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Abstract

Rationale: The rate of cannabinoid intake by those with alcohol use disorder (AUD)exceeds that 

of the general public. The high prevalence of co-abuse of alcohol and cannabis has been postulated 

to be predicated upon both a common predisposing genetic factor and the interaction of the drugs 

within the organism. The current experiments examined the effects of cannabinoids in an animal 

model of AUD.

Objectives: The present study assessed the reinforcing properties of a cannabinoid receptor 1 

(CB1) agonist self-administered directly into the nucleus accumbens shell (AcbSh) in female 

Wistar and alcohol-preferring (P) rats.

Methods: Following guide cannulae surgery aimed at AcbSh, subjects were placed in an operant 

box equipped with an ‘active lever’ (fixed ratio 1; FR1) that caused the delivery of the infusate and 

an ‘inactive lever’ that did not. Subjects were arbitrarily assigned to one of seven groups that self-

administered either artificial cerebrospinal fluid (aCSF), or 3.125, 6.25, 12.5, or 25 pmol/100nl of 

O-1057, a water-soluble CB1 agonist, dissolved in aCSF. The first four sessions of acquisition are 

followed by aCSF only infusates in sessions 5 and 6 during extinction, and finally the acquisition 

dose of infusate during session 7 as reinstatement.

Results: The CB1 agonist was self-administered directly into the AcbSh. P rats self-administered 

the CB1 agonist at lower concentrations and at higher rates compared to Wistar rats.
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Conclusions: Overall, the data indicate selective breeding for high alcohol preference has 

produced rats divergent in response to cannabinoids within the brain reward pathway. The data 

support the hypothesis that there can be common genetic factors influencing drug addiction.
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1. INTRODUCTION

Marijuana is the most commonly used illicit drug in America. Approximately 43.5% of all 

Americans have used marijuana in the past year (SAMHSA, 2019). Marijuana use is 

common in young Americans with 34.8% of those aged 18-25 years old using marijuana in 

the past year. Additionally, its use is at a historic high among college-age Americans with 

approximately 42.6% using marijuana in the last year (Schulenberg et al., 2019). Marijuana 

use is usually paired with other drug use/abuse (polydrug abuse), in particular alcohol.

Epidemiological data indicate that 58% of subjects who use alcohol or have alcohol use 

disorders (AUD) also abuse marijuana (Martin et al., 1996). The high prevalence of alcohol 

and cannabis co-abuse may be predicated upon both a common predisposing genetic factor 

and the interaction of the drugs within the organism (Uhl, 2004, 2006, Uhl et al., 2008). The 

common predisposing genetic factor could be based upon innate differences in the 

endogenous cannabinoid (eCB) system. A single nucleotide polymorphism (SNP) in the 

human gene encoding an eCB inactivating enzyme, fatty acid amide hydrolase (FAAH), has 

been strongly associated with drug and alcohol abuse (Sipe et al., 2002) and reduced central 

nervous system (CNS) FAAH protein levels have been found in individuals with AUD 

(Vinod et al., 2010). The interrelationship between eCB and alcohol use is also indicated by 

findings that cannabinoid agents can alter alcohol consumption (Caille and Parsons, 2006; 

Getachew et al., 2011). Therefore, it is possible that genetic variation in the eCB system may 

predispose individuals to abuse alcohol and/or be diagnosed with AUD.

Many of the rewarding effects of eCB and Δ9- tetrahydrocannabinol (Δ9-THC), the principal 

psychoactive component of marijuana, are mediated primarily through the CB1 receptors 

(CB1Rs) (Monory et al., 2007). CB1Rs are predominantly localized in the brain and are 

expressed in the mesocorticolimbic (MCL) dopaminergic (DAergic) reward system [i.e., 

ventral tegmental area (VTA), nucleus accumbens (Acb), and medial prefrontal cortex 

(mPFC)]. The CB1Rs in the Acb mediate food and drug reward (Oleson and Cheer, 2012). It 

has been reported that intra-accumbal administration of CB1R agonist can induce a 

conditioned place preference (CPP; Karimi et al., 2013). Numerous studies have also 

indicated that the eCB system regulates alcohol consumption. For example, CB1R knockout 

(KO) mice do not develop ethanol (EtOH) conditioned place preference (Houchi et al., 2005, 

Thanos et al., 2005) and exhibit significantly reduced voluntary alcohol consumption 

(Hungund et al., 2003, Poncelet et al., 2003; Naassila et al., 2004; Thanos et al., 2005). 

Furthermore, the ability of systemic administration of EtOH to increase dopamine (DA) 

levels in the Acb is not apparent in CB1R knockout mice (Hungund et al., 2003).
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Neurochemical systems that are modified by alcohol and cannabinoids converge within the 

mesolimbic DA system. Like all drugs of abuse, alcohol and cannabinoids elevate 

extracellular levels of DA in the Acb shell (AcbSh; Koob, 2000; Di Chiara et al., 2004). The 

CB1R system appears to be one pathway in which alcohol produces reinforcement within 

the mesolimbic DA system (Mechoulam and Parker, 2003). There is a positive correlation 

between CB1R expression levels within the MCL DA pathway and alcohol preference 

(Wang et al., 2003). CB1R antagonism prevents EtOH-induced elevations in DA levels of 

the Acb, as well as DA cell-firing in the Acb and VTA (Perra et al., 2005; Cheer et al., 

2007). The ability of CB1R agents to mediate EtOH consumption appears to be limited to 

CNS areas that support EtOH and cannabinoid self-administration. A series of studies have 

confirmed that infusions of a CB1R antagonist in the Acb and posterior, but not anterior, 

VTA decreases EtOH self-administration in rats (Caille and Parsons, 2006, Caille et al., 

2007, Alvarez-Jaimes et al., 2009b). In addition, EtOH consumption can also increase CNS 

extracellular levels of the eCB 2-arachidonoylglycerol (2-AG; Caille et al., 2007). In 

general, multiple sources indicate that the CB1R system may be one of the platforms in 

which alcohol acts within the brain.

Systemic administration of CB1R agonists increases (Gallate et al., 1999, Colombo et al., 

2002), while CB1R antagonists reduce alcohol consumption (Arnone et al., 1997, Colombo 

et al., 1998, Gallate and McGregor, 1999). Increasing eCB levels by systemic administration 

of an FAAH inhibitor enhances EtOH preference and intake in mice (Blednov et al., 2007) 

and heightened the 2-AG response to EtOH in the Acb of EtOH naïve rats (Alvarez-Jaimes 

et al., 2009a). In alcohol-preferring (P) rats (c.f., Bell et al., 2006, 2016; McBride et al., 

2014), a CB1R antagonist reduced EtOH-seeking and EtOH self-administration, whereas a 

CB1R agonist increased EtOH-seeking and EtOH self-administration during relapse 

(Getachew et al., 2011). An additional observation indicated that the P rat may be more 

susceptible to the sedative properties of CB1 agonists at higher concentrations, suggesting a 

heightened CB1R system (Getachew et al., 2011). Thus, activation of CB1 receptors is 

involved in regulating EtOH-seeking as well as the reinforcing effects of EtOH.

O-1057 is a potent water-soluble CB1R agonist (Pertwee, 1999; Pertwee et al., 2000; 

Lichtman et al., 2000; Martin et al., 2006) and its effects can be blocked by SR141716A, a 

CB1R antagonist (Pertwee et al., 2000; Lichtman et al., 2000). O-1057 is significantly more 

potent at CB1Rs (Martin et al., 2006) and a more potent inhibitor of forskolin-stimulated 

cyclic AMP production than Δ9-THC (Pertwee et al., 2000). Thus, the objectives of the 

present study were to test the hypotheses that the activation of the CB1R receptor within the 

AcbSh is reinforcing and the AcbSh of the P rats is more sensitive to the reinforcing effects 

of a CB1R agonist, O-1057, than the AcbSh of outbred Wistar rats.

2. MATERIALS AND METHODS

2.1 Animals

Experimentally naïve, female Wistar (Envigo, Indianapolis, IN, USA) and P rats (bred in-

house, Indianapolis, IN, USA) weighing 250-320 g at the time of surgery were used. They 

were double-housed upon arrival and maintained on a 12 h reverse light-dark cycle (lights 

off at 0900). The P rats were bred at the school of dentistry building across campus and 
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shipped in Envigo transport boxes and provided with the same transport items as Envigo 

deliveries. In order to avoid oversampling, the P rats are taking from multiple unrelated 

families (i.e., the pups come from several litters rather than just one or two). Then, the 

animals are divided into treatment groups, to make sure the animals from each family are 

spread evenly between the groups. Although not systematically studied, the estrus cycle did 

not appear to have a significant effect on ICSA behavior in the present study, or in previous 

studies (Gatto et al., 1994; Ikemoto et al., 1997, 1998). This was indicated by no obvious 

fluctuations in ICSA behavior in rats given similar doses of the same agent for two or more 

operant sessions conducted every other day. Food and water were freely available except in 

the test chamber. Protocols were approved by the institutional animal care and use 

committee of the Indiana University School of Medicine and are in accordance with the NIH 

Guide for the Care and Use of Laboratory Animals (Research Institute for Laboratory 

Animal Research, 2011).

Data for rats that did not complete all experimental test sessions were excluded from the 

analyses. The number of animals indicated for each experiment represents approximately 

96% of the total number that underwent surgery. Approximately 3% of the animals were not 

included for analyses due to the loss of the guide cannula before completion of all 

experimental sessions. The data for these animals were not used because their injection sites 

could not be verified.

2.2 Drug and Vehicle

The artificial cerebrospinal fluid (aCSF) consisted of 120.0 mM NaCl, 4.8 mM KCl, 1.2 mM 

KH2PO4, 1.2 mM Mg SO4, 25.0 mM NaHCO3, 2.5 mM CaCl2, and 10.0 mM d-glucose. 

O-1057 (Organix Inc, Woburn, MA, USA) was dissolved in the aCSF solution. When 

necessary, 0.1 M HC1 or 0.1 M NaOH was added to the solutions to adjust pH levels to 7.4 

± 0.1.

2.3 Apparatus

The test chambers (30 X 30 X 26 cm; w x h x d) were situated in a sound-attenuating cubicle 

(64 X 60 X 50 cm, Coulboum Instruments, Allentown, PA, USA) and illuminated by a dim 

house-light during testing. Two identical levers (3.5 X 1.8 cm) were mounted on a single 

wall of the test chamber, 15 cm above a grid floor, and were separated by 12 cm. Details can 

be found in previous publications (e.g., Rodd −Henricks et al., 2002; Hauser et al., 2014).

An electrolytic microinfusion transducer (EMIT) system (see Bozarth and Wise, 1980) was 

used to control microinfusions of drug or vehicle (Rodd-Henricks et al., 2002, Hauser et al., 

2014). Depression of the active lever delivered the infusion current for 5 s, which led to the 

rapid generation of H2 gas and raised the pressure inside the airtight cylinder, in turn, forcing 

100-nl of infusate through the injection cannula. During the 5 s infusion and an additional 5 

s timeout period, the house light and red inactive lever cue light were extinguished, while the 

green cue light over the active lever flashed at 0.5 s intervals.

Hauser et al. Page 4

Pharmacol Biochem Behav. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.4 Animal Preparation

While under isoflurane anesthesia, rats were prepared for unilateral stereotaxic implantation 

of 22-gauge guide cannula (Plastic One, Roanoke, VA, USA) into the AcbSh. The guide 

cannula was aimed 1.0 mm above the target region. Coordinates for placements to target the 

AcbSh were +1.7 mm AP, + 2.4 mm lateral to the midline, and −7.5 mm ventral from the 

surface of the skull at a 10° angle to the vertical (Paxinos and Watson, 1998). A 

representative of the placements of injection sites within the AcbShell (defined as +1.7 to + 

1.0 mm bregma) is shown in Figure 1. A 28-gauge stylet was placed into the guide cannula 

and extended 0.5 mm beyond the tip of the guide. All rats were individually housed and 

allowed to recover from surgeries for 7-10 days. Animals were handled for at least 5 min 

daily following the fourth recovery day. Subjects were not acclimated to the test chamber 

prior to the commencement of data collection, nor were they trained on any other operant 

paradigm.

2.5 General Test Condition

For testing, subjects were brought to the testing room, the stylet was removed, and the 

injection cannula screwed into place. Rats were placed individually into the test chamber. To 

avoid trapping air at the tip of the injection cannula, the infusion current was delivered for 5 

s during insertion of the injector that resulted in a non-contingent administration of the 

CB1R agonist or aCSF at the beginning of the session. The test chamber was equipped with 

two levers. Depression of the ‘active lever’ [fixed ratio 1 (FR1) schedule of reinforcement] 

caused the delivery of a 100 nl bolus of infusate over 5 s followed by a 5 s time-out period. 

During both the 5 s infusion and 5 s time-out period, responses on the active lever did not 

produce further infusions. Responses on the ‘inactive lever’ were recorded, but did not result 

in infusions. The assignment of active and inactive lever with respect to the left or right 

position was counterbalanced among subjects. However, the active and inactive levers 

remained the same for each rat throughout the experiment. No shaping technique was used 

to facilitate the acquisition of lever responses. The number of infusions and responses on the 

active and inactive lever were recorded. The duration of each test session was 4 h and 

sessions occurred every other day.

2.6 Treatment Procedures

Animals were randomly assigned to one of five groups (n = 6-8/group/line: Wistar 7-8/group 

N = 39; P – 6-8/group N = 35). A vehicle group received infusions of aCSF for all seven 

sessions. The other groups received infusions of 3.125, 6.25, 12.5, or 25 pmol/100nl O-1057 

for the first four sessions. During the fifth and sixth sessions, all animals received infusions 

of aCSF. On the seventh session day, rats were allowed to respond for their originally 

assigned infusate. A total of 74 rats completed these procedures.

2.7 Histology

At the termination of the experiment, 1% bromophenol blue was injected into the infusion 

site. Subsequently, the animals were given a fatal dose of Nembutal and then decapitated. 

Brains were removed and immediately frozen at −80° C. Frozen brains were equilibrated at 

−15° C in a cryostat microtome and then sliced into 40 um sections. Sections were then 
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stained with cresyl violet and examined under a light microscope for verification of the 

injector site using the rat brain atlas of Paxinos and Watson (1998).

2.8 Statistical Analysis

Data analysis consisted of a group X day mixed ANOVA, with the repeated measure of 

‘day’, performed on the number of infusions/session. Additionally, for each individual 

group, lever discrimination was determined by type (active or inactive) X day mixed 

ANOVA with a repeated measure of ‘day’. Lever discrimination is a key factor when a 

stimulant is self-administered (e.g., EtOH, cocaine, amphetamine, nicotine). Without a 

detailed analysis of lever discrimination, it is impossible to distinguish between 

reinforcement-contingent behavior and random drug-stimulated locomotor activity. It is also 

important to note that an ANOVA performed on a dependent variable with only two levels 

(e.g., between two rat lines), the F value is identical to the product of a t-test. Therefore, all 

post-hoc analyses performed with ANOVAs between Wistar and P rats at specific 

concentrations of O-1057 are reported as t-values to avoid the misrepresentation of the 

statistical test.

3. RESULTS

The initial analysis examined the average number of reinforcers self-administered during the 

first 4 test sessions of acquisition with between group factors of ‘concentration’ and ‘line’ 

(Fig. 2). There was a significant ‘concentration’ X ‘line’ interaction (F4,64 = 3.31; p = 

0.016). Reducing the interaction term by examining the effect of ‘concentration’ within each 

line revealed significant dose-response effects in Wistar (F4,34 = 36.3; p < 0.0001) and P 

(F4,30 = 17.5; p < 0.0001) rats. Post-hoc comparisons (Tukey’s HSD) revealed that Wistar 

rats self-administering 12.5 and 25 pmol/100 nl O-1057 directly into the AcbSh self-infused 

more infusate than all other groups. In P rats, post-hoc comparisons indicated that 3.125, 

6.25, 12.5, and 25 pmol/100 nl O-1057 self-infused more than aCSF controls, that the 12.5 

group self-infused more than the 3.125 pmol/100 nl group, and that the 25 pmol/100 nl 

group self-infused significantly more than all other groups. Reducing the significant 

interaction term by examining the number of self-infusions between the rat lines at each 

concentration of O-1057 was also performed. Independent t-tests indicated that P rats self-

administered greater amounts of 3.125, 6.25, and 25 pmol/100 nl O-1057 than Wistar 

control rats (significant p-values were p < 0.01).

An examination of the number of active lever responses as a function of rat’line’ and 

O-1057 ‘concentration’ across all 7 sessions was performed. There was a significant ‘line’ X 

‘concentration’ X ‘session’ interaction term (F24,384 = 2.43; p < 0.001; Figs. 3 and 4). In 

Wistar rats there was a significant ‘concentration’ X ‘session’ interaction (F24,204 = 2.0; p < 

0.0001). Wistar rats given 12.5 or 25 pmol/100 nl O-1057 to self-infuse into the AcbSh 

responded on the active lever significantly more than all other Wistar groups during sessions 

1-4 and 7 (p values < 0.02). In addition, Wistar rats self-administering 12.5 or 25 pmol/100 

nl O-1057 reduced responding during aCSF substitution (p < 0.032; Fig 4). Similar to the 

infusion data, responding on the active lever across sessions indicated a significant 

‘concentration’ X ‘session’ interaction term (F24,180 = 17.5; p < 0.0001). P rats self-
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administering 3.125, 6.25, and 25 pmol/100 nl O-1057 responded on the active lever 

significantly more than aCSF controls, displayed level discrimination, extinction of 

responding during aCSF substitution, and a reinstatement of responding when O-1057 was 

returned to the infusate. In addition, in P rats self-administering 3.125 or 6.25 pmol/100 nl 

O-1057 displayed an increase in active lever responding during the reinstatement session (7) 

compared to the responding during session the last session of acquisition (p < 0.01).

4. DISCUSSION

The major findings of this study are that a CB1R agonist within the AcbSh is reinforcing and 

that genetic selection for high alcohol consumption includes an AcbSh that is more sensitive 

to the reinforcing properties of CB1R agonists than its progenitor stock (Figs. 2-4). This was 

indicated by the findings that P rats will self-infuse lower concentrations of O-1057 (Figs. 2 

and 3) by readily discriminating the active from the inactive lever at 3.125 and 6.25 pmol 

doses (Fig. 3, middle and bottom panel). Conversely, Wistar rats self-administer these 

concentrations of O-1057 at the same level as aCSF, thus not demonstrating lever 

discrimination at these doses. Furthermore, P rats received more self-infusions of O-1057 

than did Wistar rats at the 3.125, 6.25, and 25 pmol concentrations (Figs. 3 and 4). The 

combination of increased responsiveness to the effects of O-1057 and a higher number of 

self-infusions suggest that O-1057 may be a stronger reinforcer in the AcbSh of P rats than 

Wistar rats.

Similar differences in sensitivity of the AcbSh between P and Wistar rats have been reported 

in EtOH (Engleman et al., 2009) and cocaine (Katner et al., 2011) ICSA studies. For 

example, P rats were shown to self-administer cocaine at lower concentrations (200 pmol vs 

800 pmol) and have higher cocaine infusions rates (59 infusions/session vs 38 infusions/

session) compared to Wistar rats (Katner et al., 2011). Thus, providing evidence that 

selection for high alcohol preference increase the sensitivity of AcbSh to other drugs of 

abuse. To our knowledge the current study is the first study to examine ICSA differences of 

a CB1 agonist between a high alcohol preferring animal model and its progenitor control. 

However, innate differences in the metabolism of eCBs have been associated with 

differential sensitivity to alcohol in rodents. Alko, Alcohol (AA) rats have lower expression 

of FAAH compared to Alko, Non-Alcohol (ANA) rats in the prefrontal cortex and decreased 

CB1 receptor density and coupling (Hansson et al., 2007). In addition, genetic deletion of 

FAAH results in a reduction in alcohol consumption in mice (Basavarajappa and Hungund, 

2005, Blednov et al., 2007). Collectively, these findings support the idea that there may be a 

genetic linkage between selective breeding for high alcohol preference and increased 

sensitivity of the AcbSh to the reinforcing actions of cannabinoids.

The current results are in line with Zangen et al. (2006) findings that showed Δ9THC is self-

administered directly into the AcbSh, but not the AcbC, and in the posterior, but not anterior, 

VTA (Zangen et al., 2006). However, Δ9THC is both an agonist and an antagonist on CB1R 

(Bergman et al., 2008), thus the current study is the first to look at the reinforcing properties 

of a selective CB1R agonist within the AcbSh. Collectively these findings were also similar 

to EtOH ICS A studies that found animals will self-administer EtOH into the AcbSh, but not 

the AcbC (Engleman et al., 2009), and posterior, but not anterior, VTA (Rodd-Henricks et 
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al., 2000). Therefore, the neurocircuitry of alcohol and cannabinoid reinforcement 

incorporates identical structures.

CB1Rs are expressed on multiple neurotransmitter targets within the Acb (Herkenham et al., 

1991; Tsou et al., 1998; Murray et al., 2010). CB1Rs are localized on GABAergic axon 

terminals of local medium-spiny neurons and parvalbumin-positive interneurons in the Acb 

(Mato et al., 2005; Robbe et al., 2001; Uchigashima et al., 2007) as well as excitatory 

prefrontal cortex-Acb synaptic terminals (Robbe et al., 2001). An aspect of the reward 

circuitry of cannabinoids include activation of CB1R within Acb which disinhibits GABAA 

receptor-control of dopamine release (cf., Wenzel and Cheer, 2018; Sperlágh et al., 2009). 

Also, CB1R are expressed in glutamatergic and cholinergic cells within the Acb that 

regulate Acb DA activity (Wenzel and Cheer, 2018; Fusco et al., 2004). In general, there is a 

lack of characterization of the cannabinoid system in rats selectively bred for high alcohol 

preference/consumption, and there are no reported findings that would suggest the biological 

basis for the increase in sensitivity to the reinforcing properties of O-1057 within the AcbSh 

of P rats.

The current findings also extend previous findings that CB1R agonists are reinforcing. 

Animals have been shown to intravenously self-administer the CB1R agonist WIN 55,212-2 

(Lefever et al., 2014; Lecca et al., 2006; Fattore et al., 2001; Martellotta et al., 1998), which 

was associated with a preferential increase of DA in the AcbSh compared to the AcbCo 

(Lecca et al., 2006). The CB1 agonist CP55940 is intracerebroventricularly (ICV) self-

administered, with self-administration blocked by the CB1R antagonist SR141716A (Braida 

et al., 2001a). Systemic administration of CP55940 (Braida et al. 2001b) and intra-accumbal 

administration of WIN 55,212-2 (Karimi et al., 2013) also support conditioned place 

preference.

The results of the present study provide important information regarding how genetic factors 

influence a predisposition to high alcohol drinking and abuse of cannabinoids, and how 

genetic factors that influence alcohol drinking can also influence the effects of cannabinoid 

abuse. These findings are in line with the Ranganathan and colleagues (2014) clinical report 

which demonstrated that a family history of AUD was correlated with greater euphoria and 

perceptual alterations induced by low doses of Δ9 −THC. These results suggest a family 

history of AUD enhances sensitivity to the rewarding effects of Δ9 −THC. This may be due 

to alterations in CB1R function that could contribute to alcohol misuse and/or vulnerability. 

These findings in humans support the present results in which rats selectively bred for high 

alcohol preference are also more sensitive to the reinforcing actions of CB1R agonist, 

compound with outbred Wistar control rats. Together, these data support the hypothesis that 

there are some common genetic factors mediating the abuse potential of alcohol and 

cannabinoids.

In conclusion, the results of the present study indicate an association between selective 

breeding for high alcohol preference and enhanced sensitivity of the AcbSh to the 

reinforcing effects of cannabinoids. Moreover, the biological basis for this altered sensitivity 

within the AcbSh may be due to unknown alterations in CB1R levels and/or function, which 

resulted from bidirectional selective breeding for divergent alcohol preference over water.
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HIGHLIGHTS

• O-1057, a CB1 agonist, is self-administered directly into the AcbSh of female 

rats

• P rats self-administered O-1057 at lower concentrations compared to Wistar 

rats

• P rats received more self-infusions of O-1057 than Wistar rats

• Alcohol preference may enhance sensitivity to the rewarding effects of 

cannabinoids
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Figure 1. 
Representative placements for the intracranial self- administration of aCSF and O-1057 into 

the AcbSh of adult female P rats are shown. Black circles represent placements of injection 

sites within the AcbSh (defined as +1.7 to + 1.0 mm bregma).
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Figure 2. 
Depicts the mean (± SEM) average number of O-1057 infusions self-administered directly 

into the AcbSh during sessions 1-4 in Wistar (left panel) and P (right panel) rats. Asterisk 

(*) indicates significantly more infusions than aCSF controls. Plus sign (+) indicates 

significantly more infusions in the Wistar 25 pmol group compared to all other Wistar 

groups. Carrot (^) indicates significantly more infusions than aCSF controls and P > Wistars. 

Number sign (#) indicates significantly more self-infusions than all other groups.
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Figure 3. 
Depicts the mean (± SEM) number of lever responses in Wistar (left panels) and P (right 

panels) rats given aCSF (top panels), 3.125 (middle panels), or 6.5 pmol of O-1057 (bottom 

panels) to self-administer directly into the AcbSh. Asterisk (*) indicates significantly more 

responding on the active lever than that observed in aCSF controls and discrimination 

between levers. Plus sign (+) indicates more responding on the active lever than that 

observed in aCSF controls and P > Wistar. Carrot (^) indicates more responding on the 

active lever than that observed in aCSF controls, P > Wistar, and responding during sessions 

7 > session 4.
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Figure 4. 
Depicts the mean (± SEM) number of lever responses in Wistar (left panels) and P (right 

panels) rats given 12.5 (top panels) or 25 pmol of O-1057 (bottom panels) to self-administer 

directly into the AcbSh. Asterisk (*) indicates significantly more responding on the active 

lever than that observed in aCSF controls and discrimination between levers. Plus sign (+) 

indicates more responding on the active lever than that observed in aCSF controls and P > 

Wistar. Carrot (^) indicates more responding on the active lever than that observed in aCSF 

controls, P > Wistar, and responding during sessions 7 > session 4.
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