- Browse by Author
Browsing by Author "Brown, Robert D., Jr."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Contemporary Neuroscience Core Curriculum for Medical Schools(Wolters Kluwer, 2021-10-04) Gelb, Douglas J.; Kraakevik, Jeff; Safdieh, Joseph E.; Agarwal, Sachin; Odia, Yazmin; Govindarajan, Raghav; Quick, Adam; Soni, Madhu; AAN Undergraduate Education Subcommittee (UES); Bickel, Jennifer; Gamaldo, Charlene; Hannon, Peter; Hatch, Hayden A. M.; Hernandez, Christian; Merlin, Lisa R.; Noble, James M.; Reyes-Iglesias, Yolanda; Salas, Rachel Marie E.; Sandness, David James; Treat, Lauren; AAN Education Committee; Benameur, Karima; Brown, Robert D., Jr.; DeLuca, Gabriele C.; Garg, Neeta; Goldstein, Larry B.; Gutmann, Laurie; Henchcliffe, Claire; Hessler, Amy; Jordan, Justin T.; Kilgore, Shannon M.; Khan, Jaffar; Levin, Kerry H.; Mohile, Nimish A.; Nevel, Kathryn S.; Roberts, Kirk; Said, Rana R.; Simpson, Ericka P.; Sirven, Joseph I.; Smith, A. Gordon; Southerland, Andrew Mebane; Wilson, Rujuta B.; Neurology, School of MedicineMedical students need to understand core neuroscience principles as a foundation for their required clinical experiences in neurology. In fact, they need a solid neuroscience foundation for their clinical experiences in all other medical disciplines also because the nervous system plays such a critical role in the function of every organ system. Because of the rapid pace of neuroscience discoveries, it is unrealistic to expect students to master the entire field. It is also unnecessary, as students can expect to have ready access to electronic reference sources no matter where they practice. In the preclerkship phase of medical school, the focus should be on providing students with the foundational knowledge to use those resources effectively and interpret them correctly. This article describes an organizational framework for teaching the essential neuroscience background needed by all physicians. This is particularly germane at a time when many medical schools are reassessing traditional practices and instituting curricular changes such as competency-based approaches, earlier clinical immersion, and increased emphasis on active learning. This article reviews factors that should be considered when developing the preclerkship neuroscience curriculum, including goals and objectives for the curriculum, the general topics to include, teaching and assessment methodology, who should direct the course, and the areas of expertise of faculty who might be enlisted as teachers or content experts. These guidelines were developed by a work group of experienced educators appointed by the Undergraduate Education Subcommittee (UES) of the American Academy of Neurology (AAN). They were then successively reviewed, edited, and approved by the entire UES, the AAN Education Committee, and the AAN Board of Directors.Item Heritability of circle of Willis variations in families with intracranial aneurysms(Public Library of Science, 2018-01-29) Sánchez van Kammen, Mayte; Moomaw, Charles J.; Schaaf, Irene C. van der; Brown, Robert D., Jr.; Woo, Daniel; Broderick, Joseph P.; Mackey, Jason S.; Rinkel, Gabriël J. E.; Huston, John, III; Ruigrok, Ynte M.; Neurology, School of MedicineBACKGROUND: Intracranial aneurysms more often occur in the same arterial territory within families. Several aneurysm locations are associated with specific circle of Willis variations. We investigated whether the same circle of Willis variations are more likely to occur in first-degree relatives than in unrelated individuals. METHODS: We assessed four circle of Willis variations (classical, A1-asymmetry, incomplete posterior communicating artery and fetal circulation) in two independent groups of families with familial aneurysms and ≥2 first-degree relatives with circle of Willis imaging on MRA/CTA. In each (index) family we determined the proportion of first-degree relatives with the same circle of Willis variation as the proband and compared it to the proportion of first-degree relatives of a randomly selected unrelated (comparison) family who had the same circle of Willis variation as the index family's proband. Concordance in index families and comparison families was compared with a conditional logistic events/trials model. The analysis was simulated 1001 times; we report the median concordances, odds ratios (ORs), and 95% confidence intervals (95%CI). The groups were analysed separately and together by meta-analysis. RESULTS: We found a higher overall concordance in circle of Willis configuration in index families than in comparison families (meta-analysis, 244 families: OR 2.2, 95%CI 1.6-3.0) mostly attributable to a higher concordance in incomplete posterior communicating artery (meta-analysis: OR 2.8, 95%CI 1.8-4.3). No association was found for the other three circle of Willis variations. CONCLUSIONS: In two independent groups of families with familial aneurysms, the incomplete PcomA variation occurred more often within than between families suggesting heritability of this circle of Willis variation. Further studies should investigate genetic variants associated with circle of Willis formation.Item Screening for brain aneurysm in the Familial Intracranial Aneurysm study: frequency and predictors of lesion detection(Journal of Neurosurgery Publishing Group (JNSPG), 2008-06) Brown, Robert D., Jr.; Huston, John, III; Hornung, Richard; Foroud, Tatiana; Kallmes, David F.; Kleindorfer, Dawn; Meissner, Irene; Woo, Daniel; Sauerbeck, Laura; Broderick, Joseph; Department of Medical & Molecular Genetics, School of Medicine,Object Approximately 20% of patients with an intracranial saccular aneurysm report a family history of intracranial aneurysm (IA) or subarachnoid hemorrhage. A better understanding of predictors of aneurysm detection in familial IA may allow more targeted aneurysm screening strategies. Methods The Familial Intracranial Aneurysm (FIA) study is a multicenter study, in which the primary objective is to define the susceptibility genes related to the formation of IA. First-degree relatives (FDRs) of those affected with IA are offered screening with magnetic resonance (MR) angiography if they were previously unaffected, are ≥ 30 years of age, and have a history of smoking and/or hypertension. Independent predictors of aneurysm detection on MR angiography were determined using the generalized estimating equation version of logistic regression. Results Among the first 303 patients screened with MR angiography, 58 (19.1%) had at least 1 IA, including 24% of women and 11.7% of men. Ten (17.2%) of 58 affected patients had multiple aneurysms. Independent predictors of aneurysm detection included female sex (odds ratio [OR] 2.46, p = 0.001), pack-years of cigarette smoking (OR 3.24 for 20 pack-years of cigarette smoking compared with never having smoked, p < 0.001), and duration of hypertension (OR 1.26 comparing those with 10 years of hypertension to those with no hypertension, p = 0.006). Conclusions In the FIA study, among the affected patients’ FDRs who are > 30 years of age, those who are women or who have a history of smoking or hypertension are at increased risk of suffering an IA and should be strongly considered for screening.