ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Bhavsar, Chintan T."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Autophagy-related 7 (ATG7) regulates food intake and liver health during asparaginase exposure
    (Elsevier, 2025) Zalma, Brian A.; Ibrahim, Maria; Rodriguez-Polanco, Flavio C.; Bhavsar, Chintan T.; Rodriguez, Esther M.; Cararo-Lopes, Eduardo; Farooq, Saad A.; Levy, Jordan L.; Wek, Ronald C.; White, Eileen; Anthony, Tracy G.; Biochemistry and Molecular Biology, School of Medicine
    Amino acid starvation by the chemotherapy agent asparaginase is a potent activator of the integrated stress response (ISR) in the liver and can upregulate autophagy in some cell types. We hypothesized that autophagy-related 7 (ATG7), a protein that is essential for autophagy and an ISR target gene, was necessary during exposure to asparaginase to maintain liver health. We knocked down Atg7 systemically (Atg7Δ/Δ) or in hepatocytes only (ls-Atg7KO) in mice before exposure to pegylated asparaginase for 5 days. Intact mice injected with asparaginase lost body weight due to reduced food intake and increased energy expenditure. Systemic Atg7 ablation reduced liver protein synthesis and increased liver injury in vehicle-injected mice but did not further reduce liver protein synthesis, exacerbate steatosis or liver injury, or alter energy expenditure following 5 days of asparaginase exposure. Atg7Δ/Δ mice were unexpectantly protected from asparaginase-induced anorexia and weight loss. This protection corresponded with reduced phosphorylation of hepatic GCN2 and blunted increases in ISR gene targets including growth differentiation factor 15 (GDF15), a negative regulator of food intake. Interestingly, asparaginase elevated serum GDF15 and reduced food intake in ls-Atg7KO mice, similar to intact mice. Liver triglycerides and production of the hepatokine fibroblast growth factor 21, another ISR gene target, were suppressed in asparaginase-exposed Atg7Δ/Δ and ls-Atg7KO mice. This work identifies a bidirectional relationship between autophagy and the ISR in the liver during asparaginase, affecting food intake and liver health.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University