- Browse by Author
Browsing by Author "Averill, Samantha H."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item 5-HTP inhibits eosinophilia via intracellular endothelial 5-HTRs; SNPs in 5-HTRs associate with asthmatic lung function(Frontiers Media, 2024-05-23) Walker, Matthew T.; Bloodworth, Jeffrey C.; Kountz, Timothy S.; McCarty, Samantha L.; Green, Jeremy E.; Ferrie, Ryan P.; Campbell, Jackson A.; Averill, Samantha H.; Beckman, Kenneth B.; Grammer, Leslie C.; Eng, Celeste; Avila, Pedro C.; Farber, Harold J.; Rodriguez-Cintron, William; Rodriguez-Santana, Jose R.; Serebrisky, Denise; Thyne, Shannon M.; Seibold, Max A.; Burchard, Esteban G.; Kumar, Rajesh; Cook-Mills, Joan M.; Pediatrics, School of MedicineBackground: Previous research showed that 5-hydroxytryptophan (5HTP), a metabolic precursor of serotonin, reduces allergic lung inflammation by inhibiting eosinophil migration across endothelial monolayers. Objective: It is unknown if serotonin receptors are involved in mediating this 5HTP function or if serotonin receptor (HTR) single nucleotide polymorphisms (SNPs) associate with lung function in humans. Methods: Serotonin receptor subtypes were assessed by qPCR, western blot, confocal microscopy, pharmacological inhibitors and siRNA knockdown. HTR SNPs were assessed in two cohorts. Results: Pharmacological inhibition or siRNA knockdown of the serotonin receptors HTR1A or HTR1B in endothelial cells abrogated the inhibitory effects of 5HTP on eosinophil transendothelial migration. In contrast, eosinophil transendothelial migration was not inhibited by siRNA knockdown of HTR1A or HTR1B in eosinophils. Surprisingly, these HTRs were intracellular in endothelial cells and an extracellular supplementation with serotonin did not inhibit eosinophil transendothelial migration. This is consistent with the inability of serotonin to cross membranes, the lack of selective serotonin reuptake receptors on endothelial cells, and the studies showing minimal impact of selective serotonin reuptake inhibitors on asthma. To extend our HTR studies to humans with asthma, we examined the CHIRAH and GALA cohorts for HTR SNPs that affect HTR function or are associated with behavior disorders. A polygenic index of SNPs in HTRs was associated with lower lung function in asthmatics. Conclusions: Serotonin receptors mediate 5HTP inhibition of transendothelial migration and HTR SNPs associate with lower lung function. These results may serve to aid in design of novel interventions for allergic inflammation.Item Asthma, Allergy and Vitamin E: Current and Future Perspectives(Elsevier, 2022) Cook-Mills, Joan M.; Averill, Samantha H.; Lajiness, Jacquelyn D.; Pediatrics, School of MedicineAsthma and allergic disease result from interactions of environmental exposures and genetics. Vitamin E is one environmental factor that can modify development of allergy early in life and modify responses to allergen after allergen sensitization. Seemingly varied outcomes from vitamin E are consistent with the differential functions of the isoforms of vitamin E. Mechanistic studies demonstrate that the vitamin E isoforms α-tocopherol and γ-tocopherol have opposite functions in regulation of allergic inflammation and development of allergic disease, with α-tocopherol having anti-inflammatory functions and γ-tocopherol having pro-inflammatory functions in allergy and asthma. Moreover, global differences in prevalence of asthma by country may be a result, at least in part, of differences in consumption of these two isoforms of tocopherols. It is critical in clinical and animal studies that measurements of the isoforms of tocopherols be determined in vehicles for the treatments, and in the plasma and/or tissues before and after intervention. As allergic inflammation is modifiable by tocopherol isoforms, differential regulation by tocopherol isoforms provide a foundation for development of interventions to improve lung function in disease and raise the possibility of early life dietary interventions to limit the development of lung disease.Item Pediatric pulmonology year in review 2020: Physiology(Wiley, 2021-08) Delecaris, Angela O.; Averill, Samantha H.; Krasinkiewicz, Jonathan; Saunders, Jessica L.; Ren, Clement L.; Pediatrics, School of MedicinePulmonary physiology is a core element of pediatric pulmonology care and research. This article reviews some of the notable publications in physiology that were published in Pediatric Pulmonology in 2020.