- Browse by Author
Browsing by Author "Bast, Robert C."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Allele-Specific Reprogramming of Cancer Metabolism by the Long Non-coding RNA CCAT2(Elsevier, 2016-02-18) Redis, Roxana S.; Vela, Luz E.; Lu, Weiqin; de Oliveira, Juliana Ferreira; Ivan, Cristina; Rodriguez-Aguayo, Cristian; Adamoski, Douglas; Pasculli, Barbara; Taguchi, Ayumu; Chen, Yunyun; Fernandez, Agustin F.; Valledor, Luis; Van Roosbroeck, Katrien; Chang, Samuel; Shah, Maitri; Kinnebrew, Garrett; Han, Leng; Atlasi, Yaser; Cheung, Lawrence H.; Huang, Gilbert Yuanjay; Monroig, Paloma; Ramirez, Marc S.; Ivkovic, Tina Catela; Van, Long; Ling, Hui; Gafà, Roberta; Kapitanovic, Sanja; Lanza, Giovanni; Bankson, James A.; Huang, Peng; Lai, Stephan Y.; Bast, Robert C.; Rosenblum, Michael G.; Radovich, Milan; Ivan, Mircea; Bartholomeusz, Geoffrey; Liang, Han; Fraga, Mario F.; Widger, William R.; Hanash, Samir; Berindan-Neagoe, Ioana; Lopez-Berestein, Gabriel; Ambrosio, Andre L.B.; Dias, Sandra M Gomes; Calin, George A.; Department of Surgery, IU School of MedicineAltered energy metabolism is a cancer hallmark as malignant cells tailor their metabolic pathways to meet their energy requirements. Glucose and glutamine are the major nutrients that fuel cellular metabolism, and the pathways utilizing these nutrients are often altered in cancer. Here, we show that the long ncRNA CCAT2, located at the 8q24 amplicon on cancer risk-associated rs6983267 SNP, regulates cancer metabolism in vitro and in vivo in an allele-specific manner by binding the Cleavage Factor I (CFIm) complex with distinct affinities for the two subunits (CFIm25 and CFIm68). The CCAT2 interaction with the CFIm complex fine-tunes the alternative splicing of Glutaminase (GLS) by selecting the poly(A) site in intron 14 of the precursor mRNA. These findings uncover a complex, allele-specific regulatory mechanism of cancer metabolism orchestrated by the two alleles of a long ncRNA.Item Cell Origins of High-Grade Serous Ovarian Cancer(MDPI, 2018-11) Kim, Jaeyeon; Park, Eun Young; Kim, Olga; Schilder, Jeanne M.; Coffey, Donna M.; Cho, Chi-Heum; Bast, Robert C.; Biochemistry and Molecular Biology, School of MedicineHigh-grade serous ovarian cancer, also known as high-grade serous carcinoma (HGSC), is the most common and deadliest type of ovarian cancer. HGSC appears to arise from the ovary, fallopian tube, or peritoneum. As most HGSC cases present with widespread peritoneal metastases, it is often not clear where HGSC truly originates. Traditionally, the ovarian surface epithelium (OSE) was long believed to be the origin of HGSC. Since the late 1990s, the fallopian tube epithelium has emerged as a potential primary origin of HGSC. Particularly, serous tubal intraepithelial carcinoma (STIC), a noninvasive tumor lesion formed preferentially in the distal fallopian tube epithelium, was proposed as a precursor for HGSC. It was hypothesized that STIC lesions would progress, over time, to malignant and metastatic HGSC, arising from the fallopian tube or after implanting on the ovary or peritoneum. Many clinical studies and several mouse models support the fallopian tube STIC origin of HGSC. Current evidence indicates that STIC may serve as a precursor for HGSC in high-risk women carrying germline BRCA1 or 2 mutations. Yet not all STIC lesions appear to progress to clinical HGSCs, nor would all HGSCs arise from STIC lesions, even in high-risk women. Moreover, the clinical importance of STIC remains less clear in women in the general population, in which 85–90% of all HGSCs arise. Recently, increasing attention has been brought to the possibility that many potential precursor or premalignant lesions, though composed of microscopically—and genetically—cancerous cells, do not advance to malignant tumors or lethal malignancies. Hence, rigorous causal evidence would be crucial to establish that STIC is a bona fide premalignant lesion for metastatic HGSC. While not all STICs may transform into malignant tumors, these lesions are clearly associated with increased risk for HGSC. Identification of the molecular characteristics of STICs that predict their malignant potential and clinical behavior would bolster the clinical importance of STIC. Also, as STIC lesions alone cannot account for all HGSCs, other potential cellular origins of HGSC need to be investigated. The fallopian tube stroma in mice, for instance, has been shown to be capable of giving rise to metastatic HGSC, which faithfully recapitulates the clinical behavior and molecular aspect of human HGSC. Elucidating the precise cell(s) of origin of HGSC will be critical for improving the early detection and prevention of ovarian cancer, ultimately reducing ovarian cancer mortality.