- Browse by Author
Browsing by Author "Bothwell, James"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Dietary Supplementation With Montmorency Tart Cherries and Exercise Improves Lean Mass in Older C57BL/6 Mice(Elsevier, 2021) Robinson, Kara; Hatter, Bethany; Washburn, Karley; Bothwell, James; Anderson, Kendall; Lin, Dingbo; Lucas, Edralin; Smith, Brenda; Obstetrics and Gynecology, School of MedicineObjectives: Sarcopenia, the progressive loss of muscle mass and strength, accelerates with age. Current recommendations to prevent sarcopenia focus on exercise and protein intake. Tart cherry (TC) has shown beneficial effects on muscle recovery following exercise. In this study, we investigated the effects of TC alone and in combination with exercise on lean mass, mitochondrial biogenesis, and oxidative stress in young compared to older mice. Methods: In two cohorts (6 & 52 wk-old), female C57BL/6 mice were randomly assigned to 4 groups in a 2 × 2 factorial design with diet (AIN-93 control or TC supplemented at 10% w/w) and exercise as factors. Exercise consisted of treadmill running for 30 min, 5 d/wk, at 12 m/min and a 5° incline. Food intake was recorded daily and body weights weekly. After 8 wks, body composition was assessed using dual-energy x-ray absorptiometry. The gastrocnemius muscle was collected for protein analysis. Western blotting techniques were used to probe for superoxide dismutase 2 (SOD2) and peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC1a), indicators of oxidative stress and mitochondrial biogenesis. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as loading control. Data were analyzed using 2-way ANOVA with α = 0.05. Results: In young mice, TC had no effect on body weight and % lean mass, but led to decreased (P < 0.05) % fat mass compared to controls. Exercise decreased (P < 0.05) body weight and % fat, and tended to increase (P = 0.069) % lean mass. In contrast, TC and exercise independently decreased body weight and % fat, and increased % lean mass in older mice compared to controls. The combination of TC and exercise tended to have a synergistic effect on % lean mass (P = 0.056). Preliminary results show that TC significantly up-regulated SOD2 protein expression in young mice, but no effect was observed with exercise or combined treatments. PGC1α expression tended to be suppressed (P = 0.064) in young animals fed TC. To date, we have been unable to detect changes in SOD2 and PGC1α in older mice. Conclusions: TC had a protective effect on lean tissue in older mice, preliminary analyses revealed no alterations in oxidative stress or mitochondrial biogenesis. Further investigation is warranted to understand the benefits of TC on lean muscle mass in older mice.Item U.S. Montmorency Tart Cherry Juice Decreases Bone Resorption in Women Aged 65–80 Years(MDPI, 2021) Dodier, Tiffany; Anderson, Kendall L.; Bothwell, James; Hermann, Janice; Lucas, Edralin A.; Smith, Brenda J.; Obstetrics and Gynecology, School of MedicinePre-clinical studies have demonstrated that tart cherries, rich in hydroxycinnamic acids and anthocyanins, protect against age-related and inflammation-induced bone loss. This study examined how daily consumption of Montmorency tart cherry juice (TC) alters biomarkers of bone metabolism in older women. Healthy women, aged 65–80 years (n = 27), were randomly assigned to consume ~240 mL (8 fl. oz.) of juice once (TC1X) or twice (TC2X) per day for 90 d. Dual-energy x-ray absorptiometry (DXA) scans were performed to determine bone density at baseline, and pre- and post-treatment serum biomarkers of bone formation and resorption, vitamin D, inflammation, and oxidative stress were assessed. Irrespective of osteoporosis risk, the bone resorption marker, tartrate resistant acid phosphatase type 5b, was significantly reduced with the TC2X dose compared to baseline, but not with the TC1X dose. In terms of indicators of bone formation and turnover, neither serum bone-specific alkaline phosphatase nor osteocalcin were altered. No changes in thiobarbituric acid reactive substances or high sensitivity C-reactive protein were observed in response to either TC1X or TC2X. We conclude that short-term supplementation with the higher dose of tart cherry juice decreased bone resorption from baseline without altering bone formation and turnover biomarkers in this cohort.