- Browse by Author
Browsing by Author "Blennow, Kaj"
Now showing 1 - 10 of 32
Results Per Page
Sort Options
Item Alzheimer's Disease and Small Vessel Disease Differentially Affect White Matter Microstructure(Wiley, 2024) Tranfa, Mario; Lorenzini, Luigi; Collij, Lyduine E.; Vállez García, David; Ingala, Silvia; Pontillo, Giuseppe; Pieperhoff, Leonard; Maranzano, Alessio; Wolz, Robin; Haller, Sven; Blennow, Kaj; Frisoni, Giovanni; Sudre, Carole H.; Chételat, Gael; Ewers, Michael; Payoux, Pierre; Waldman, Adam; Martinez-Lage, Pablo; Schwarz, Adam J.; Ritchie, Craig W.; Wardlaw, Joanna M.; Domingo Gispert, Juan; Brunetti, Arturo; Mutsaerts, Henk J. M. M.; Meije Wink, Alle; Barkhof, Frederik; Radiology and Imaging Sciences, School of MedicineObjective: Alzheimer's disease (AD) and cerebral small vessel disease (cSVD), the two most common causes of dementia, are characterized by white matter (WM) alterations diverging from the physiological changes occurring in healthy aging. Diffusion tensor imaging (DTI) is a valuable tool to quantify WM integrity non-invasively and identify the determinants of such alterations. Here, we investigated main effects and interactions of AD pathology, APOE-ε4, cSVD, and cardiovascular risk on spatial patterns of WM alterations in non-demented older adults. Methods: Within the prospective European Prevention of Alzheimer's Dementia study, we selected 606 participants (64.9 ± 7.2 years, 376 females) with baseline cerebrospinal fluid samples of amyloid β1-42 and p-Tau181 and MRI scans, including DTI scans. Longitudinal scans (mean follow-up time = 1.3 ± 0.5 years) were obtained in a subset (n = 223). WM integrity was assessed by extracting fractional anisotropy and mean diffusivity in relevant tracts. To identify the determinants of WM disruption, we performed a multimodel inference to identify the best linear mixed-effects model for each tract. Results: AD pathology, APOE-ε4, cSVD burden, and cardiovascular risk were all associated with WM integrity within several tracts. While limbic tracts were mainly impacted by AD pathology and APOE-ε4, commissural, associative, and projection tract integrity was more related to cSVD burden and cardiovascular risk. AD pathology and cSVD did not show any significant interaction effect. Interpretation: Our results suggest that AD pathology and cSVD exert independent and spatially different effects on WM microstructure, supporting the role of DTI in disease monitoring and suggesting independent targets for preventive medicine approaches.Item The Alzheimer's Disease Neuroimaging Initiative 2 Biomarker Core: A review of progress and plans(Elsevier, 2015-07) Kang, Ju-Hee; Korecka, Magdalena; Figurski, Michal J.; Toledo, Jon B.; Blennow, Kaj; Zetterberg, Henrik; Waligorska, Teresa; Brylska, Magdalena; Fields, Leona; Shah, Nirali; Soares, Holly; Dean, Robert A.; Vanderstichele, Hugo; Petersen, Ronald C.; Aisen, Paul S.; Saykin, Andrew J.; Weiner, Michael W.; Trojanowski, John Q.; Shaw, Leslie M.; Alzheimer's Disease Neuroimaging Initiative; Department of Radiology and Imaging Sciences, School of MedicineINTRODUCTION: We describe Alzheimer's Disease Neuroimaging Initiative (ADNI) Biomarker Core progress including: the Biobank; cerebrospinal fluid (CSF) amyloid beta (Aβ1-42), t-tau, and p-tau181 analytical performance, definition of Alzheimer's disease (AD) profile for plaque, and tangle burden detection and increased risk for progression to AD; AD disease heterogeneity; progress in standardization; and new studies using ADNI biofluids. METHODS: Review publications authored or coauthored by ADNI Biomarker core faculty and selected non-ADNI studies to deepen the understanding and interpretation of CSF Aβ1-42, t-tau, and p-tau181 data. RESULTS: CSF AD biomarker measurements with the qualified AlzBio3 immunoassay detects neuropathologic AD hallmarks in preclinical and prodromal disease stages, based on CSF studies in non-ADNI living subjects followed by the autopsy confirmation of AD. Collaboration across ADNI cores generated the temporal ordering model of AD biomarkers varying across individuals because of genetic/environmental factors that increase/decrease resilience to AD pathologies. DISCUSSION: Further studies will refine this model and enable the use of biomarkers studied in ADNI clinically and in disease-modifying therapeutic trials.Item Amyloid polymorphisms constitute distinct clouds of conformational variants in different etiological subtypes of Alzheimer's disease(National Academy of Sciences, 2017-12-05) Rasmussen, Jay; Mahler, Jasmin; Beschorner, Natalie; Kaeser, Stephan A.; Häsler, Lisa M.; Baumann, Frank; Nyström, Sofie; Portelius, Erik; Blennow, Kaj; Lashley, Tammaryn; Fox, Nick C.; Sepulveda-Falla, Diego; Glatzel, Markus; Oblak, Adrian L.; Ghetti, Bernardino; Nilsson, K. Peter R.; Hammarström, Per; Staufenbiel, Matthias; Walker, Lary C.; Jucker, Mathias; Pathology and Laboratory Medicine, School of MedicineThe molecular architecture of amyloids formed in vivo can be interrogated using luminescent conjugated oligothiophenes (LCOs), a unique class of amyloid dyes. When bound to amyloid, LCOs yield fluorescence emission spectra that reflect the 3D structure of the protein aggregates. Given that synthetic amyloid-β peptide (Aβ) has been shown to adopt distinct structural conformations with different biological activities, we asked whether Aβ can assume structurally and functionally distinct conformations within the brain. To this end, we analyzed the LCO-stained cores of β-amyloid plaques in postmortem tissue sections from frontal, temporal, and occipital neocortices in 40 cases of familial Alzheimer's disease (AD) or sporadic (idiopathic) AD (sAD). The spectral attributes of LCO-bound plaques varied markedly in the brain, but the mean spectral properties of the amyloid cores were generally similar in all three cortical regions of individual patients. Remarkably, the LCO amyloid spectra differed significantly among some of the familial and sAD subtypes, and between typical patients with sAD and those with posterior cortical atrophy AD. Neither the amount of Aβ nor its protease resistance correlated with LCO spectral properties. LCO spectral amyloid phenotypes could be partially conveyed to Aβ plaques induced by experimental transmission in a mouse model. These findings indicate that polymorphic Aβ-amyloid deposits within the brain cluster as clouds of conformational variants in different AD cases. Heterogeneity in the molecular architecture of pathogenic Aβ among individuals and in etiologically distinct subtypes of AD justifies further studies to assess putative links between Aβ conformation and clinical phenotype.Item Association between plasma tau and postoperative delirium incidence and severity: a prospective observational study(Elsevier, 2021) Ballweg, Tyler; White, Marissa; Parker, Margaret; Casey, Cameron; Bo, Amber; Farahbakhsh, Zahra; Kayser, Austin; Blair, Alexander; Lindroth, Heidi; Pearce, Robert A.; Blennow, Kaj; Zetterberg, Henrik; Lennertz, Richard; Sanders, Robert D.; Medicine, School of MedicineBackground: Postoperative delirium is associated with increases in the neuronal injury biomarker, neurofilament light (NfL). Here we tested whether two other biomarkers, glial fibrillary acidic protein (GFAP) and tau, are associated with postoperative delirium. Methods: A total of 114 surgical patients were recruited into two prospective biomarker cohort studies with assessment of delirium severity and incidence. Plasma samples were sent for biomarker analysis including tau, NfL, and GFAP, and a panel of 10 cytokines. We determined a priori to adjust for interleukin-8 (IL-8), a marker of inflammation, when assessing associations between biomarkers and delirium incidence and severity. Results: GFAP concentrations showed no relationship to delirium. The change in tau from preoperative concentrations to postoperative Day 1 was greater in patients with postoperative delirium (P<0.001) and correlated with delirium severity (ρ=0.39, P<0.001). The change in tau correlated with increases in IL-8 (P<0.001) and IL-10 (P=0.0029). Linear regression showed that the relevant clinical predictors of tau changes were age (P=0.037), prior stroke/transient ischaemic attack (P=0.001), and surgical blood loss (P<0.001). After adjusting for age, sex, preoperative cognition, and change in IL-8, tau remained significantly associated with delirium severity (P=0.026). Using linear mixed effect models, only tau (not NfL or IL-8) predicted recovery from delirium (P<0.001). Conclusions: The change in plasma tau was associated with delirium incidence and severity, and resolved over time in parallel with delirium features. The impact of this putative perioperative neuronal injury biomarker on long-term cognition merits further investigation.Item Blood biomarkers for Alzheimer’s disease in clinical practice and trials(Springer Nature, 2023) Hansson, Oskar; Blennow, Kaj; Zetterberg, Henrik; Dage, Jeffrey; Neurology, School of MedicineBlood-based biomarkers hold great promise to revolutionize the diagnostic and prognostic work-up of Alzheimer's disease (AD) in clinical practice. This is very timely, considering the recent development of anti-amyloid-β (Aβ) immunotherapies. Several assays for measuring phosphorylated tau (p-tau) in plasma exhibit high diagnostic accuracy in distinguishing AD from all other neurodegenerative diseases in patients with cognitive impairment. Prognostic models based on plasma p-tau levels can also predict future development of AD dementia in patients with mild cognitive complaints. The use of such high-performing plasma p-tau assays in the clinical practice of specialist memory clinics would reduce the need for more costly investigations involving cerebrospinal fluid samples or positron emission tomography. Indeed, blood-based biomarkers already facilitate identification of individuals with pre-symptomatic AD in the context of clinical trials. Longitudinal measurements of such biomarkers will also improve the detection of relevant disease-modifying effects of new drugs or lifestyle interventions.Item Blood-based biomarkers for Alzheimer's disease: Current state and future use in a transformed global healthcare landscape(Elsevier, 2023) Hampel, Harald; Hu, Yan; Cummings, Jeffrey; Mattke, Soeren; Iwatsubo, Takeshi; Nakamura, Akinori; Vellas, Bruno; O’Bryant, Sid; Shaw, Leslie M.; Cho, Min; Batrla, Richard; Vergallo, Andrea; Blennow, Kaj; Dage, Jeffrey; Schindler, Suzanne E.; Neurology, School of MedicineTimely detection of the pathophysiological changes and cognitive impairment caused by Alzheimer's disease (AD) is increasingly pressing because of the advent of biomarker-guided targeted therapies that may be most effective when provided early in the disease. Currently, diagnosis and management of early AD are largely guided by clinical symptoms. FDA-approved neuroimaging and cerebrospinal fluid biomarkers can aid detection and diagnosis, but the clinical implementation of these testing modalities is limited because of availability, cost, and perceived invasiveness. Blood-based biomarkers (BBBMs) may enable earlier and faster diagnoses as well as aid in risk assessment, early detection, prognosis, and management. Herein, we review data on BBBMs that are closest to clinical implementation, particularly those based on measures of amyloid-β peptides and phosphorylated tau species. We discuss key parameters and considerations for the development and potential deployment of these BBBMs under different contexts of use and highlight challenges at the methodological, clinical, and regulatory levels.Item Characterization of pre-analytical sample handling effects on a panel of Alzheimer's disease–related blood-based biomarkers: Results from the Standardization of Alzheimer's Blood Biomarkers (SABB) working group(Wiley, 2022) Verberk, Inge M. W.; Misdorp, Els O.; Koelewijn, Jannet; Ball, Andrew J.; Blennow, Kaj; Dage, Jeffrey L.; Fandos, Noelia; Hansson, Oskar; Hirtz, Christophe; Janelidze, Shorena; Kang, Sungmin; Kirmess, Kristopher; Kindermans, Jana; Lee, Ryan; Meyer, Matthew R.; Shan, Dandan; Shaw, Leslie M.; Waligorska, Teresa; West, Tim; Zetterberg, Henrik; Edelmayer, Rebecca M.; Teunissen, Charlotte E.; Neurology, School of MedicineIntroduction: Pre-analytical sample handling might affect the results of Alzheimer's disease blood-based biomarkers. We empirically tested variations of common blood collection and handling procedures. Methods: We created sample sets that address the effect of blood collection tube type, and of ethylene diamine tetraacetic acid plasma delayed centrifugation, centrifugation temperature, aliquot volume, delayed storage, and freeze–thawing. We measured amyloid beta (Aβ)42 and 40 peptides with six assays, and Aβ oligomerization-tendency (OAβ), amyloid precursor protein (APP)699-711, glial fibrillary acidic protein (GFAP), neurofilament light (NfL), total tau (t-tau), and phosphorylated tau181. Results: Collection tube type resulted in different values of all assessed markers. Delayed plasma centrifugation and storage affected Aβ and t-tau; t-tau was additionally affected by centrifugation temperature. The other markers were resistant to handling variations. Discussion: We constructed a standardized operating procedure for plasma handling, to facilitate introduction of blood-based biomarkers into the research and clinical settings.Item Chronic neuropsychiatric sequelae of SARS-CoV-2: Protocol and methods from the Alzheimer's Association Global Consortium(Alzheimer’s Association, 2022-09-22) de Erausquin, Gabriel A.; Snyder, Heather; Brugha, Traolach S.; Seshadri, Sudha; Carrillo, Maria; Sagar, Rajesh; Huang, Yueqin; Newton, Charles; Tartaglia, Carmela; Teunissen, Charlotte; Håkanson, Krister; Akinyemi, Rufus; Prasad, Kameshwar; D'Avossa, Giovanni; Gonzalez-Aleman, Gabriela; Hosseini, Akram; Vavougios, George D.; Sachdev, Perminder; Bankart, John; Ole Mors, Niels Peter; Lipton, Richard; Katz, Mindy; Fox, Peter T.; Katshu, Mohammad Zia; Iyengar, M. Sriram; Weinstein, Galit; Sohrabi, Hamid R.; Jenkins, Rachel; Stein, Dan J.; Hugon, Jacques; Mavreas, Venetsanos; Blangero, John; Cruchaga, Carlos; Krishna, Murali; Wadoo, Ovais; Becerra, Rodrigo; Zwir, Igor; Longstreth, William T.; Kroenenberg, Golo; Edison, Paul; Mukaetova-Ladinska, Elizabeta; Staufenberg, Ekkehart; Figueredo-Aguiar, Mariana; Yécora, Agustín; Vaca, Fabiana; Zamponi, Hernan P.; Lo Re, Vincenzina; Majid, Abdul; Sundarakumar, Jonas; Gonzalez, Hector M.; Geerlings, Mirjam I.; Skoog, Ingmar; Salmoiraghi, Alberto; Boneschi, Filippo Martinelli; Patel, Vibuthi N.; Santos, Juan M.; Arroyo, Guillermo Rivera; Moreno, Antonio Caballero; Felix, Pascal; Gallo, Carla; Arai, Hidenori; Yamada, Masahito; Iwatsubo, Takeshi; Sharma, Malveeka; Chakraborty, Nandini; Ferreccio, Catterina; Akena, Dickens; Brayne, Carol; Maestre, Gladys; Williams Blangero, Sarah; Brusco, Luis I.; Siddarth, Prabha; Hughes, Timothy M.; Ramírez Zuñiga, Alfredo; Kambeitz, Joseph; Laza, Agustin Ruiz; Allen, Norrina; Panos, Stella; Merrill, David; Ibáñez, Agustín; Tsuang, Debby; Valishvili, Nino; Shrestha, Srishti; Wang, Sophia; Padma, Vasantha; Anstey, Kaarin J.; Ravindrdanath, Vijayalakshmi; Blennow, Kaj; Mullins, Paul; Łojek, Emilia; Pria, Anand; Mosley, Thomas H.; Gowland, Penny; Girard, Timothy D.; Bowtell, Richard; Vahidy, Farhaan S.; Psychiatry, School of MedicineIntroduction: Coronavirus disease 2019 (COVID-19) has caused >3.5 million deaths worldwide and affected >160 million people. At least twice as many have been infected but remained asymptomatic or minimally symptomatic. COVID-19 includes central nervous system manifestations mediated by inflammation and cerebrovascular, anoxic, and/or viral neurotoxicity mechanisms. More than one third of patients with COVID-19 develop neurologic problems during the acute phase of the illness, including loss of sense of smell or taste, seizures, and stroke. Damage or functional changes to the brain may result in chronic sequelae. The risk of incident cognitive and neuropsychiatric complications appears independent from the severity of the original pulmonary illness. It behooves the scientific and medical community to attempt to understand the molecular and/or systemic factors linking COVID-19 to neurologic illness, both short and long term. Methods: This article describes what is known so far in terms of links among COVID-19, the brain, neurological symptoms, and Alzheimer's disease (AD) and related dementias. We focus on risk factors and possible molecular, inflammatory, and viral mechanisms underlying neurological injury. We also provide a comprehensive description of the Alzheimer's Association Consortium on Chronic Neuropsychiatric Sequelae of SARS-CoV-2 infection (CNS SC2) harmonized methodology to address these questions using a worldwide network of researchers and institutions. Results: Successful harmonization of designs and methods was achieved through a consensus process initially fragmented by specific interest groups (epidemiology, clinical assessments, cognitive evaluation, biomarkers, and neuroimaging). Conclusions from subcommittees were presented to the whole group and discussed extensively. Presently data collection is ongoing at 19 sites in 12 countries representing Asia, Africa, the Americas, and Europe. Discussion: The Alzheimer's Association Global Consortium harmonized methodology is proposed as a model to study long-term neurocognitive sequelae of SARS-CoV-2 infection. Key points: The following review describes what is known so far in terms of molecular and epidemiological links among COVID-19, the brain, neurological symptoms, and AD and related dementias (ADRD)The primary objective of this large-scale collaboration is to clarify the pathogenesis of ADRD and to advance our understanding of the impact of a neurotropic virus on the long-term risk of cognitive decline and other CNS sequelae. No available evidence supports the notion that cognitive impairment after SARS-CoV-2 infection is a form of dementia (ADRD or otherwise). The longitudinal methodologies espoused by the consortium are intended to provide data to answer this question as clearly as possible controlling for possible confounders. Our specific hypothesis is that SARS-CoV-2 triggers ADRD-like pathology following the extended olfactory cortical network (EOCN) in older individuals with specific genetic susceptibility. The proposed harmonization strategies and flexible study designs offer the possibility to include large samples of under-represented racial and ethnic groups, creating a rich set of harmonized cohorts for future studies of the pathophysiology, determinants, long-term consequences, and trends in cognitive aging, ADRD, and vascular disease. We provide a framework for current and future studies to be carried out within the Consortium. and offers a "green paper" to the research community with a very broad, global base of support, on tools suitable for low- and middle-income countries aimed to compare and combine future longitudinal data on the topic. The Consortium proposes a combination of design and statistical methods as a means of approaching causal inference of the COVID-19 neuropsychiatric sequelae. We expect that deep phenotyping of neuropsychiatric sequelae may provide a series of candidate syndromes with phenomenological and biological characterization that can be further explored. By generating high-quality harmonized data across sites we aim to capture both descriptive and, where possible, causal associations.Item Clinical and analytical comparison of six Simoa assays for plasma P-tau isoforms P-tau181, P-tau217, and P-tau231(BMC, 2021-12-04) Bayoumy, Sherif; Verberk, Inge M.W.; den Dulk, Ben; Hussainali, Zulaiga; Zwan, Marissa; van der Flier, Wiesje M.; Ashton, Nicholas J.; Zetterberg, Henrik; Blennow, Kaj; Vanbrabant, Jeroen; Stoops, Erik; Vanmechelen, Eugeen; Dage, Jeffrey L.; Teunissen, Charlotte E.; Neurology, School of MedicineIntroduction: Studies using different assays and technologies showed highly promising diagnostic value of plasma phosphorylated (P-)tau levels for Alzheimer's disease (AD). We aimed to compare six P-tau Simoa assays, including three P-tau181 (Eli Lilly, ADx, Quanterix), one P-tau217 (Eli Lilly), and two P-tau231 (ADx, Gothenburg). Methods: We studied the analytical (sensitivity, precision, parallelism, dilution linearity, and recovery) and clinical (40 AD dementia patients, age 66±8years, 50%F; 40 age- and sex-matched controls) performance of the assays. Results: All assays showed robust analytical performance, and particularly P-tau217 Eli Lilly; P-tau231 Gothenburg and all P-tau181 assays showed robust clinical performance to differentiate AD from controls, with AUCs 0.936-0.995 (P-tau231 ADx: AUC = 0.719). Results obtained with all P-tau181 assays, P-tau217 Eli Lilly assay, and P-tau231 Gothenburg assay strongly correlated (Spearman's rho > 0.86), while correlations with P-tau231 ADx results were moderate (rho < 0.65). Discussion: P-tau isoforms can be measured robustly by several novel high-sensitive Simoa assays.Item Cognitive and Neuronal Link With Inflammation: A Longitudinal Study in People With and Without HIV Infection(Wolters Kluwer, 2020-12) Anderson, Albert M.; Jang, Jeong Hoon; Easley, Kirk A.; Fuchs, Dietmar; Gisslen, Magnus; Zetterberg, Henrik; Blennow, Kaj; Ellis, Ronald J.; Franklin, Donald; Heaton, Robert K.; Grant, Igor; Letendre, Scott L.; Biostatistics, School of Public HealthBackground: Across many settings, lack of virologic control remains common in people with HIV (PWH) because of late presentation and lack of retention in care. This contributes to neuronal damage and neurocognitive impairment, which remains prevalent. More evidence is needed to understand these outcomes in both PWH and people without HIV (PWOH). Methods: We recruited PWH initiating antiretroviral therapy and PWOH at 2 sites in the United States. One hundred eight adults were enrolled (56 PWOH and 52 PWH), most of whom had a second assessment at least 24 weeks later (193 total assessments). Tumor necrosis factor alpha, monocyte chemotactic protein-1 (MCP-1), neopterin, soluble CD14, and neurofilament light chain protein (NFL) were measured in plasma and cerebrospinal fluid (CSF). Using multivariate models including Bayesian model averaging, we analyzed factors associated with global neuropsychological performance (NPT-9) and CSF NFL at baseline and over time. Results: At baseline, higher CSF MCP-1 and plasma sCD14 were associated with worse NPT-9 in PWH, while CSF HIV RNA decrease was the only marker associated with improved NPT-9 over time. Among PWH, higher CSF neopterin was most closely associated with higher NFL. Among PWOH, higher CSF MCP-1 was most closely associated with higher NFL. After antiretroviral therapy initiation, decrease in CSF MCP-1 was most closely associated with NFL decrease. Conclusion: Monocyte-associated CSF biomarkers are highly associated with neuronal damage in both PWH and PWOH. More research is needed to evaluate whether therapies targeting monocyte-associated inflammation may ameliorate HIV-associated neurobehavioral diseases.