ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Androphy, Elliot J."

Now showing 1 - 10 of 43
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Conserved Di-Lysine Motif in the E2 Transactivation Domain Regulates MmuPV1 Replication and Disease Progression
    (MDPI, 2025-01-16) Gonzalez, Jessica; DeSmet, Marsha; Androphy, Elliot J.; Microbiology and Immunology, School of Medicine
    The papillomavirus E2 protein regulates the transcription, replication, and segregation of viral episomes within the host cell. A multitude of post-translational modifications have been identified which control E2 functions. A highly conserved di-lysine motif within the transactivation domain (TAD) has been shown to regulate the normal functions of the E2 proteins of BPV-1, SfPV1, HPV-16, and HPV-31. This motif is similarly conserved in the E2 of the murine papillomavirus, MmuPV1. Using site-directed mutagenesis, we show that the first lysine (K) residue within the motif, K112, is absolutely required for E2-mediated transcription and transient replication in vitro. Furthermore, mutation of the second lysine residue, K113, to the potential acetyl-lysine mimic glutamine (Q) abrogated E2 transcription and decreased transient replication in vitro, while the acetylation defective arginine (R) mutant remained functional. Both K113 mutants were able to induce wart formation in vivo, though disease progression appeared to be delayed in the K113Q group. These findings suggest that acetylation of K113 may act as a mechanism for repressing MmuPV1 E2 activity.
  • Loading...
    Thumbnail Image
    Item
    Abnormal Golgi morphology and decreased COPI function in cells with low levels of SMN
    (Elsevier, 2019-03) Custer, Sara K.; Foster, Joycelynn N.; Astroski, Jacob W.; Androphy, Elliot J.; Dermatology, School of Medicine
    We report here the finding of abnormal Golgi apparatus morphology in motor neuron like cells depleted of SMN as well as Golgi apparatus morphology in SMA patient fibroblasts. Rescue experiments demonstrate that this abnormality is dependent on SMN, but can also be rescued by expression of the COPI coatomer subunit alpha-COP. A motor neuron-like cell line containing an inducible alpha-COP shRNA was created to generate a parallel system to study knockdown of SMN or alpha-COP. Multiple assays of COPI-dependent intracellular trafficking in cells depleted of SMN demonstrate that alpha-COP function is suboptimal, including failed sequestration of plasma membrane proteins, altered binding of mRNA, and defective targeting and transport of Golgi-resident proteins.
  • Loading...
    Thumbnail Image
    Item
    Acetylation of E2 by P300 Mediates Topoisomerase Entry at the Papillomavirus Replicon
    (American Society for Microbiology, 2019-03-21) Thomas, Yanique; Androphy, Elliot J.; Microbiology and Immunology, School of Medicine
    Human papillomavirus (HPV) E2 proteins are integral for the transcription of viral genes and the replication and maintenance of viral genomes in host cells. E2 recruits the viral DNA helicase E1 to the origin. A lysine (K111), highly conserved among almost all papillomavirus (PV) E2 proteins, is a target for P300 (EP300) acetylation and is critical for viral DNA replication (E. J. Quinlan, S. P. Culleton, S. Y. Wu, C. M. Chiang, et al., J Virol 87:1497-1507, 2013, https://doi.org/10.1128/JVI.02771-12; Y. Thomas and E. J. Androphy, J Virol 92:e01912-17, 2018, https://doi.org/10.1128/JVI.01912-17). Since the viral genome exists as a covalently closed circle of double-stranded DNA, topoisomerase 1 (Topo1) is thought to be required for progression of the replication forks. Due to the specific effect of K111 mutations on DNA unwinding (Y. Thomas and E. J. Androphy, J Virol 92:e01912-17, 2018, https://doi.org/10.1128/JVI.01912-17), we demonstrate that the E2 protein targets Topo1 to the viral origin, and this depends on acetylation of K111. The effect was corroborated by functional replication assays, in which higher levels of P300, but not its homolog CBP, caused enhanced replication with wild-type E2 but not the acetylation-defective K111 arginine mutant. These data reveal a novel role for lysine acetylation during viral DNA replication by regulating topoisomerase recruitment to the replication origin.IMPORTANCE Human papillomaviruses affect an estimated 75% of the sexually active adult population in the United States, with 5.5 million new cases emerging every year. More than 200 HPV genotypes have been identified; a subset of them are linked to the development of cancers from these epithelial infections. Specific antiviral medical treatments for infected individuals are not available. This project examines the mechanisms that control viral genome replication and may allow the development of novel therapeutics.
  • Loading...
    Thumbnail Image
    Item
    Altered mRNA Splicing in SMN-Depleted Motor Neuron-Like Cells
    (Public Library of Science (PLoS), 2016) Custer, Sara K.; Gilson, Timra D.; Li, Hongxia; Todd, A. Gary; Astroski, Jacob W.; Lin, Hai; Liu, Yunlong; Androphy, Elliot J.; Department of Dermatology, School of Medicine
    Spinal muscular atrophy (SMA) is an intractable neurodegenerative disease afflicting 1 in 6-10,000 live births. One of the key functions of the SMN protein is regulation of spliceosome assembly. Reduced levels of the SMN protein that are observed in SMA have been shown to result in aberrant mRNA splicing. SMN-dependent mis-spliced transcripts in motor neurons may cause stresses that are particularly harmful and may serve as potential targets for the treatment of motor neuron disease or as biomarkers in the SMA patient population. We performed deep RNA sequencing using motor neuron-like NSC-34 cells to screen for SMN-dependent mRNA processing changes that occur following acute depletion of SMN. We identified SMN-dependent splicing changes, including an intron retention event that results in the production of a truncated Rit1 transcript. This intron-retained transcript is stable and is mis-spliced in spinal cord from symptomatic SMA mice. Constitutively active Rit1 ameliorated the neurite outgrowth defect in SMN depleted NSC-34 cells, while expression of the truncated protein product of the mis-spliced Rit1 transcript inhibited neurite extension. These results reveal new insights into the biological consequence of SMN-dependent splicing in motor neuron-like cells.
  • Loading...
    Thumbnail Image
    Item
    Autophagy dysregulation in cell culture and animals models of Spinal Muscular Atrophy
    (Elsevier, 2014-07) Custer, Sara K.; Androphy, Elliot J.; Department of Dermatology, IU School of Medicine
    Abnormal autophagy has become a central thread linking neurodegenerative diseases, particularly of the motor neuron. One such disease is spinal muscular atrophy (SMA), a genetic neuromuscular disorder caused by mutations in the SMN1 gene resulting in low levels of Survival Motor Neuron (SMN) protein. Despite knowing the causal protein, the exact intracellular processes that are involved in the selective loss of motor neurons remains unclear. Autophagy induction can be helpful or harmful depending on the situation, and we sought to understand the state of the autophagic response in SMA. We show that cell culture and animal models demonstrate induction of autophagy accompanied by attenuated autophagic flux, resulting in the accumulation of autophagosomes and their associated cargo. Expression of the SMN-binding protein a-COP, a known modulator of autophagic flux, can ameliorate this autophagic traffic jam.
  • Loading...
    Thumbnail Image
    Item
    Biological Functions of Intracellular Hepatitis B e Antigen
    (2019-09) Mitra, Bidisha; Guo, Haitao; Androphy, Elliot J.; Kaplan, Mark; Yu, Andy; Lu, Tao
    The function(s) of the intracellular form of HBeAg, previously reported as the preCore protein intermediate (p22) without the N-terminal signal peptide, remains elusive. Here, we propose to elucidate the translocation of p22 during its formation from endoplasmic reticulum (ER) to cytosol, how it differs from core in its inability to form a capsid and the biological functions of cytoplasmic and nuclear p22. Firstly, we have identified that a portion of p22, after the cleavage of its signal peptide in ER, is released back into the cytosol through an ERAD-independent mechanism, as neither wildtype nor dominant-negative p97 affected the ER-to-cytosol translocation of p22 or ER-Golgi secretion of HBeAg. Secondly, despite sharing the same sequence with core protein except for the extended 10 amino acid precore region at the N-terminus, we observed that p22 wildtype and C-7Q mutant are unable to form a capsid. Thirdly, we report that p22 but not the secreted HBeAg significantly reduced interferon stimulated response element (ISRE) activity and expression of interferon stimulated genes (ISGs) upon interferon-alpha (IFN- α) stimulation. Furthermore, in line with this, RNA-seq analysis of ISG induction profile from IFN-α treated patients showed that HBeAg(+) patients exhibited reduced and weak antiviral ISG upregulations compared to HBeAg(-) patients. Further, mechanistic study indicated that while p22 did not alter the total STAT1 or p-STAT1 levels in IFN-α treated cells, it blocked the nuclear translocation of p-STAT1 by interacting with karyopherin α1, indicating that the cytoplasmic p22 may impede JAK-STAT signaling to help the virus evade host innate immune response and cause resistance to IFN therapy in patients. Additionally, nuclear p22 and nuclear core were found to interact with the promoter regions (ISRE – containing) of ISGs, suggesting a new mechanism of inhibition of ISG expression upon stimulation. Finally, we found that the nuclear p22 can bind to cccDNA minichromosome and affects cccDNA maintenance and/or transcription. Thus, our results indicate that there is a novel ER sorting mechanism for the distribution of the intracellular and secretory HBeAg, and the intracellular HBeAg may contribute to HBV persistence by interfering with IFN-α elicited JAK-STAT signaling and regulating cccDNA metabolism.
  • Loading...
    Thumbnail Image
    Item
    Chloroquine Promotes Apoptosis in Melanoma Cells by Inhibiting BH3 domain Mediated PUMA Degradation
    (Elsevier, 2013) Lakhter, Alexander J.; Sahu, Ravi P.; Sun, Yang; Kaufmann, William K.; Androphy, Elliot J.; Travers, Jeffrey B.; Naidu, Samisubbu R.; Dermatology, School of Medicine
    The Bcl homology-3 (BH3)-only protein p53 upregulated modulator of apoptosis (PUMA) counters Bcl-2 family anti-apoptotic proteins and promotes apoptosis. Although PUMA is a key regulator of apoptosis, the post-transcriptional mechanisms that control PUMA protein stability are not understood. We show that a lysosome-independent activity of chloroquine (CQ) prevents degradation of PUMA protein, promotes apoptosis, and reduces the growth of melanoma xenografts in mice. Compared with wild-type PUMA, a BH3 domain-deleted PUMA protein showed impaired decay in melanoma cells. Fusion of the BH3 domain to a heterologous protein led to its rapid turnover that was inhibited by CQ. Although both CQ and inhibitors of lysosomal proteases stalled autophagy, only CQ stabilized PUMA protein and promoted apoptosis. Our results reveal a lysosomal protease-independent activity of CQ that selectively promotes apoptosis in melanoma cells.
  • Loading...
    Thumbnail Image
    Item
    Conserved Residues in Murine Papillomavirus E2 Regulate the Viral Life Cycle
    (2024-12) Gonzalez, Jessica Kay; Androphy, Elliot J.; Dong, X. Charlie; Katzenellenbogen, Rachel; Robinson, Christopher
    Papillomaviruses (PVs) are small, non-enveloped DNA viruses that infect the stratified epithelia. Once an infection is initiated, the virus must successfully navigate the three stages of its life cycle: establishment, maintenance, and vegetative amplification. A major mechanism of regulating this viral program is post-translational modification on the viral E2 protein, which is responsible for orchestrating viral transcription, replication, and genome partitioning. The hypothesis underscoring this work is that residues in E2 are highly conserved across PV types because they serve some structural or functional purpose for the virus. A targeted mutant library was generated in E2 from murine papillomavirus (MmuPV1) to investigate conserved residues that have been shown to be post-translationally modified in the E2 of other PVs, including BPV-1 and high-risk HPV-31. In the transactivation domain (TAD) tyrosine 102 and the lysine 112/113 motif were modified to their constitutively modified (phosphorylated and acetylated, respectively) or unmodified states, while cysteine 307 in the DNA binding and dimerization domain (DBD) was mutated to a less-reactive serine or DNA binding defective phenylalanine mutant. We characterized how mutation at each of these conserved sites alters E2 function using a battery of in vitro assays to assess for transcription and replication ability. We also studied how each mutant contributes to disease progression using an immunocompromised mouse model assessing cutaneous disease. We demonstrate that mutants which fail to replicate transiently in vitro will also fail to induce proliferative wart formation, establishing a predictive link between in vitro and in vivo experiments. Taken together, our findings suggest that modifications on conserved residues in E2 act as molecular switches that regulate E2 activity throughout the cellular and viral life cycle.
  • Loading...
    Thumbnail Image
    Item
    COPI coatomer subunit α-COP interacts with the RNA binding protein Nucleolin via a C-terminal dilysine motif
    (Oxford University Press, 2023) Custer, Sara K.; Gilson, Timra; Astroski, Jacob W.; Nanguneri, Siddarth R.; Iurillo, Alyssa M.; Androphy, Elliot J.; Dermatology, School of Medicine
    The COPI coatomer subunit α-COP has been shown to co-precipitate mRNA in multiple settings, but it was unclear whether the interaction with mRNA was direct or mediated by interaction with an adapter protein. The COPI complex often interacts with proteins via C-terminal dilysine domains. A search for candidate RNA binding proteins with C-terminal dilysine motifs yielded Nucleolin, which terminates in a KKxKxx sequence. This protein was an especially intriguing candidate as it has been identified as an interacting partner for Survival Motor Neuron protein (SMN). Loss of SMN causes the neurodegenerative disease Spinal Muscular Atrophy. We have previously shown that SMN and α-COP interact and co-migrate in axons, and that overexpression of α-COP reduced phenotypic severity in cell culture and animal models of SMA. We show here that in an mRNA independent manner, endogenous Nucleolin co-precipitates endogenous α-COP and ε-COP but not β-COP which may reflect an interaction with the so-called B-subcomplex rather a complete COPI heptamer. The ability of Nucleolin to bind to α-COP requires the presence of the C-terminal KKxKxx domain of Nucleolin. Furthermore, we have generated a point mutant in the WD40 domain of α-COP which eliminates its ability to co-precipitate Nucleolin but does not interfere with precipitation of partners mediated by non-KKxKxx motifs such as the kainate receptor subunit 2. We propose that via interaction between the C-terminal dilysine motif of Nucleolin and the WD40 domain of α-COP, Nucleolin acts an adaptor to allow α-COP to interact with a population of mRNA.
  • Loading...
    Thumbnail Image
    Item
    Differential regulation of the SMN2 gene by individual HDAC proteins
    (Elsevier, 2011-10-14) Evans, Matthew C.; Cherry, Jonathan J.; Androphy, Elliot J.; Dermatology, School of Medicine
    Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder that is the leading genetic cause of infantile death. SMA is caused by homozygous deletion or mutation of the survival of motor neuron 1 gene (SMN1). The SMN2 gene is nearly identical to SMN1, however is alternatively spliced. The close relationship to SMN1 results in SMN2 being a very power genetic modifier of SMA disease severity and a target for therapies. We sought to identify the regulatory role individual HDAC proteins use to control expression of full length protein from the SMN2 genes. We used quantitative PCR to determine the effects shRNA silencing of individual HDACs on the steady state levels of a SMN2-luciferase reporter transcripts. We determined that reduction of individual HDAC proteins was sufficient to increase SMN protein levels in a transgenic reporter system. Knockdown of class I HDAC proteins preferentially activated the reporter by increased promoter transcription. Silencing of class II HDAC proteins maintained transcriptional activity; however silencing of HDAC 5 and 6 also appeared to enhance inclusion of an alternatively spliced exon. This work highlights HDAC proteins 2 and 6 as excellent investigative targets. These data are important to the basic understanding of SMN expression regulation and the refinements of current therapeutic compounds as well as the development of novel SMA therapeutics.
  • «
  • 1 (current)
  • 2
  • 3
  • 4
  • 5
  • »
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University