- Browse by Author
Browsing by Author "Buckingham, Bruce A."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Assessing the efficacy, safety and utility of 6-month day-and-night automated closed-loop insulin delivery under free-living conditions compared with insulin pump therapy in children and adolescents with type 1 diabetes: an open-label, multicentre, multinational, single-period, randomised, parallel group study protocol(BMJ, 2019-06-03) Musolino, Gianluca; Allen, Janet M.; Hartnell, Sara; Wilinska, Malgorzata E.; Tauschmann, Martin; Boughton, Charlotte; Campbell, Fiona; Denvir, Louise; Trevelyan, Nicola; Wadwa, Paul; DiMeglio, Linda; Buckingham, Bruce A.; Weinzimer, Stuart; Acerini, Carlo L.; Hood, Korey; Fox, Steven; Kollman, Craig; Sibayan, Judy; Borgman, Sarah; Cheng, Peiyao; Hovorka, Roman; Pediatrics, School of MedicineINTRODUCTION: Closed-loop systems titrate insulin based on sensor glucose levels, providing novel means to reduce the risk of hypoglycaemia while improving glycaemic control. We will assess effectiveness of 6-month day-and-night closed-loop insulin delivery compared with usual care (conventional or sensor-augmented pump therapy) in children and adolescents with type 1 diabetes. METHODS AND ANALYSIS: The trial adopts an open-label, multicentre, multinational (UK and USA), randomised, single-period, parallel design. Participants (n=130) are children and adolescents (aged ≥6 and <19 years) with type 1 diabetes for at least 1 year, and insulin pump use for at least 3 months with suboptimal glycaemic control (glycated haemoglobin ≥58 mmol/mol (7.5%) and ≤86 mmol/mol (10%)). After a 2-3 week run-in period, participants will be randomised to 6-month use of hybrid closed-loop insulin delivery, or to usual care. Analyses will be conducted on an intention-to-treat basis. The primary outcome is glycated haemoglobin at 6 months. Other key endpoints include time in the target glucose range (3.9-10 mmol/L, 70-180 mg/dL), mean sensor glucose and time spent above and below target. Secondary outcomes include SD and coefficient of variation of sensor glucose levels, time with sensor glucose levels <3.5 mmol/L (63 mg/dL) and <3.0 mmol/L (54 mg/dL), area under the curve of glucose <3.5 mmol/L (63 mg/dL), time with glucose levels >16.7 mmol/L (300 mg/dL), area under the curve of glucose >10.0 mmol/L (180 mg/dL), total, basal and bolus insulin dose, body mass index z-score and blood pressure. Cognitive, emotional and behavioural characteristics of participants and caregivers and their responses to the closed-loop and clinical trial will be assessed. An incremental cost-effectiveness ratio for closed-loop will be estimated. ETHICS AND DISSEMINATION: Cambridge South Research Ethics Committee and Jaeb Center for Health Research Institutional Review Office approved the study. The findings will be disseminated by peer-review publications and conference presentations.Item Cambridge hybrid closed-loop algorithm in children and adolescents with type 1 diabetes: a multicentre 6-month randomised controlled trial.(Elsevier, 2022-04) Ware, Julia; Boughton, Charlotte K.; Allen, Janet M.; Wilinska, Malgorzata E.; Tauschmann, Martin; Denvir, Louise; Thankamony, Ajay; Campbell, Fiona M.; Wadwa, R. Paul; Buckingham, Bruce A.; Davis, Nikki; DiMeglio, Linda A.; Mauras, Nelly; Besser, Rachel E. J.; Ghatak, Atrayee; Weinzimer, Stuart A.; Hood, Korey K.; Fox, D. Steven; Kanapka, Lauren; Kollman, Craig; Sibayan, Judy; Beck, Roy W.; Hovorka, Roman; Pediatrics, School of MedicineBackground Closed-loop insulin delivery systems have the potential to address suboptimal glucose control in children and adolescents with type 1 diabetes. We compared safety and efficacy of the Cambridge hybrid closed-loop algorithm with usual care over 6 months in this population. Methods In a multicentre, multinational, parallel randomised controlled trial, participants aged 6–18 years using insulin pump therapy were recruited at seven UK and five US paediatric diabetes centres. Key inclusion criteria were diagnosis of type 1 diabetes for at least 12 months, insulin pump therapy for at least 3 months, and screening HbA1c levels between 53 and 86 mmol/mol (7·0–10·0%). Using block randomisation and central randomisation software, we randomly assigned participants to either closed-loop insulin delivery (closed-loop group) or to usual care with insulin pump therapy (control group) for 6 months. Randomisation was stratified at each centre by local baseline HbA1c. The Cambridge closed-loop algorithm running on a smartphone was used with either (1) a modified Medtronic 640G pump, Medtronic Guardian 3 sensor, and Medtronic prototype phone enclosure (FlorenceM configuration), or (2) a Sooil Dana RS pump and Dexcom G6 sensor (CamAPS FX configuration). The primary endpoint was change in HbA1c at 6 months combining data from both configurations. The primary analysis was done in all randomised patients (intention to treat). Trial registration ClinicalTrials.gov, NCT02925299. Findings Of 147 people initially screened, 133 participants (mean age 13·0 years [SD 2·8]; 57% female, 43% male) were randomly assigned to either the closed-loop group (n=65) or the control group (n=68). Mean baseline HbA1c was 8·2% (SD 0·7) in the closed-loop group and 8·3% (0·7) in the control group. At 6 months, HbA1c was lower in the closed-loop group than in the control group (between-group difference −3·5 mmol/mol (95% CI −6·5 to −0·5 [–0·32 percentage points, −0·59 to −0·04]; p=0·023). Closed-loop usage was low with FlorenceM due to failing phone enclosures (median 40% [IQR 26–53]), but consistently high with CamAPS FX (93% [88–96]), impacting efficacy. A total of 155 adverse events occurred after randomisation (67 in the closed-loop group, 88 in the control group), including seven severe hypoglycaemia events (four in the closed-loop group, three in the control group), two diabetic ketoacidosis events (both in the closed-loop group), and two non-treatment-related serious adverse events. There were 23 reportable hyperglycaemia events (11 in the closed-loop group, 12 in the control group), which did not meet criteria for diabetic ketoacidosis. Interpretation The Cambridge hybrid closed-loop algorithm had an acceptable safety profile, and improved glycaemic control in children and adolescents with type 1 diabetes. To ensure optimal efficacy of the closed-loop system, usage needs to be consistently high, as demonstrated with CamAPS FX.Item Glycemic outcomes of children 2–6 years of age with type 1 diabetes during the pediatric MiniMed™ 670G system trial(Wiley, 2022) Forlenza, Gregory P.; Ekhlaspour, Laya; DiMeglio, Linda A.; Fox, Larry A.; Rodriguez, Henry; Shulman, Dorothy I.; Kaiserman, Kevin B.; Liljenquist, David R.; Shin, John; Lee, Scott W.; Buckingham, Bruce A.; Pediatrics, School of MedicineBackground: Highly variable insulin sensitivity, susceptibility to hypoglycemia and inability to effectively communicate hypoglycemic symptoms pose significant challenges for young children with type 1 diabetes (T1D). Herein, outcomes during clinical MiniMed™ 670G system use were evaluated in children aged 2-6 years with T1D. Methods: Participants (N = 46, aged 4.6 ± 1.4 years) at seven investigational centers used the MiniMed™ 670G system in Manual Mode during a two-week run-in period followed by Auto Mode during a three-month study phase. Safety events, mean A1C, sensor glucose (SG), and percentage of time spent in (TIR, 70-180 mg/dl), below (TBR, <70 mg/dl) and above (TAR, >180 mg/dl) range were assessed for the run-in and study phase and compared using a paired t-test or Wilcoxon signed-rank test. Results: From run-in to end of study (median 87.1% time in auto mode), mean A1C and SG changed from 8.0 ± 0.9% to 7.5 ± 0.6% (p < 0.001) and from 173 ± 24 to 161 ± 16 mg/dl (p < 0.001), respectively. Overall TIR increased from 55.7 ± 13.4% to 63.8 ± 9.4% (p < 0.001), while TBR and TAR decreased from 3.3 ± 2.5% to 3.2 ± 1.6% (p = 0.996) and 41.0 ± 14.7% to 33.0 ± 9.9% (p < 0.001), respectively. Overnight TBR remained unchanged and TAR was further improved 12:00 am-6:00 am. Throughout the study phase, there were no episodes of severe hypoglycemia or diabetic ketoacidosis (DKA) and no serious adverse device-related events. Conclusions: At-home MiniMed™ 670G Auto Mode use by young children safely improved glycemic outcomes compared to two-week open-loop Manual Mode use. The improvements are similar to those observed in older children, adolescents and adults with T1D using the same system for the same duration of time.Item Lived experience of CamAPS FX closed loop system in youth with type 1 diabetes and their parents(Wiley, 2022) Hood, Korey K.; Garcia-Willingham, Natasha; Hanes, Sarah; Tanenbaum, Molly L.; Ware, Julia; Boughton, Charlotte K.; Allen, Janet M.; Wilinska, Malgorzata E.; Tauschmann, Martin; Denvir, Louise; Thankamony, Ajay; Campbell, Fiona; Wadwa, R. Paul; Buckingham, Bruce A.; Davis, Nikki; DiMeglio, Linda A.; Mauras, Nelly; Besser, Rachel E. J.; Ghatak, Atrayee; Weinzimer, Stuart A.; Fox, D. Steven; Kanapka, Lauren; Kollman, Craig; Sibayan, Judy; Beck, Roy W.; Hovorka, Roman; DAN05 ConsortiumAim: To examine changes in the lived experience of type 1 diabetes after use of hybrid closed loop (CL), including the CamAPS FX CL system. Materials and methods: The primary study was conducted as an open-label, single-period, randomized, parallel design contrasting CL versus insulin pump (with or without continuous glucose monitoring). Participants were asked to complete patient-reported outcomes before starting CL and 3 and 6 months later. Surveys assessed diabetes distress, hypoglycaemia concerns and quality of life. Qualitative focus group data were collected at the completion of the study. Results: In this sample of 98 youth (age range 6-18, mean age 12.7 ± 2.8 years) and their parents, CL use was not associated with psychosocial benefits overall. However, the subgroup (n = 12) using the CamAPS FX system showed modest improvements in quality of life and parent distress, reinforced by both survey (p < .05) and focus group responses. There were no negative effects of CL use reported by study participants. Conclusions: Closed loop use via the CamAPS FX system was associated with modest improvements in aspects of the lived experience of managing type 1 diabetes in youth and their families. Further refinements of the system may optimize the user experience.