosin and immunoperoxidase staining. Bactericidal activity was measured using a log reduction assay against bacteria that are prevalent in burns. The presence of AgNP did not significantly change the metabolic activity of constructs after 14 days of culture, and the distribution of cells within the substrate was unchanged from the controls that did not have AgNP. Antibacterial activity of Integra containing AgNP (75 nm diameter) was concentration dependent. In conclusion, the addition of AgNP to the dermal substrate suppressed bacterial growth but did not significantly affect cell proliferation, and may represent an important property to incorporate into a future clinical skin regeneration system.