- Browse by Author
Browsing by Author "Berk, Michael"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Abnormalities in Osteoclastogenesis and Decreased Tumorigenesis in Mice Deficient for Ovarian Cancer G Protein-Coupled Receptor 1(PLOS, 2009-05-29) Li, Hui; Wang, Dongmei; Singh, Lisam Shanjukumar; Berk, Michael; Tan, Haiyan; Zhao, Zhenwen; Steinmetz, Rosemary; Kirmani, Kashif; Wei, Gang; Xu, Yan; Obstetrics and Gynecology, School of MedicineOvarian cancer G protein-coupled receptor 1 (OGR1) has been shown to be a proton sensing receptor in vitro. We have shown that OGR1 functions as a tumor metastasis suppressor gene when it is over-expressed in human prostate cancer cells in vivo. To examine the physiological functions of OGR1, we generated conditional OGR1 deficient mice by homologous recombination. OGR1 deficient mice were viable and upon gross-inspection appeared normal. Consistent with in vitro studies showing that OGR1 is involved in osteoclastogenesis, reduced osteoclasts were detected in OGR1 deficient mice. A pH-dependent osteoclasts survival effect was also observed. However, overall abnormality in the bones of these animals was not observed. In addition, melanoma cell tumorigenesis was significantly inhibited in OGR1 deficient mice. OGR1 deficient mice in the mixed background produced significantly less peritoneal macrophages when stimulated with thioglycolate. These macrophages also showed altered extracellular signal-regulated kinases (ERK) activation and nitric oxide (NO) production in response to lipopolysaccharide. OGR1-dependent pH responses assessed by cAMP production and cell survival in macrophages or brown fat cells were not observed, presumably due to the presence of other proton sensing receptors in these cells. Our results indicate that OGR1's role in osteoclastogenesis is not strong enough to affect overall bone development and its role in tumorigenesis warrants further investigation. The mice generated can be potentially used for several disease models, including cancers or osteoclast-related diseases.Item Strategies and foundations for scientific discovery in longitudinal studies of bipolar disorder(Wiley, 2022) McInnis, Melvin G.; Andreassen, Ole A.; Andreazza, Ana C.; Alon, Uri; Berk, Michael; Brister, Teri; Burdick, Katherine E.; Cui, Donghong; Frye, Mark; Leboyer, Marion; Mitchell, Philip B.; Merikangas, Kathleen; Nierenberg, Andrew A.; Nurnberger, John I.; Pham, Daniel; Vieta, Eduard; Yatham, Lakshmi N.; Young, Allan H.; Psychiatry, School of MedicineBipolar disorder (BD) is a complex and dynamic condition with a typical onset in late adolescence or early adulthood followed by an episodic course with intervening periods of subthreshold symptoms or euthymia. It is complicated by the accumulation of comorbid medical and psychiatric disorders. The etiology of BD remains unknown and no reliable biological markers have yet been identified. This is likely due to lack of comprehensive ontological framework and, most importantly, the fact that most studies have been based on small nonrepresentative clinical samples with cross‐sectional designs. We propose to establish large, global longitudinal cohorts of BD studied consistently in a multidimensional and multidisciplinary manner to determine etiology and help improve treatment. Herein we propose collection of a broad range of data that reflect the heterogenic phenotypic manifestations of BD that include dimensional and categorical measures of mood, neurocognitive, personality, behavior, sleep and circadian, life‐story, and outcomes domains. In combination with genetic and biological information such an approach promotes the integrating and harmonizing of data within and across current ontology systems while supporting a paradigm shift that will facilitate discovery and become the basis for novel hypotheses.Item The Human Phenotype Ontology in 2024: phenotypes around the world(Oxford University Press, 2024) Gargano, Michael A.; Matentzoglu, Nicolas; Coleman, Ben; Addo-Lartey, Eunice B.; Anagnostopoulos, Anna V.; Anderton, Joel; Avillach, Paul; Bagley, Anita M.; Bakštein, Eduard; Balhoff, James P.; Baynam, Gareth; Bello, Susan M.; Berk, Michael; Bertram, Holli; Bishop, Somer; Blau, Hannah; Bodenstein, David F.; Botas, Pablo; Boztug, Kaan; Čady, Jolana; Callahan, Tiffany J.; Cameron, Rhiannon; Carbon, Seth J.; Castellanos, Francisco; Caufield, J. Harry; Chan, Lauren E.; Chute, Christopher G.; Cruz-Rojo, Jaime; Dahan-Oliel, Noémi; Davids, Jon R.; de Dieuleveult, Maud; de Souza, Vinicius; de Vries, Bert B. A.; de Vries, Esther; DePaulo, J. Raymond; Derfalvi, Beata; Dhombres, Ferdinand; Diaz-Byrd, Claudia; Dingemans, Alexander J. M.; Donadille, Bruno; Duyzend, Michael; Elfeky, Reem; Essaid, Shahim; Fabrizzi, Carolina; Fico, Giovanna; Firth, Helen V.; Freudenberg-Hua, Yun; Fullerton, Janice M.; Gabriel, Davera L.; Gilmour, Kimberly; Giordano, Jessica; Goes, Fernando S.; Gore Moses, Rachel; Green, Ian; Griese, Matthias; Groza, Tudor; Gu, Weihong; Guthrie, Julia; Gyori, Benjamin; Hamosh, Ada; Hanauer, Marc; Hanušová, Kateřina; He, Yongqun Oliver; Hegde, Harshad; Helbig, Ingo; Holasová, Kateřina; Hoyt, Charles Tapley; Huang, Shangzhi; Hurwitz, Eric; Jacobsen, Julius O. B.; Jiang, Xiaofeng; Joseph, Lisa; Keramatian, Kamyar; King, Bryan; Knoflach, Katrin; Koolen, David A.; Kraus, Megan L.; Kroll, Carlo; Kusters, Maaike; Ladewig, Markus S.; Lagorce, David; Lai, Meng-Chuan; Lapunzina, Pablo; Laraway, Bryan; Lewis-Smith, David; Li, Xiarong; Lucano, Caterina; Majd, Marzieh; Marazita, Mary L.; Martinez-Glez, Victor; McHenry, Toby H.; McInnis, Melvin G.; McMurry, Julie A.; Mihulová, Michaela; Millett, Caitlin E.; Mitchell, Philip B.; Moslerová, Veronika; Narutomi, Kenji; Nematollahi, Shahrzad; Nevado, Julian; Nierenberg, Andrew A.; Novák Čajbiková, Nikola; Nurnberger, John I., Jr.; Ogishima, Soichi; Olson, Daniel; Ortiz, Abigail; Pachajoa, Harry; Perez de Nanclares, Guiomar; Peters, Amy; Putman, Tim; Rapp, Christina K.; Rath, Ana; Reese, Justin; Rekerle, Lauren; Roberts, Angharad M.; Roy, Suzy; Sanders, Stephan J.; Schuetz, Catharina; Schulte, Eva C.; Schulze, Thomas G.; Schwarz, Martin; Scott, Katie; Seelow, Dominik; Seitz, Berthold; Shen, Yiping; Similuk, Morgan N.; Simon, Eric S.; Singh, Balwinder; Smedley, Damian; Smith, Cynthia L.; Smolinsky, Jake T.; Sperry, Sarah; Stafford, Elizabeth; Stefancsik, Ray; Steinhaus, Robin; Strawbridge, Rebecca; Sundaramurthi, Jagadish Chandrabose; Talapova, Polina; Tenorio Castano, Jair A.; Tesner, Pavel; Thomas, Rhys H.; Thurm, Audrey; Turnovec, Marek; van Gijn, Marielle E.; Vasilevsky, Nicole A.; Vlčková, Markéta; Walden, Anita; Wang, Kai; Wapner, Ron; Ware, James S.; Wiafe, Addo A.; Wiafe, Samuel A.; Wiggins, Lisa D.; Williams, Andrew E.; Wu, Chen; Wyrwoll, Margot J.; Xiong, Hui; Yalin, Nefize; Yamamoto, Yasunori; Yatham, Lakshmi N.; Yocum, Anastasia K.; Young, Allan H.; Yüksel, Zafer; Zandi, Peter P.; Zankl, Andreas; Zarante, Ignacio; Zvolský, Miroslav; Toro, Sabrina; Carmody, Leigh C.; Harris, Nomi L.; Munoz-Torres, Monica C.; Danis, Daniel; Mungall, Christopher J.; Köhler, Sebastian; Haendel, Melissa A.; Robinson, Peter N.; Psychiatry, School of MedicineThe Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs.