- Browse by Author
Browsing by Author "Ananda Habarakada Liyanage, Asel"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item DESIGN AND FABRICATION OF MULTI-FUNCTIONAL ENERGY STORAGE COMPOSITES INTEGRATING ULTRATHIN LITHIUM-ION BATTERY WITH ENHANCED ELECTRO-MECHANICAL PERFORMANCE(EPFL Lausanne, Composite Construction Laboratory, 2022-06) Biswas, Pias Kumar; Jadhav, Mayur; Ananda Habarakada Liyanage, Asel; Dalir, Hamid; Agarwal, MangilalExponential advancement in the automotive and aerospace industry promotes the need for Multifunctional Energy Storage Composites (MESCs) to minimize the dependence on fossil fuels and reduce structural weight. This study proposes and evaluates a multi-functional carbon fiber reinforced polymer (CFRP) composite with an embedded lithium-ion polymer battery, demonstrating a structural integrity concept. Here electrospun epoxy-multiwalled carbon nanotubes (epoxy-MWCNT) nanofibers were incorporated precisely on the uncured CFRP surface to enhance adequate interfacial bonding and adhesion between the layers after curing. The mechanical and physical properties of modified CFRP have been evidenced to possess higher mechanical strength than the traditional CFRP composite. Commercial ultra-thin lithium-ion battery with higher energy density has been uniquely integrated into the core of the CFRP composite structure. Comparison with conventional CFRP composite and electro-mechanical testing ensured that the electrochemical property of the embedded battery was preserved in loading/unloading conditions, and the mechanical strength of the composite structure was not compromised.Item THE MASS PRODUCTION OF MWCNTS/EPOXY SCAFFOLDS USING LATERAL BELT-DRIVEN MULTI-NOZZLE ELECTROSPINNING SETUP TO ENHANCE PHYSICAL AND MECHANICAL PROPERTIES OF CFRP(EPFL Lausanne, Composite Construction Laboratory, 2022-06) Ananda Habarakada Liyanage, Asel; Biswas, Pias Kumar; Agarwal, Mangilal; Dalir, HamidElectrospinning is the process of ejecting a polymer melt or solution through a nozzle in the presence of a high-voltage electric field, which causes it to coalesce into a continuous filament with various shapes from a submicron to nanometer diameter. This process has gained vast attention because of its versatility, low cost, and ease of processing, leading to a massive demand for translating electrospinning experiments out of the laboratory into commercialized production. This manuscript represents an approach to mass-producing MWCNTs/Epoxy scaffolds using Lateral Belt Driven (LBD) multi-nozzle electrospinning technique to enhance CFRP's physical and mechanical properties. We mitigated the non-uniform electric field distribution challenges with the LBD approach, which helped obtain a single layer and welluniformed coverage of the electrospun MWCNTs/Epoxy scaffolds onto CFRP sheets. Interlaminar shear strength (ILSS) and fatigue performance under high-stress conditions improved by 29% and 27%, respectively. The energy of barely visible impact damage (BVID) improved by up to 45%.