- Browse by Author
Browsing by Author "Ahlfeld, Shawn K."
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Assessment of inhibited alveolar-capillary membrane structural development and function in bronchopulmonary dysplasia(Wiley, 2014-03) Ahlfeld, Shawn K.; Conway, Simon J.; Department of Medicine, IU School of MedicineBronchopulmonary dysplasia (BPD) is a chronic lung disease of extreme prematurity and is defined clinically by dependence on supplemental oxygen due to impaired gas exchange. Optimal gas exchange is dependent on the development of a sufficient surface area for diffusion. In the mammalian lung, rapid acquisition of distal lung surface area is accomplished in neonatal and early adult life by means of vascularization and secondary septation of distal lung airspaces. Extreme preterm birth interrupts secondary septation and pulmonary capillary development and ultimately reduces the efficiency of the alveolar-capillary membrane. Although pulmonary health in BPD infants rapidly improves over the first few years, persistent alveolar-capillary membrane dysfunction continues into adolescence and adulthood. Preventative therapies have been largely ineffective, and therapies aimed at promoting normal development of the air-blood barrier in infants with established BPD remain largely unexplored. The purpose of this review will be: (1) to summarize the histological evidence of aberrant alveolar-capillary membrane development associated with extreme preterm birth and BPD, (2) to review the clinical evidence assessing the long-term impact of BPD on alveolar-capillary membrane function, and (3) to discuss the need to develop and incorporate direct measurements of functional gas exchange into clinically relevant animal models of inhibited alveolar development.Item Cumulative Effects of Neonatal Hyperoxia on Murine Alveolar Structure and Function(Wiley, 2017-05) Cox, Angela M.; Gao, Yong; Perl, Anne-Karina T.; Tepper, Robert S.; Ahlfeld, Shawn K.; Pediatrics, School of MedicineBackground Bronchopulmonary dysplasia (BPD) results from alveolar simplification and abnormal development of alveolar and capillary structure. Survivors of BPD display persistent deficits in airflow and membrane and vascular components of alveolar gas diffusion. Despite being the defining feature of BPD, various neonatal hyperoxia models of BPD have not routinely assessed pulmonary gas diffusion. Methods To simulate the most commonly-utilized neonatal hyperoxia models, we exposed neonatal mice to room air or ≥90% hyperoxia during key stages of distal lung development: through the first 4 (saccular), 7 (early alveolar), or 14 (bulk alveolar) postnatal days, followed by a period of recovery in room air until 8 weeks of age when alveolar septation is essentially complete. We systematically assessed and correlated the effects of neonatal hyperoxia on the degree of alveolar–capillary structural and functional impairment. We hypothesized that the degree of alveolar–capillary simplification would correlate strongly with worsening diffusion impairment. Results Neonatal hyperoxia exposure, of any duration, resulted in alveolar simplification and impaired pulmonary gas diffusion. Mean Linear Intercept increased in proportion to the length of hyperoxia exposure while alveolar and total lung volume increased markedly only with prolonged exposure. Surprisingly, despite having a similar effect on alveolar surface area, only prolonged hyperoxia for 14 days resulted in reduced pulmonary microvascular volume. Estimates of alveolar and capillary structure, in general, correlated poorly with assessment of gas diffusion. Conclusion Our results help define the physiological and structural consequences of commonly-employed neonatal hyperoxia models of BPD and informtheir clinical utility.Item Initial Suppression of Transforming Growth Factor-β Signaling and Loss of TGFBI Causes Early Alveolar Structural Defects Resulting in Bronchopulmonary Dysplasia(Elsevier, 2016-04) Ahlfeld, Shawn K.; Wang, Wang; Gao, Yong; Snider, Paige; Conway, Simon J.; Pediatrics, School of MedicineSeptation of the gas-exchange saccules of the morphologically immature mouse lung requires regulated timing, spatial direction, and dosage of transforming growth factor (TGF)-β signaling. We found that neonatal hyperoxia acutely initially diminished saccular TGF-β signaling coincident with alveolar simplification. However, sustained hyperoxia resulted in a biphasic response and subsequent up-regulation of TGF-β signaling, ultimately resulting in bronchopulmonary dysplasia. Significantly, we found that the TGF-β–induced matricellular protein (TGFBI) was similarly biphasically altered in response to hyperoxia. Moreover, genetic ablation revealed that TGFBI was required for normal alveolar structure and function. Although the phenotype was not neonatal lethal, Tgfbi-deficient lungs were morphologically abnormal. Mutant septal tips were stunted, lacked elastin-positive tips, exhibited reduced proliferation, and contained abnormally persistent alveolar α-smooth muscle actin myofibroblasts. In addition, Tgfbi-deficient lungs misexpressed TGF-β–responsive follistatin and serpine 1, and transiently suppressed myofibroblast platelet-derived growth factor α differentiation marker. Finally, despite normal lung volume, Tgfbi-null lungs displayed diminished elastic recoil and gas exchange efficiency. Combined, these data demonstrate that initial suppression of the TGF-β signaling apparatus, as well as loss of key TGF-β effectors (like TGFBI), underlies early alveolar structural defects, as well as long-lasting functional deficits routinely observed in chronic lung disease of infancy patients. These studies underline the complex (and often contradictory) role of TGF-β and indicate a need to design studies to associate alterations with initial appearance of phenotypical changes suggestive of bronchopulmonary dysplasia.Item Neonatal hyperoxia promotes asthma-like features through IL-33–dependent ILC2 responses(Elsevier, 2017) Cheon, In Su; Son, Young Min; Jiang, Li; Goplen, Nicholas P.; Kaplan, Mark H.; Limper, Andrew H.; Kita, Hirohito; Paczesny, Sophie; Prakash, Y. S.; Tepper, Robert; Ahlfeld, Shawn K.; Sun, Jie; Pediatrics, School of MedicineBackground Premature infants often require oxygen supplementation and, therefore, are exposed to oxidative stress. Following oxygen exposure, preterm infants frequently develop chronic lung disease and have a significantly increased risk of asthma. Objective We sought to identify the underlying mechanisms by which neonatal hyperoxia promotes asthma development. Methods Mice were exposed to neonatal hyperoxia followed by a period of room air recovery. A group of mice was also intranasally exposed to house dust mite antigen. Assessments were performed at various time points for evaluation of airway hyperresponsiveness, eosinophilia, mucus production, inflammatory gene expression, and TH and group 2 innate lymphoid cell (ILC2) responses. Sera from term- and preterm-born infants were also collected and levels of IL-33 and type 2 cytokines were measured. Results Neonatal hyperoxia induced asthma-like features including airway hyperresponsiveness, mucus hyperplasia, airway eosinophilia, and type 2 pulmonary inflammation. In addition, neonatal hyperoxia promoted allergic TH responses to house dust mite exposure. Elevated IL-33 levels and ILC2 responses were observed in the lungs most likely due to oxidative stress caused by neonatal hyperoxia. IL-33 receptor signaling and ILC2s were vital for the induction of asthma-like features following neonatal hyperoxia. Serum IL-33 levels correlated significantly with serum levels of IL-5 and IL-13 but not IL-4 in preterm infants. Conclusions These data demonstrate that an axis involving IL-33 and ILC2s is important for the development of asthma-like features following neonatal hyperoxia and suggest therapeutic potential for targeting IL-33, ILC2s, and oxidative stress to prevent and/or treat asthma development related to prematurity.Item Neonatal hyperoxic lung injury favorably alters adult right ventricular remodeling response to chronic hypoxia exposure(American Physiological Society, 2015-04-15) Goss, Kara N.; Cucci, Anthony R.; Fisher, Amanda J.; Albrecht, Marjorie; Frump, Andrea; Tursunova, Roziya; Gao, Yong; Brown, Mary Beth; Petrache, Irina; Tepper, Robert S.; Ahlfeld, Shawn K.; Lahm, Tim; Department of Medicine, IU School of MedicineThe development of pulmonary hypertension (PH) requires multiple pulmonary vascular insults, yet the role of early oxygen therapy as an initial pulmonary vascular insult remains poorly defined. Here, we employ a two-hit model of PH, utilizing postnatal hyperoxia followed by adult hypoxia exposure, to evaluate the role of early hyperoxic lung injury in the development of later PH. Sprague-Dawley pups were exposed to 90% oxygen during postnatal days 0-4 or 0-10 or to room air. All pups were then allowed to mature in room air. At 10 wk of age, a subset of rats from each group was exposed to 2 wk of hypoxia (Patm = 362 mmHg). Physiological, structural, and biochemical endpoints were assessed at 12 wk. Prolonged (10 days) postnatal hyperoxia was independently associated with elevated right ventricular (RV) systolic pressure, which worsened after hypoxia exposure later in life. These findings were only partially explained by decreases in lung microvascular density. Surprisingly, postnatal hyperoxia resulted in robust RV hypertrophy and more preserved RV function and exercise capacity following adult hypoxia compared with nonhyperoxic rats. Biochemically, RVs from animals exposed to postnatal hyperoxia and adult hypoxia demonstrated increased capillarization and a switch to a fetal gene pattern, suggesting an RV more adept to handle adult hypoxia following postnatal hyperoxia exposure. We concluded that, despite negative impacts on pulmonary artery pressures, postnatal hyperoxia exposure may render a more adaptive RV phenotype to tolerate late pulmonary vascular insults.Item Periostin, a matricellular protein, plays a role in the induction of chemokines in pulmonary fibrosis(American Thoracic Society, 2012-05) Uchida, Masaru; Shiraishi, Hiroshi; Ohta, Shoichiro; Arima, Kazuhiko; Taniguchi, Kazuto; Suzuki, Shoichi; Okamoto, Masaki; Ahlfeld, Shawn K.; Ohshima, Koichi; Kato, Seiya; Toda, Shuji; Sagara, Hironori; Aizawa, Hisamichi; Hoshino, Tomoaki; Conway, Simon J.; Hayashi, Shinichiro; Izuhara, Kenji; Department of Pediatrics, IU School of MedicineIdiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and usually fatal form of interstitial lung disease (ILD). The precise molecular mechanisms of IPF remain poorly understood. However, analyses of mice receiving bleomycin (BLM) as a model of IPF established the importance of preceding inflammation for the formation of fibrosis. Periostin is a recently characterized matricellular protein involved in modulating cell functions. We recently found that periostin is highly expressed in the lung tissue of patients with IPF, suggesting that it may play a role in the process of pulmonary fibrosis. To explore this possibility, we administered BLM to periostin-deficient mice, and they subsequently showed a reduction of pulmonary fibrosis. We next determined whether this result was caused by a decrease in the preceding recruitment of neutrophils and macrophages in the lungs because of the lower production of chemokines and proinflammatory cytokines. We performed an in vitro analysis of chemokine production in lung fibroblasts, which indicated that periostin-deficient fibroblasts produced few or no chemokines in response to TNF-α compared with control samples, at least partly explaining the lack of inflammatory response and, therefore, fibrosis after BLM administration to periostin-deficient mice. In addition, we confirmed that periostin is highly expressed in the lung tissue of chemotherapeutic-agent-induced ILD as well as of patients with IPF. Taking these results together, we conclude that periostin plays a unique role as an inducer of chemokines to recruit neutrophils and macrophages important in the process of pulmonary fibrosis in BLM-administered model mice. Our results suggest a therapeutic potential for periostin in IPF and drug-induced ILD.Item Relationship of structural to functional impairment during alveolar-capillary membrane development(Elsevier, 2015-04) Ahlfeld, Shawn K.; Gao, Yong; Conway, Simon J.; Tepper, Robert S.; Department of Pediatrics, IU School of MedicineBronchopulmonary dysplasia is a chronic lung disease of extreme preterm infants and results in impaired gas exchange. Although bronchopulmonary dysplasia is characterized histologically by alveolar-capillary simplification in animal models, it is clinically defined by impaired gas diffusion. With the use of a developmentally relevant model, we correlated alveolar-capillary structural simplification with reduced functional gas exchange as measured by the diffusing factor for carbon monoxide (DFCO). Neonatal mouse pups were exposed to >90% hyperoxia or room air during postnatal days 0 to 7, and then all pups were returned to room air from days 7 to 56. At day 56, DFCO was measured as the ratio of carbon monoxide uptake to neon dilution, and lungs were fixed for histologic assessment of alveolar-capillary development. Neonatal hyperoxia exposure inhibited alveolar-capillary septal development as evidenced by significantly increased mean linear intercept, increased airspace-to-septal ratio, decreased nodal density, and decreased pulmonary microvasculature. Importantly, alveolar-capillary structural deficits in hyperoxia-exposed pups were accompanied by a significant 28% decrease in DFCO (0.555 versus 0.400; P < 0.0001). In addition, DFCO was highly and significantly correlated with structural measures of reduced alveolar-capillary growth. Simplification of alveolar-capillary structure is highly correlated with impaired gas exchange function. Current mechanistic and therapeutic animal models of inhibited alveolar development may benefit from application of DFCO as an alternative physiologic indicator of alveolar-capillary development.Item Safety of sildenafil in extremely premature infants: a phase I trial(Springer Nature, 2022-01) Jackson, Wesley; Gonzalez, Daniel; Smith, P. Brian; Ambalavanan, Namasivayam; Atz, Andrew M.; Sokol, Gregory M.; Hornik, Chi D.; Stewart, Dan; Mundakel, Gratias; Poindexter, Brenda B.; Ahlfeld, Shawn K.; Mills, Mary; Cohen-Wolkowiez, Michael; Martz, Karen; Hornik, Christoph P.; Laughon, Matthew M.; Pediatrics, School of MedicineObjective: To characterize the safety of sildenafil in premature infants. Study design: A phase I, open-label trial of sildenafil in premature infants receiving sildenafil per usual clinical care (cohort 1) or receiving a single IV dose of sildenafil (cohort 2). Safety was evaluated based on adverse events (AEs), transaminase levels, and mean arterial pressure monitoring. Results: Twenty-four infants in cohort 1 (n = 25) received enteral sildenafil. In cohort 2, infants received a single IV sildenafil dose of 0.25 mg/kg (n = 7) or 0.125 mg/kg (n = 2). In cohort 2, there was one serious AE related to study drug involving hypotension associated with a faster infusion rate than specified by the protocol. There were no AEs related to elevated transaminases. Conclusion: Sildenafil was well tolerated by the study population. Drug administration times and flush rates require careful attention to prevent infusion-related hypotension associated with faster infusions of IV sildenafil in premature infants.