- Browse by Author
Browsing by Author "Bellido, T."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Hyponatremia and fractures: should hyponatremia be further studied as a potential biochemical risk factor to be included in FRAX algorithms?(Springer, 2017) Ayus, J. C.; Bellido, T.; Negri, A. L.; Anatomy, Cell Biology and Physiology, School of MedicineThe Fracture Risk Assessment Tool (FRAX®) was developed by the WHO Collaborating Centre for metabolic bone diseases to evaluate fracture risk of patients. It is based on patient models that integrate the risk associated with clinical variables and bone mineral density (BMD) at the femoral neck. The clinical risk factors included in FRAX were chosen to include only well-established and independent variables related to skeletal fracture risk. The FRAX tool has acquired worldwide acceptance despite having several limitations. FRAX models have not included biochemical derangements in estimation of fracture risk due to the lack of validation in large prospective studies. Recently, there has been an increasing number of studies showing a relationship between hyponatremia and the occurrence of fractures. Hyponatremia is the most frequent electrolyte abnormality measured in the clinic, and serum sodium concentration is a very reproducible, affordable, and readily obtainable measurement. Thus, we think that hyponatremia should be further studied as a biochemical risk factor for skeletal fractures prediction, particularly those at the hip which carries the greatest morbidity and mortality. To achieve this will require the collection of large patient cohorts from diverse geographical locations that include a measure of serum sodium in addition to the other FRAX variables in large numbers, in both sexes, over a wide age range and with wide geographical representation. It would also require the inclusion of data on duration and severity of hyponatremia. Information will be required both on the risk of fracture associated with the occurrence and length of exposure to hyponatremia and to the relationship with the other risk variables included in FRAX and also the independent effect on the occurrence of death which is increased by hyponatremia.Item Molecular Basis for Craniofacial Phenotypes Caused by Sclerostin Deletion(Sage, 2021) Chen, J.; Yuan, X.; Pilawski, I.; Liu, X.; Delgado-Calle, J.; Bellido, T.; Turkkahraman, H.; Helms, J.A.; Medicine, School of MedicineSome genetic disorders are associated with distinctive facial features, which can aid in diagnosis. While considerable advances have been made in identifying causal genes, relatively little progress has been made toward understanding how a particular genotype results in a characteristic craniofacial phenotype. An example is sclerosteosis/van Buchem disease, which is caused by mutations in the Wnt inhibitor sclerostin (SOST). Affected patients have a high bone mass coupled with a distinctive appearance where the mandible is enlarged and the maxilla is foreshortened. Here, mice carrying a null mutation in Sost were analyzed using quantitative micro-computed tomographic (µCT) imaging and histomorphometric analyses to determine the extent to which the size and shape of craniofacial skeleton were altered. Sost-/- mice exhibited a significant increase in appositional bone growth, which increased the height and width of the mandible and reduced the diameters of foramina. In vivo fluorochrome labeling, histology, and immunohistochemical analyses indicated that excessive bone deposition in the premaxillary suture mesenchyme curtailed overall growth, leading to midfacial hypoplasia. The amount of bone extracellular matrix produced by Sost-/- cells was significantly increased; as a consequence, osteoid seams were evident throughout the facial skeleton. Collectively, these analyses revealed a remarkable fidelity between human characteristics of sclerosteosis/van Buchem disease and the Sost-/- phenotype and provide clues into the conserved role for sclerostin signaling in modulating craniofacial morphology.Item Wnt/β-catenin Signaling Controls Maxillofacial Hyperostosis(Sage, 2022) Chen, J.; Cuevas, P. L.; Dworan, J. S.; Dawid, I.; Turkkahraman, H.; Tran, K.; Delgado-Calle, J.; Bellido, T.; Gorski, J. P.; Liu, B.; Brunski, J. B.; Helms, J. A.; Orthodontics and Oral Facial Genetics, School of DentistryThe roles of Wnt/β-catenin signaling in regulating the morphology and microstructure of craniomaxillofacial (CMF) bones was explored using mice carrying a constitutively active form of β-catenin in activating Dmp1-expressing cells (e.g., daβcatOt mice). By postnatal day 24, daβcatOt mice exhibited midfacial truncations coupled with maxillary and mandibular hyperostosis that progressively worsened with age. Mechanistic insights into the basis for the hyperostotic facial phenotype were gained through molecular and cellular analyses, which revealed that constitutively activated β-catenin in Dmp1-expressing cells resulted in an increase in osteoblast number and an increased rate of mineral apposition. An increase in osteoblasts was accompanied by an increase in osteocytes, but they failed to mature. The resulting CMF bone matrix also had an abundance of osteoid, and in locations where compact lamellar bone typically forms, it was replaced by porous, woven bone. The hyperostotic facial phenotype was progressive. These findings identify for the first time a ligand-independent positive feedback loop whereby unrestrained Wnt/β-catenin signaling results in a CMF phenotype of progressive hyperostosis combined with architecturally abnormal, poorly mineralized matrix that is reminiscent of craniotubular disorders in humans.