- Browse by Author
Browsing by Author "Byrd, Goldie S."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item A locus at 19q13.31 significantly reduces the ApoE ε4 risk for Alzheimer's Disease in African Ancestry(Public Library of Science, 2022-07-05) Rajabli, Farid; Beecham, Gary W.; Hendrie, Hugh C.; Baiyewu, Olusegun; Ogunniyi, Adesola; Gao, Sujuan; Kushch, Nicholas A.; Lipkin-Vasquez, Marina; Hamilton-Nelson, Kara L.; Young, Juan I.; Dykxhoorn, Derek M.; Nuytemans, Karen; Kunkle, Brian W.; Wang, Liyong; Jin, Fulai; Liu, Xiaoxiao; Feliciano-Astacio, Briseida E.; Alzheimer’s Disease Sequencing Project; Alzheimer’s Disease Genetic Consortium; Schellenberg, Gerard D.; Dalgard, Clifton L.; Griswold, Anthony J.; Byrd, Goldie S.; Reitz, Christiane; Cuccaro, Michael L.; Haines, Jonathan L.; Pericak-Vance, Margaret A.; Vance, Jeffery M.; Psychiatry, School of MedicineAfrican descent populations have a lower Alzheimer disease risk from ApoE ε4 compared to other populations. Ancestry analysis showed that the difference in risk between African and European populations lies in the ancestral genomic background surrounding the ApoE locus (local ancestry). Identifying the mechanism(s) of this protection could lead to greater insight into the etiology of Alzheimer disease and more personalized therapeutic intervention. Our objective is to follow up the local ancestry finding and identify the genetic variants that drive this risk difference and result in a lower risk for developing Alzheimer disease in African ancestry populations. We performed association analyses using a logistic regression model with the ApoE ε4 allele as an interaction term and adjusted for genome-wide ancestry, age, and sex. Discovery analysis included imputed SNP data of 1,850 Alzheimer disease and 4,331 cognitively intact African American individuals. We performed replication analyses on 63 whole genome sequenced Alzheimer disease and 648 cognitively intact Ibadan individuals. Additionally, we reproduced results using whole-genome sequencing of 273 Alzheimer disease and 275 cognitively intact admixed Puerto Rican individuals. A further comparison was done with SNP imputation from an additional 8,463 Alzheimer disease and 11,365 cognitively intact non-Hispanic White individuals. We identified a significant interaction between the ApoE ε4 allele and the SNP rs10423769_A allele, (β = -0.54,SE = 0.12,p-value = 7.50x10-6) in the discovery data set, and replicated this finding in Ibadan (β = -1.32,SE = 0.52,p-value = 1.15x10-2) and Puerto Rican (β = -1.27,SE = 0.64,p-value = 4.91x10-2) individuals. The non-Hispanic Whites analyses showed an interaction trending in the "protective" direction but failing to pass a 0.05 significance threshold (β = -1.51,SE = 0.84,p-value = 7.26x10-2). The presence of the rs10423769_A allele reduces the odds ratio for Alzheimer disease risk from 7.2 for ApoE ε4/ε4 carriers lacking the A allele to 2.1 for ApoE ε4/ε4 carriers with at least one A allele. This locus is located approximately 2 mB upstream of the ApoE locus, in a large cluster of pregnancy specific beta-1 glycoproteins on chromosome 19 and lies within a long noncoding RNA, ENSG00000282943. This study identified a new African-ancestry specific locus that reduces the risk effect of ApoE ε4 for developing Alzheimer disease. The mechanism of the interaction with ApoEε4 is not known but suggests a novel mechanism for reducing the risk for ε4 carriers opening the possibility for potential ancestry-specific therapeutic intervention.Item Association of Long Runs of Homozygosity With Alzheimer Disease Among African American Individuals(American Medical Association, 2015-11) Ghani, Mahdi; Reitz, Christiane; Cheng, Rong; Vardarajan, Badri Narayan; Jun, Gyungah; Sato, Christine; Naj, Adam; Rajbhandary, Ruchita; Wang, Li-San; Valladares, Otto; Lin, Chiao-Feng; Larson, Eric B.; Graff-Radford, Neill R.; Evans, Denis; De Jager, Philip L.; Crane, Paul K.; Buxbaum, Joseph D.; Murrell, Jill R.; Raj, Towfique; Ertekin-Taner, Nilufer; Logue, Mark; Baldwin, Clinton T.; Green, Robert C.; Barnes, Lisa L.; Cantwell, Laura B.; Fallin, M. Daniele; Go, Rodney C. P.; Griffith, Patrick A.; Obisesan, Thomas O.; Manly, Jennifer J.; Lunetta, Kathryn L.; Kamboh, M. Ilyas; Lopez, Oscar L.; Bennett, David A.; Hendrie, Hugh; Hall, Kathleen S.; Goate, Alison M.; Byrd, Goldie S.; Kukull, Walter A.; Foroud, Tatiana M.; Haines, Jonathan L.; Farrer, Lindsay A.; Pericak-Vance, Margaret A.; Lee, Joseph H.; Schellenberg, Gerard D.; St. George-Hyslop, Peter; Mayeux, Richard; Rogaeva, Ekaterina; Department of Psychiatry, IU School of MedicineIMPORTANCE: Mutations in known causal Alzheimer disease (AD) genes account for only 1% to 3% of patients and almost all are dominantly inherited. Recessive inheritance of complex phenotypes can be linked to long (>1-megabase [Mb]) runs of homozygosity (ROHs) detectable by single-nucleotide polymorphism (SNP) arrays. OBJECTIVE: To evaluate the association between ROHs and AD in an African American population known to have a risk for AD up to 3 times higher than white individuals. DESIGN, SETTING, AND PARTICIPANTS: Case-control study of a large African American data set previously genotyped on different genome-wide SNP arrays conducted from December 2013 to January 2015. Global and locus-based ROH measurements were analyzed using raw or imputed genotype data. We studied the raw genotypes from 2 case-control subsets grouped based on SNP array: Alzheimer's Disease Genetics Consortium data set (871 cases and 1620 control individuals) and Chicago Health and Aging Project-Indianapolis Ibadan Dementia Study data set (279 cases and 1367 control individuals). We then examined the entire data set using imputed genotypes from 1917 cases and 3858 control individuals. MAIN OUTCOMES AND MEASURES: The ROHs larger than 1 Mb, 2 Mb, or 3 Mb were investigated separately for global burden evaluation, consensus regions, and gene-based analyses. RESULTS: The African American cohort had a low degree of inbreeding (F ~ 0.006). In the Alzheimer's Disease Genetics Consortium data set, we detected a significantly higher proportion of cases with ROHs greater than 2 Mb (P = .004) or greater than 3 Mb (P = .02), as well as a significant 114-kilobase consensus region on chr4q31.3 (empirical P value 2 = .04; ROHs >2 Mb). In the Chicago Health and Aging Project-Indianapolis Ibadan Dementia Study data set, we identified a significant 202-kilobase consensus region on Chr15q24.1 (empirical P value 2 = .02; ROHs >1 Mb) and a cluster of 13 significant genes on Chr3p21.31 (empirical P value 2 = .03; ROHs >3 Mb). A total of 43 of 49 nominally significant genes common for both data sets also mapped to Chr3p21.31. Analyses of imputed SNP data from the entire data set confirmed the association of AD with global ROH measurements (12.38 ROHs >1 Mb in cases vs 12.11 in controls; 2.986 Mb average size of ROHs >2 Mb in cases vs 2.889 Mb in controls; and 22% of cases with ROHs >3 Mb vs 19% of controls) and a gene-cluster on Chr3p21.31 (empirical P value 2 = .006-.04; ROHs >3 Mb). Also, we detected a significant association between AD and CLDN17 (empirical P value 2 = .01; ROHs >1 Mb), encoding a protein from the Claudin family, members of which were previously suggested as AD biomarkers. CONCLUSIONS AND RELEVANCE: To our knowledge, we discovered the first evidence of increased burden of ROHs among patients with AD from an outbred African American population, which could reflect either the cumulative effect of multiple ROHs to AD or the contribution of specific loci harboring recessive mutations and risk haplotypes in a subset of patients. Sequencing is required to uncover AD variants in these individuals.Item Extended genome-wide association study employing the African genome resources panel identifies novel susceptibility loci for Alzheimer's disease in individuals of African ancestry(Wiley, 2024) Ray, Nicholas R.; Kunkle, Brian W.; Hamilton-Nelson, Kara; Kurup, Jiji T.; Rajabli, Farid; Qiao, Min; Vardarajan, Badri N.; Cosacak, Mehmet I.; Kizil, Caghan; Jean-Francois, Melissa; Cuccaro, Michael; Reyes-Dumeyer, Dolly; Cantwell, Laura; Kuzma, Amanda; Vance, Jeffery M.; Gao, Sujuan; Hendrie, Hugh C.; Baiyewu, Olusegun; Ogunniyi, Adesola; Akinyemi, Rufus O.; Alzheimer’s Disease Genetics Consortium; Lee, Wan-Ping; Martin, Eden R.; Wang, Li-San; Beecham, Gary W.; Bush, William S.; Xu, Wanying; Jin, Fulai; Wang, Liyong; Farrer, Lindsay A.; Haines, Jonathan L.; Byrd, Goldie S.; Schellenberg, Gerard D.; Mayeux, Richard; Pericak-Vance, Margaret A.; Reitz, Christiane; Biostatistics and Health Data Science, Richard M. Fairbanks School of Public HealthIntroduction: Despite a two-fold risk, individuals of African ancestry have been underrepresented in Alzheimer's disease (AD) genomics efforts. Methods: Genome-wide association studies (GWAS) of 2,903 AD cases and 6,265 controls of African ancestry. Within-dataset results were meta-analyzed, followed by functional genomics analyses. Results: A novel AD-risk locus was identified in MPDZ on chromosome (chr) 9p23 (rs141610415, MAF = 0.002, p = 3.68×10-9). Two additional novel common and nine rare loci were identified with suggestive associations (P < 9×10-7). Comparison of association and linkage disequilibrium (LD) patterns between datasets with higher and lower degrees of African ancestry showed differential association patterns at chr12q23.2 (ASCL1), suggesting that this association is modulated by regional origin of local African ancestry. Discussion: These analyses identified novel AD-associated loci in individuals of African ancestry and suggest that degree of African ancestry modulates some associations. Increased sample sets covering as much African genetic diversity as possible will be critical to identify additional loci and deconvolute local genetic ancestry effects. Highlights: Genetic ancestry significantly impacts risk of Alzheimer's Disease (AD). Although individuals of African ancestry are twice as likely to develop AD, they are vastly underrepresented in AD genomics studies. The Alzheimer's Disease Genetics Consortium has previously identified 16 common and rare genetic loci associated with AD in African American individuals. The current analyses significantly expand this effort by increasing the sample size and extending ancestral diversity by including populations from continental Africa. Single variant meta-analysis identified a novel genome-wide significant AD-risk locus in individuals of African ancestry at the MPDZ gene, and 11 additional novel loci with suggestive genome-wide significance at p < 9×10-7. Comparison of African American datasets with samples of higher degree of African ancestry demonstrated differing patterns of association and linkage disequilibrium at one of these loci, suggesting that degree and/or geographic origin of African ancestry modulates the effect at this locus. These findings illustrate the importance of increasing number and ancestral diversity of African ancestry samples in AD genomics studies to fully disentangle the genetic architecture underlying AD, and yield more effective ancestry-informed genetic screening tools and therapeutic interventions.Item Novel Alzheimer Disease Risk Loci and Pathways in African American Individuals Using the African Genome Resources Panel(American Medical Association, 2021-01-01) Kunkle, Brian W.; Schmidt, Michael; Klein, Hans-Ulrich; Naj, Adam C.; Hamilton-Nelson, Kara L.; Larson, Eric B.; Evans, Denis A.; De Jager, Phil L.; Crane, Paul K.; Buxbaum, Joe D.; Ertekin-Taner, Nilufer; Go, Rodney C.P.; Obisesan, Thomas O.; Kamboh, Ilyas; Bennett, David A.; Hall, Kathleen S.; Goate, Alison M.; Foroud, Tatiana M.; Martin, Eden R.; Wang, Li-Sao; Byrd, Goldie S.; Farrer, Lindsay A.; Haines, Jonathan L.; Schellenberg, Gerard D.; Mayeux, Richard; Pericak-Vance, Margaret A.; Reitz, Christiane; Graff-Radford, Neill R.; Martinez, Izri; Ayodele, Temitope; Logue, Mark W.; Cantwell, Laura B.; Jean-Francois, Melissa; Kuzma, Amanda B.; Adams, L.D.; Vance, Jeffery M.; Cuccaro, Michael L.; Chung, Jaeyoon; Mez, Jesse; Lunetta, Kathryn L.; Jun, Gyungah R.; Lopez, Oscar L.; Hendrie, Hugh C.; Reiman, Eric M.; Kowall, Neil W.; Leverenz, James B.; Small, Scott A.; Levey, Allan I.; Golde, Todd E.; Saykin, Andrew J.; Starks, Takiyah D.; Albert, Marilyn S.; Hyman, Bradley T.; Petersen, Ronald C.; Sano, Mary; Wisniewski, Thomas; Vassar, Robert; Kaye, Jeffrey A.; Henderson, Victor W.; DeCarli, Charles; LaFerla, Frank M.; Brewer, James B.; Miller, Bruce L.; Swerdlow, Russell H.; Van Eldik, Linda J.; Paulson, Henry L.; Trojanowski, John Q.; Chui, Helena C.; Rosenberg, Roger N.; Craft, Suzanne; Grabowski, Thomas J.; Asthana, Sanjay; Morris, John C.; Strittmatter, Stephen M.; Kukull, Walter A.; Psychiatry, School of MedicineImportance: Compared with non-Hispanic White individuals, African American individuals from the same community are approximately twice as likely to develop Alzheimer disease. Despite this disparity, the largest Alzheimer disease genome-wide association studies to date have been conducted in non-Hispanic White individuals. In the largest association analyses of Alzheimer disease in African American individuals, ABCA7, TREM2, and an intergenic locus at 5q35 were previously implicated. Objective: To identify additional risk loci in African American individuals by increasing the sample size and using the African Genome Resource panel. Design, setting, and participants: This genome-wide association meta-analysis used case-control and family-based data sets from the Alzheimer Disease Genetics Consortium. There were multiple recruitment sites throughout the United States that included individuals with Alzheimer disease and controls of African American ancestry. Analysis began October 2018 and ended September 2019. Main outcomes and measures: Diagnosis of Alzheimer disease. Results: A total of 2784 individuals with Alzheimer disease (1944 female [69.8%]) and 5222 controls (3743 female [71.7%]) were analyzed (mean [SD] age at last evaluation, 74.2 [13.6] years). Associations with 4 novel common loci centered near the intracellular glycoprotein trafficking gene EDEM1 (3p26; P = 8.9 × 10-7), near the immune response gene ALCAM (3q13; P = 9.3 × 10-7), within GPC6 (13q31; P = 4.1 × 10-7), a gene critical for recruitment of glutamatergic receptors to the neuronal membrane, and within VRK3 (19q13.33; P = 3.5 × 10-7), a gene involved in glutamate neurotoxicity, were identified. In addition, several loci associated with rare variants, including a genome-wide significant intergenic locus near IGF1R at 15q26 (P = 1.7 × 10-9) and 6 additional loci with suggestive significance (P ≤ 5 × 10-7) such as API5 at 11p12 (P = 8.8 × 10-8) and RBFOX1 at 16p13 (P = 5.4 × 10-7) were identified. Gene expression data from brain tissue demonstrate association of ALCAM, ARAP1, GPC6, and RBFOX1 with brain β-amyloid load. Of 25 known loci associated with Alzheimer disease in non-Hispanic White individuals, only APOE, ABCA7, TREM2, BIN1, CD2AP, FERMT2, and WWOX were implicated at a nominal significance level or stronger in African American individuals. Pathway analyses strongly support the notion that immunity, lipid processing, and intracellular trafficking pathways underlying Alzheimer disease in African American individuals overlap with those observed in non-Hispanic White individuals. A new pathway emerging from these analyses is the kidney system, suggesting a novel mechanism for Alzheimer disease that needs further exploration. Conclusions and relevance: While the major pathways involved in Alzheimer disease etiology in African American individuals are similar to those in non-Hispanic White individuals, the disease-associated loci within these pathways differ.Item Perspective on the "African American participation in Alzheimer disease research: Effective strategies" workshop, 2018(Wiley, 2020-12) Denny, Andrea; Streitz, Marissa; Stock, Kristin; Balls-Berry, Joyce E.; Barnes, Lisa L.; Byrd, Goldie S.; Croff, Raina; Gao, Sujuan; Glover, Crystal M.; Hendrie, Hugh C.; Hu, William T.; Manly, Jennifer J.; Moulder, Krista L.; Stark, Susan; Thomas, Stephen B.; Whitmer, Rachel; Wong, Roger; Morris, John C.; Lingler, Jennifer H.; Psychiatry, School of MedicineThe Washington University School of Medicine Knight Alzheimer Disease Research Center's "African American Participation in Alzheimer Disease Research: Effective Strategies" Workshop convened to address a major limitation of the ongoing scientific progress regarding Alzheimer's disease and related dementias (ADRD): participants in most ADRD research programs overwhelmingly have been limited to non-Hispanic white persons, thus precluding knowledge as to how ADRD may be represented in non-white individuals. Factors that may contribute to successful recruitment and retention of African Americans into ADRD research were discussed and organized into actionable next steps as described within this report.Item Two novel loci, COBL and SLC10A2, for Alzheimer's disease in African Americans(Elsevier, 2017-02) Mez, Jesse; Chung, Jaeyoon; Jun, Gyungah; Kriegel, Joshua; Bourlas, Alexandra P.; Sherva, Richard; Logue, Mark W.; Barnes, Lisa L.; Bennett, David A.; Buxbaum, Joseph D.; Byrd, Goldie S.; Crane, Paul K.; Ertekin-Taner, Nilüfer; Evans, Denis; Fallin, M. Daniele; Foroud, Tatiana; Goate, Alison; Graff-Radford, Neill R.; Hall, Kathleen S.; Kamboh, M. Ilyas; Kukull, Walter A.; Larson, Eric B.; Manly, Jennifer J.; Haines, Jonathan L.; Mayeux, Richard; Pericak-Vance, Margaret A.; Schellenberg, Gerard D.; Lunetta, Kathryn L.; Farrer, Lindsay A.; Department of Medical & Molecular Genetics, IU School of MedicineINTRODUCTION: African Americans' (AAs) late-onset Alzheimer's disease (LOAD) genetic risk profile is incompletely understood. Including clinical covariates in genetic analyses using informed conditioning might improve study power. METHODS: We conducted a genome-wide association study (GWAS) in AAs employing informed conditioning in 1825 LOAD cases and 3784 cognitively normal controls. We derived a posterior liability conditioned on age, sex, diabetes status, current smoking status, educational attainment, and affection status, with parameters informed by external prevalence information. We assessed association between the posterior liability and a genome-wide set of single-nucleotide polymorphisms (SNPs), controlling for APOE and ABCA7, identified previously in a LOAD GWAS of AAs. RESULTS: Two SNPs at novel loci, rs112404845 (P = 3.8 × 10-8), upstream of COBL, and rs16961023 (P = 4.6 × 10-8), downstream of SLC10A2, obtained genome-wide significant evidence of association with the posterior liability. DISCUSSION: An informed conditioning approach can detect LOAD genetic associations in AAs not identified by traditional GWAS.