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ABSTRACT OF THE DISSERTION

Madhankumar Sonachalam

INTEGRATIVE SYSTEM BIOLOGY STUDIES ON HIGHTHROUGHPUT GENOMIC AND PROTEOMIC

DATASET FOR BIOLOGICAL PATHWAY DISCOVERY

The post genomic era has propelled us to the view that the biological systems are complex
network of interacting genes, proteins and small molecules that give rise to biological form and
function. The past decade has seen the advent of number of new technologies designed to study
the biological systems on a genome wide scale. These new technologies offers an insight in to
the activity of thousands of genes and proteins in cell thereby changed the conventional
reductionist view of the systems. However the deluge of data surpasses the analytical and critical

abilities of the researches and thereby demands the development of new computational methods.

Gene expression microarrays can take a snapshot of all the transcriptional activity in a biological
sample, while it also generates a huge amount of data with intrinsic noise (sample or instrument
noise), which is still a quite challenging task to interpret it even by exploiting modern
computational and statistical tools. The challenge no longer lies in the acquisition of gene
expression profiles, but rather in the interpretation for the results to gain insights into biological
mechanisms. Gene Set Enrichment Analysis (GSEA) is one of the widely used Gene Set
Analysis (GSA) methods that aim to test the activity of gene clusters rather than individual
genes.

In Chapter 2, we integrated prior knowledge from gene signatures (curated gene sets from
MSigDB and/or GeneSigDB); gene set enrichment analysis (GSEA), and gene/protein network
modeling to identify gene network signatures from microarray data. We demonstrated how to

apply this approach in discovering gene network signatures for colorectal cancer (CRC) from
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microarray datasets. We compared the network generated from two different gene set sources
and showed that the integrated network generated from both MSigDB and GeneSigDB can be
used to identify novel pathways involved in colorectal cancer.

In Chapter 3, we identified plasma based Subnetwork signatures for Alzheimer’s disease (AD)
using proteomics dataset. Current plasma based AD signatures uses feature selection methods
that was originally designed for microarray analysis. We evaluated various feature selection and
classification approaches to select the best set of features for a specific proteomics dataset. Our
combination of feature selection and classification techniques showed better performance than
the existing results and we further provided biological validation by identifying relevant
Subnetwork signatures.

Finally, we applied the network based strategy to identify the role of MicroRNA in Myeloid
Derived Suppressor Cells (MDSC) induced T-Cell Suppression. In Chapter 4, we used network
based ranking algorithm to prioritize miRNA and genes by utilizing both network topology and
differential information. We showed that the global and local topology characteristics of the
miRNA-gene-gene/protein network along with the differential expression values obtained from

microarray experiment can be used to identify biologically significant pathways.
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1. INTRODUCTION
1.1 Motivation

The term omics refers to the comprehensive analysis of biological systems. A variety of
omics disciplines have begun to emerge after the Human Genome Project. Genomics deals with
the systematic use of genomic information and it includes investigations about the function of the
genes. Transcriptomics examines the expression level of mRNAs of the genes in a given cell
population. Proteomics focus on the large scale study of proteins while Metabolomics addresses
the metabolites involved in the cellular process.

System biology is the study of biology through the systematic perturbation, global read
out of the multifaceted response through various omics studies and integration of those data to
formulate predictive models. System biology investigates the behavior and relationships of all
the elements in a biological system rather than focusing on a single gene or protein. As a result,
inputs from various disciplines such as statistics, computer science and mathematics are
necessary to a “systems” approach of analyzing data. We employed system biology techniques to
solve complex biological problems using genomics, proteomics and integrated MicroRNA and
gene expression dataset.

1.2 Messages

The sheer volume of data generated in the post genomic era surpasses the analytical and
critical abilities of a single researcher and demands the new computational methods to assist in
the analysis of these data. In these projects, we devised new methodologies, integrated existing
machine learning and network biology techniques to solve various complex biological problems.
We adapted different strategies depending on the data sets that we are handling; genomics data
sets are filtered using gene set enrichment techniques and integrated it with network biology to

explore biological mechanism of colorectal cancer. While for proteomics data, we evaluated



various feature selection and classification algorithms to select best features which were then
used to identify sub-network signatures. Finally, we combined the miRNA and gene
transcriptomics data to generate an integrated network which explains the molecular mechanism
of T-cell suppression in cancer.
1.3 Microarrays

Gene expression microarrays can take a snapshot of all the transcriptional activity in a
biological sample, while it also generates a huge amount of data with intrinsic noise (sample or
instrument noise), which is still a quite challenging task to interpret it even by exploiting modern
computational and statistical tools. These high-throughput genomics technologies have
tremendously changed biomedical research, which allow researchers to simultaneously monitor
the expression of tens of thousands of genes [1]. Microarray data analysis has also become a
common practice in many experimental laboratories. Numerous literatures describe the
innovative insights within microarray data analysis [2, 3]. It has been widely applied into many
medical areas, including distinguishing disease subtypes [4], identifying candidate
biomarkers[5], and revealing the underlying molecular mechanisms of disease [6] or drug
response [7]. There are several repositories such as Gene Expression Omnibus (GEO) and Array

Express that hosts Microarray dataset from various experiments.



2. SYSTEMS BIOLOGY APPROACH TO IDENTIFY GENE NETWORK SIGNATURES FOR COLORECTAL
CANCER

2.1 Background

In microarray analysis, crucial genes show relatively slight changes, and many genes selected
are also poorly annotated [2]. From a biological perspective, functionally related genes often
display a coordinated expression to accomplish their roles in the cell [8]. Hence, to translate such
lists of differentially expressed genes into a functional profile will help us to understand the
underlying biological phenomena, one approach to aid interpretation is to look for changes in a
group of genes with a common function (gene cluster) [2].

Accordingly, Gene Set Analysis (GSA) methods aim to test the activity of such gene clusters
instead of testing the activity of individual genes - individual gene analysis (IGA) [9]. In recent
years, GSA approach has received a great deal of attention, since it is free from the problems of

the ‘cutoff-based” methods. In this direction, GSA methods enable the understanding of

cellular processes as an intricate network of functionally related components [8].Among these
GSA methods, gene set enrichment analysis (GSEA) is one of the most widely used methods
[10]. GSEA analyzes pre-defined gene sets based on prior biological knowledge to determine
whether this gene set as a whole exhibits differential expression. GSEA has many advantages as
it does not employ an arbitrary cutoff to select significant genes. Instead, it uses all the
information about every gene involved in the experiment. However, GSEA does rely on pre-
defined gene sets (without gene interaction information); making IGA more beneficial when not
much is known about the biological function being considered. Furthermore, GSEA still assumes
that more differentially expressed genes are more crucial to the biology, which is not always true
[11]. In many cases, extensive upstream data processing, comprehensive gene selection statistics,

and downstream pathway/network analysis cannot be replaced by GSEA. Therefore, gene



expression signature analysis and pathway analysis (using tools such as DAVID [12]) remain
two separate processes.

Network-based gene expression analysis is proposed for candidate biomarker discovery by
integrating disease susceptibility genes, their gene expressions, and their gene/protein interaction
network [13, 14]. In 2007, Marc Vidal’s group at Harvard constructed a protein interaction
network for breast cancer susceptibility using various ‘omics’ data sets, and identified HMMR as
a new susceptibility locus for the disease[13]. Later, Trey Ideker’s group at UCSD integrated
protein network and gene expression data to improve the prediction of metastasis formation in
patients with breast cancer [14]. The two studies marked the exciting beginning of a new
paradigm which suggests networks and pathways, although drafty, error-prone, and incomplete,
can serve as a molecular-level conceptual roadmap to guide future microarray analysis.

Recent advances in genomics, transcriptomics, proteomics, epigenomics, and metabolomics
have begun to help discover DNA/RNA-based prognostic and predictive markers for early and
advanced colorectal cancer (CRC) [15]. Systems biology results show that cancer genes and
proteins do not function in isolation; instead, they work in interconnected pathways and
molecular networks [16]. However, systematically building disease-specific network models,
integrated at multiple Omics level - transcriptome (RNA-based markers from microarray data)
and proteome (protein-based markers from network and pathway data), has not yet been done in
CRC biomarker discovery.

In this work, we integrated prior knowledge from GWAS studies or gene signatures (curated
gene sets from MSigDB and/or GeneSigDB), gene set enrichment analysis (GSEA), and
gene/protein network modeling together to identify gene network signatures from microarray

data. We demonstrated how to apply this approach into discovering gene network signatures for



colorectal cancer (CRC) from microarray datasets at three levels - genome, transcriptome, and
proteome. First, we use GSEA to analyze the microarray data through enriching differential
genes in different CRC-related gene sets from two publicly-available up-to-date gene set
databases - Molecular Signatures Database (MSigDB) and Gene Signatures Database
(GeneSigDB). Second, we compare the enriched gene sets through enrichment score (ES), false-
discovery rate (FDR) and nominal p-value. Third, we construct an integrated protein-protein
interaction (PPI) network through connecting these enriched genes by using a human annotated
and predicted protein interaction (HAPPI) database, with a confidence score (CS) labeled for
each interaction. Finally, we map differential expression values onto the constructed network to
build a comprehensive network model containing visualized genome, transcriptome, and
proteome data. The results show that although MSigDB is more suitable for GSEA analysis than
GeneSigDB, the integrated PPI network connecting the enriched genes from both MSigDB and
GeneSigDB can provide more complete view for discovering gene signatures. We also find
several important sub-network signatures for colorectal cancer, such as TP53 sub-network,
PCNA sub-network and IL8 sub-network, corresponding to apoptosis, DNA repair, and immune
response respectively.

2.2 Methods

2.2.1 Microarray data

From GEO (http://www.ncbi.nlm.nih.gov/geo/), we download a CRC-related microarray
dataset - GSE8671, which compared the transcriptomes of 32 prospectively collected adenomas
with those of the normal mucosa from the same individuals. Hence we have 32 CRC samples

and 32 normal samples. We use maximal expression values for same proteins mapped from



different Probe IDs. We use Affy package in BioConductor for quantile normalization. For

background correction, we use the built-in MicroArray Suite (MASS).

2.2.2 Gene sets

Gene sets are obtained from MSigDB and GeneSigDB. MsigDB has almost 6769 gene sets
and are divided in to five major collections, of which “C2” are curated gene sets collected from
various sources such as online pathway databases, publications in pubmed, and knowledge of
domain experts. We searched in that collection with keyword “colon” and obtained 73 gene sets.
GeneSigDB is a manually curated database of gene expression signatures. And it shares
minimum overlap between MSigDB C2 Category of around 8%. It provides the standardized
gene list for different search criteria. Searching as “Colon” had retrieved 36 gene sets.

2.2.3 Gene set enrichment analysis

Though there are many variations on the GSEA method, we describe the version of the algorithm
developed by Subramanian and colleagues [10], which will be called the standard

implementation of the method, since it is the most widely used form of the GSEA method.

Suppose that a microarray dataset is obtained from two different phenotypes, phenotype 1 and
phenotype 2 (e.g. control vs. experimental). This microarray dataset has expression values for the
genes across the samples and each row has been identified by unique probe identification.
Consider also a given gene set S, usually derived from some common biological category. The
objective of the GSEA method is to see if the gene set S shows differential expression between
the two phenotypes.

The Broad Institute provides an easy to use standalone Java implementation of the GSEA

method on their website (http://www.broadinstitute.org/gsea/). All gene sets with more than 500



genes or less than 15 genes were automatically excluded. The difference between signal-to-noise
ratios was used as the association score. The number of phenotype permutations involved in the
nominal p-value calculation was 1000. For each analysis, we report the number of gene sets with
FDR<25%. Along with these gene sets with FDR<25%, we report the number of gene sets
whose nominal p-values are <1% or 5%.

2.2.4 Network modeling

To optimize computation time and information generation, we use a combined network

construction strategy, based on the enriched genes from both MSigDB and GeneSigDB.

First, we connect the enriched MSigDB genes from GSE8671 in HAPPI
(http://bio.informatics.iupui.edu/HAPPI) with confidence score (Cl >=0.75, i.e. 4-star rating) for
interactions, to obtain a protein-protein interaction (PPI) network. The local topological property
(e.g. node degree, cluster coefficient, betweenness centrality, neighborhood connectivity etc.
[17]) for each node is calculated based on this network. Then genes with absolute fold change
|FC|>=1.5, equals to Log »(FC)>=0.585, are kept.

Second, we connect the enriched GeneSigDB genes from GSE8671 in HAPPI
(http://bio.informatics.iupui.edu/HAPPI) with confidence score (Cl >=0.75, i.e. 4-star rating) for
interactions, to obtain another protein-protein interaction (PPI) network. In the same way, the
local topological property for each node is calculated based on this network. Then genes with
absolute fold change |FC|>=1.5, equals to Log »(FC)>=0.585, are kept.

Finally, we combine these two networks to build a node-weighted edge-scored CRC-specific
PPI network model by using Cytoscape [18], with node color representing the fold change for
each gene, node size representing the local topological property for each gene/protein, edge color

and edge width representing confidence score for each protein interaction.



2.3 Results

2.3.1 Enriched gene sets

We run the GSEA analysis for the gene expression microarray data - GSE8671 with gene
sets obtained from MSigDB and GeneSigDB separately. We use the default values in GSEA
which filtered out 22 gene sets from MSigDB as the number of genes in those sets falls below
the threshold value of 15 in GSEA. So we run the GSEA analysis on remaining 51 gene sets. Of
those 51, 22 gene sets are up-regulated in normal and remaining 29 are up-regulated in cancer
samples. Summary of the results are shown in Table 1.

There are 22 gene sets that are significantly enriched in normal and 29 in Colorectal cancer,
of which the gene set - GRADE COLON_CANCER DN tops the list with enrichment score of
0.79 in Normal vs. Cancer, and the gene set - SANA RESPONSE TO IFNG DN tops
the list in Cancer vs. Normal with the enrichment score of -0.67.

Table 1: Summary of CRC Gene Set Results enriched in MSigDB

Enrichment Normal vs. Cancer Cancer vs. Normal
Up-regulated 22 gene sets 29 gene sets
Significant at FDR <25% 8 gene sets 14 gene sets
Nominal p-value for S from ESyyrr <5% | 7 gene sets 12 gene sets
Nominal p-value for S from ESyyr < 1% | 5 gene sets 6 gene set

As with the case of MSigDB, GSEA had filtered only 22 gene sets out of 34 based on the
default filter criteria. Of these 22, 11 gene sets are enriched in normal and remaining 11 on
cancer. Summary of the results are shown in table 2. Of the enriched gene sets - 16091735-
TABLEI tops the list in Normal vs. Cancer with the enrichment score of 0.52 and the gene set -

11906190-TABLE2B-2 tops the list with enrichment score of -0.53 in Cancer vs. Normal.



Table 2: Summary of CRC Gene Set Results enriched in GeneSigDB

Enrichment Normal vs. Cancer Cancer vs. Normal
Up-regulated 11 gene sets 11 gene sets
Significant at FDR <25% 7 gene sets 8 gene sets
Nominal p-value for S from ESyyrr < 5% 4 gene sets 5 gene sets
Nominal p-value for S from ESyurL < 1% 1 gene sets 2 gene set

2.3.2 A PPI network based on enriched genes from MSigDB

We construct a PPI network (325 genes and 686 interactions) with Cl >=0.75 based on the
694 enriched genes (mapped to 678 proteins) from MSigDB, and visualize the network layout by
using spring embedded network layout in Cytoscape 2.8.1. After filtering out genes with
|FC|<1.5, there are 244 genes and 422 interactions. We also map the differential expression
values onto the genes in the network by representing them as node colors. Since we also simply
represent node degree as node size, we can easily access the relationship between differential
expression value and topological property for each gene in the network. As shown in Figure 1,
the gene sets from MSigDB connected very well. Most important cancer genes, such as TP53
and PCNA, related to apoptosis and DNA repair are included. It indicates that MSigDB is
suitable for GSEA analysis, unsurprisingly, since MSigDB is generated by the same group which

developed GSEA.
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Figure 1: PPI Network based on the Enriched Genes from MSigDB by through analyzing
GSE8671 by GSEA. Black-circled genes represent the enriched genes from both MSigDB and
GeneSigDB
2.3. 3 A PPI network based on enriched genes from GeneSigDB

We also construct a PPI network (112 genes and 169 interactions) with Cl >=0.75 based on the
303 enriched genes (mapped to 301 proteins) from GeneSigDB, and visualize the network layout
by using spring embedded network layout in Cytoscape 2.8.1. After filtering out genes with
|[FC|<1.5, there are only 68 genes and 62 interactions (shown in Figure 2). Although the gene sets
from GeneSigDB are directly from gene expression profile (most of them are microarray data)
analysis, the scale of the PPI network built on the enriched genes from GeneSigDB is really
poor. It implies that GeneSigDB may not be applicable for GSEA analysis, at least, cannot be

used singly.
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Figure 2: PPI Network based on the Enriched Genes from GeneSigDB through analyzing
GSE8671 by GSEA. Black-circled genes represent the enriched genes from both MSigDB and
GeneSigDB

2.3.4 Integrated CRC specific network signature

There are only 85 genes (mapped to 84 proteins) overlapped between the 694 enriched genes
from MSigDB and the 303 enriched genes from GeneSigDB. So we combine the two PPI
network together to build an integrated network signature specific for colorectal cancer. We
construct a PPI network (443 genes and 1070 interactions) with CI >=0.75 based on the 895
enriched genes from both MSigDB and GeneSigDB. After filtering out genes with |[FC|<L.5,
there are 311 genes and 541 interactions (shown in Figure 3). As we can see, the integrated
network has more genes/proteins connected, especial for the gene sub-network surrounding IL8,
which relates to inflammation and immune response. This gene has been recognized playing an

important role in regulates various aspects of immune response, cell death, and differentiation as

well as cancer [19].
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Figure 3: An integrated CRC-specific Network Signature based on the Enriched Genes from
both MSigDB and GeneSigDB through analyzing GSE8671 by GSEA. Black-circled genes
represent the enriched genes from both MSigDB and GeneSigDB.

2.4 Discussion

In this work, we integrated gene signatures; gene set enrichment analysis (GSEA), and
protein-protein interaction network to identify gene network signatures from microarray data.
We demonstrated how to apply this approach in discovering gene network signatures for
colorectal cancer from microarray datasets at three levels - genome, transcriptome, and
proteome. The results show that MSigDB is more suitable for GSEA. analysis than GeneSigDB.

Although MSigDB may be more suitable for GSEA analysis than GeneSigDB (the two
databases are both updated very quickly), the integrated PPI network connecting the enriched
genes from both MSigDB and GeneSigDB can provide more complete view for discovering gene

signatures. We also find several important sub-network signatures for colorectal cancer, such as

12
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TP53 sub-network, PCNA sub-network and IL8 sub-network, corresponding to apoptosis, DNA
repair, and immune response respectively [19-21].

However, gene-to-gene or gene-to-protein interaction may be even more accurately
represented by a network. One limitation of our restrictive approach and of the GSEA method in
general, is that it is not able to generate new hypotheses for unsuspected gene sets. This has
proved to be a major limitation of the GSEA method in general, especially since one of the main
goals of gene expression microarray analysis is to find new sets of relevant genes. Another
disadvantage of the GSEA method is that genes that are more differentially expressed are
assumed to be more crucial. However, this assumption has not been thoroughly tested.

Currently, it is important to realize that no single method of gene expression microarray
analysis works best, but rather information generated by the different analyses should be
integrated together with the knowledge from biological research. In future work, we aim to
combine GSEA, gene ontology (GO) enrichment, network expanding/enriching methods
together to identify biologically significant genes/proteins. We will use more gene expression
microarray datasets to validate this integrated strategy. We will also use newly generated gene

expression profiles by using RNA-sequencing (RNA-seq) technique to test our new hypothesis.

3. IENTIFYING PLASMA-BASED SUBNETWORK SIGNATURES FOR ALZHEIMER’S DISEASE USING A
MULTIPLEX PROTEOMIC IMMUNOASSAY PANEL

3.1 Background

Currently, the only way to confirm Alzheimer’s disease (AD) definitively comes from autopsy,
with the presence of characteristic lesions in the brain caused by extracellular plaques of
Amyloid B (AP) peptide and intracellular neurofibrillary tangles (NFTs) formed by

hyperphosphorylated Tau protein [22]. Intensive research has been conducted for discovering
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reliable AD biomarkers in peripheral blood. Although there are many publications on potential
plasma-based AD biomarkers, follow-up studies by other research groups have often failed to
show accurate, efficient and consistent diagnostic values [23]. There is an urgent need for
benchmarks to be able to evaluate the performance of these biomarker panels/signatures.
Moreover, it also remains unknown what relationships between proteins within each signature,

and what relationships between these signatures are involved.

In 2007, Ray et al. [24] screened 120 proteins involved in cell communication, and found a 18-
protein signature that can be used to classify blinded samples from Alzheimer’s and control
subjects with close to 90% accuracy. Their analysis was based on a shrunken centroid algorithm
called predictive analysis of microarrays (PAM), with 83 archived plasma samples as training set
and 92 separate samples as testing set (AD against control). Biological interpretation based on
these 18 signaling proteins indicates systemic dysregulation of hematopoiesis, immune
responses, apoptosis and neuronal support in presymptomatic AD. This pilot study has made a

significant contribution for discovering diagnostically useful plasma-based AD biomarkers.

In 2008, using the same proteomic data, Gomez and Moscato [25] reported a 5-protein signature
(which is a subset of the 18-protein signature) that achieves, on average, a 96% total accuracy in
predicting clinical AD (80 for training and 92 for testing). This 5-protein signature (the
abundance of IL-1a, IL-3, EGF, TNF-a and G-CSF) was chosen by using their spectacular
feature selection approach based on Fayyad and Irani's entropy minimization algorithm, which
was originally designed for microarray analysis [26]. The 5-protein signature demonstrated the
same performance with the original 18-protein signature when using the same classifiers, such as
Simple Logistic or Logistic Model Trees. The performance was verified by using over 20

different classifiers available in the widely-used Weka software package [27]. In 2011, by using
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methods from combinatorial optimization and information theory, Moscato’s team reanalyzed
the same proteomic data, and uncovered novel biomarkers, which confirms ANG-2, IL-11,
PDGF-BB, CCL15/MIP-19; and supports the joint measurement of other signaling proteins not

previously discussed: GM-CSF, NT-3, IGFBP-2 and VEGF-B [28].

Although the accuracy reported for these two plasma-based AD signatures are high enough, the
consistency for their stable clinical application still remains unknown, especially when
evaluating these signatures in new cohorts. In 2009, Soares et al. tested the reproducibility of
another subset of the 18-protein signature by using quantitative multiplex proteomic
immunoassay, which suggest diagnostic accuracy using this subset can only achieved 61%. By
using multivariate analysis for feature selection and linear discriminant and random forest
analysis for classification, an 89-protein signature was found, which can yield a diagnostic
accuracy of 70%. This result suggests that the current plasma-based AD signatures may be useful

as AD screening tools, but are still far from AD diagnostic purpose.

Another major concern on the view of bioinformatics is that the current plasma-based AD
signatures are all selected by the feature selection approaches originally designed for microarray
analysis. The performance of these approaches is doubtful when applying to proteomic studies
(typically 120-250 protein analytes) with much less feature than in high-throughput
transcriptomic studies (generally 20,000 genes or 50,000 probes). Feature selection is used as a
preprocessing step before building models for classification. It aims to limit the amount and
dimensionality of the data and thereby selecting significant features that correlate well with the
target class [29-31]. Feature selection methods are often categorized as filters, wrappers, or
embedded methods depending on how they combine the feature selection search with the

construction of the classification model [32].
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Filter methods evaluates each feature by looking only at the intrinsic properties of the data. Most
methods works by assigning a score value for each feature and set a threshold as a criterion to
evaluate performance. If the score values of a feature is greater than the threshold, then the
feature will be selected otherwise it will be removed. Filter methods can rely on univariate and
multivariate statistics [33]. Univariate methods such as chi square and Pearson correlation
assumes each attribute as independent and assess the relevance of individual attributes for a
specific class at a time [34]. In this kind of analysis, attributes that are not individually relevant
but become significant in the context of other attributes will be missed out. Since univariate
features selection methods are not able to capture feature interactions, it can result in redundant
features which have high score with the class. Multivariate methods such as ReliefF overcome

this constraint by considering feature interactions [33].

The wrapper approach uses search algorithms to select various subsets of features in the space of
possible subsets, and evaluates the specific subset of features using a specific classification
model [29, 30]. Wrapper methods consider the feature dependencies and since there is an
interaction between the feature subset and the model selection, it helps to select best subset.
Embedded methods also involve classification models, but unlike wrapper methods, the search
for an optimal subset of features is built in to the classifier construction. Since it perform feature
selection as a part of the classifier training process it takes computationally less time than
wrapper[33]. SVM Attribute Evaluator and Elastic Net are some well-known embedded methods
[35]. These methods are very effective in dealing with genomics and proteomics dataset in
various bioinformatics approach. The main drawback with these methods is they do not integrate

any external knowledge source to explain the biology behind the interactions.
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In this work, we developed five criteria — accuracy, efficiency, consistency, significance and
connectivity, to evaluate different feature selection approaches for identifying protein biomarkers
under varied conditions. We compared 15 feature selection approaches and 20 classification
methods in Weka [27] on a new dataset generated from the samples (AD vs. health control)
collected by Alzheimer's Disease Neuroimaging Initiative (ADNI). We chose five feature
selection approaches — ReliefF, SVM, OneR, Elastic Net and lasso for thorough evaluation on
the presented five criteria, according to their overall performance on accuracy. Based on the top
32 protein analytes selected by each of these five feature selection approaches, we finally built a
64-protein network consisting of four subnetworks, which are defined as subnetwork signatures
here. We also compared the protein analytes in the network with those analytes in the existing
plasma-based AD signatures, and found these four plasma-based AD subnetwork signatures
corresponding to G-Protein coupled receptor (GPCR) ligand pathway activation, complement,
immune response, and apoptosis respectively. In these functions, GPCR ligand pathway
activation is newly reported for plasma-based AD signatures, especially the important role of an
analyte —follicle stimulating hormone (FSH), which bridges the functional subnetworks of

hemostasis and apoptosis.

3.2 Methods

3.2.1 ADNI multiplex proteomic immunoassay data collection

We used the ADNI dataset providing expression values for 146 analytes in 108 Alzheimer
disease patients and 53 healthy controls which we call as master dataset. We randomly permuted
the master dataset to create 20 partitions with same number of Alzheimer and healthy samples.

Then we approximately halved each partition in to training and testing set thereby maintaining
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equal samples for both class in training and testing set say 53-54 samples of Alzheimer and 26-

27 samples of Healthy control.

3.2.2 Feature selection and Classification

Waikato Environment for knowledge analysis suite (Weka, version 3.6) was used for applying
classification and feature selection methods to our datasets [27]. Weka is a java based tool that
provides implementations for various machine learning algorithms. Weka has been used for
various genomics and proteomics studies in Bioinformatics [36]. The default parameters set
within Weka has been used for all the attribute selection and classification method. We are aware
that the results can be optimized by tuning the parameters for classification algorithm, since we
are interested in selecting possibly best features for downstream analysis rather than the
classification accuracy we used only default parameters and moreover it ensures the

reproducibility of results.

Weka provides implementation for various feature selection belongs to different categories such
as Filter methods based on univariate statistics (CFSSubsetEval, ChiSquaredAttributeEval),
based on multivariate statistics (ReliefF), meta-evaluators (CostSensitiveAttributeEval,
CostSensitiveSubsetEval,  FilteredAttribute and  SubsetEval), Embedded  methods
(SVMAttributeEval) and other filter methods ConsistencySubsetEval, GainRatioAttributeEval,
OneRAttributeEval and SymmetricalUncertAttributeEval. We used all the implementations in
Weka version 3.6 except principal component analysis and latent semantic analysis which
transforms the set of attributes. Hence, these methods are not widely used for constructing
classification model. Elastic Net and Lasso (Least Absolute Shrinkage and Selection Operator)

are two well-known embedded methods that use penalty functions to select the best features.
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Both these methods have been used for various bioinformatics studies [35]. Glmnet package,

MATLAB implementation of Elastic Net and Lasso was used for feature selection [37].

ReliefF

ReliefF is one of the widely used instance based attribute ranking scheme [38]. The main idea of
ReliefF is to iteratively estimate feature weights according to their ability to discriminate
between neighboring patterns. Each time, random samples are drawn from the dataset and for
this instance the neighbors of the same class and the opposite class are determined. Based on
these neighboring cases the weights of the attributes are adjusted [39, 40]. ReliefF doesn’t
remove statistically dependent attributes but relies on a multivariate relevance criterion that ranks

the attributes in context of other attributes.

SVM Attribute Evaluator

SVM Attribute Evaluator uses recursive feature elimination (RFE) method in combination with
linear support vector machine (SVM). The algorithm builds a model using linear support vector
machines and ranks the attributes based on the size of the coefficients. During iteration, it
computes the attribute ranking criterion for each attribute and removes the attribute with the

smallest ranking criterion. Finally we will have ranked attributes as output.

Logistic Model Tree (LMT)

A Logistic Model Tree (LMT) is an algorithm for supervised learning tasks which combines both
linear logistic regression and tree induction. Linear logistic regression tries to fit a simple stable
model to the data with low variance and high bias while the tree induction searches a less
restricted space of models and capture nonlinear patterns in the data with high variance and low

bias. LMT combines the best features from both the methods. It creates a model tree with a
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standard decision tree structure with logistic regression functions at leaf nodes. In LMT, leaves
have an associated logic regression functions instead of just class labels [41]. Tree induction
method has been used to identify potential biomarkers from proteomics data in cancer

classification studies [42].
3.2.4 Performance Evaluation

Accuracy is usually a good measure for binary class problem consisting positive and negative

samples. It is defined as
Accuracy = (TP+TN)/ (TP+FP+TN+FN)

Here, TP and TN represent the number of correct predictions in the positive and negative class

while FP and FN represents the misclassifications.

Determining the ROC Area under the curve (AUC) and Mathew’s correlation coefficient (MCC)
are possible other metric to assess classification quality especially when there is obvious
disparity in the number of samples between two classes [33]. The ROC curve is a plot of the
true-positive rate (sensitivity) versus the false-positive rate (1-specificity), and the AUC is
equivalent to the non-parametric Wilcoxon—-Mann—Whitney test of ranks. For a binary
classification problem, an AUC value of 0.5 suggests that the model built by the classifier will

perform no better than random guessing while a value of 1.0 shows that it is a best classifier.

MCC is defined as,

TP x TN — FP x FN

MCC = ’
/(TP + FN)(TP + FP)(TN + FN)(TN + FP)
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It combines both the sensitivity and specificity in to one measure and the values lie in the range
of -1 to +1, while 1 means complete prediction accuracy and 0 means every prediction was

random [43].

3.3 Results

3.3.1 Accuracy based on selected analytes
Accuracy for evaluating a feature selection approach is defined as the overall classification
performance here, including not only percent agreement with clinical diagnosis (accuracy rate),
but also area under ROC curve (AUC) and Mathew’s correlation coefficient (MCC), by using
only the features selected or top-ranked by that feature selection approach. Although this
definition has been widely used, there’re three key points need to be considered in classification
processes. First, which classifier is used? Second, how many features are using? Third, highest

accuracy rate with poor AUC or MCC will NOT be considered as the best accuracy.

We used training set from partition coverage 1 to select the best features from various methods
listed above. For fair comparison we choose only the top 12 features which is the least number of
features selected by most of the methods on partition coverage 1. We know that it is impossible
to find a classification algorithm that performs well with all feature selection algorithm as every
classification algorithm has its own learning bias. So in order to find the best combination of
feature selection and classification algorithm for this kind of proteomics data we choose 20

different classifiers available in Weka.

Logistic Model Tree (LMT) performs consistently well for the features selected by different
set of feature selection algorithm with highest accuracy of 84% and AUC 0,94 for the features

selected using ReliefF. LMT has been proven to be performing well with the proteomics data
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with small set of features earlier [25]. So we decided to use LMT as a classifier for further
analysis.

Table 3: Results of best classifiers with Top 12 analytes selected using ReliefF and SVM

Classifier ReliefF SVMAttributeEval
Accuracy MCC AUC Accuracy MCC AUC
BaysianLogistic Reg 0.80 0.55 0.77 0.84 0.67 0.85
Naive Bayesian 0.84 0.63 0.90 0.85 0.66 0.90
LibSVM 0.83 0.60 0.78 0.85 0.66 0.82
Logistic 0.80 0.55 0.85 0.81 0.62 0.92
SMO 0.80 0.54 0.75 0.86 0.71 0.87
ClassViaRegress 0.83 0.60 0.90 0.78 0.47 0.90
JRIP 0.80 0.54 0.75 0.77 0.46 0.73
LMT 0.84 0.63 0.94 0.85 0.67 0.93

Once the classifier was fixed, we tried to identify the best feature selection method by repeating
the above analysis with all the partitions. The number of attributes selected for classification
varies between the partitions, depending on the minimum number of features selected by the
feature selection algorithm for that particular partition. And the results showed that ReliefF and
SVMAttributeEval classify with better accuracy and AUC for different partitions followed by
Elastic Net and CostSensitiveAttributeEval. ReliefF achieves highest accuracy of 80% with AUC

0.90 for partition coverage 1 and SVM achieves 80% accuracy with AUC 0.86 for partition 4.
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Table 4 Results of top six feature selection methods for partition coverage 4

Feature Selection method Accuracy MCC AUC
ReliefFAttributeEval 0.80 0.54 0.90
SVMACttributeEval 0.75 0.44 0.81
CostSensitiveAttributeEval 0.70 0.29 0.73
Elastic Net 0.73 0.36 0.80
Lasso 0.73 0.36 0.80
OneRAttributeEval 0.68 0.26 0.69

3.3.2 Efficiency of selected analytes

Efficiency for evaluating a feature selection approach is defined as the least number of selected

or top-ranked features used for classification that can achieve the best accuracy.

Apart from the methods that give the minimum number of features for each partition, there are
five methods viz... CostSensitiveAttributeEval, ReliefF, SVMAttributeEval, ElasticNet and
Lasso provide either weights or ranks for all the 146 features. There is a possibility that
information contained in the top features produced by this algorithm may be lost when we
compare all the feature selection with the minimum number of features in each partition. So we

compared the 10 fold classification accuracy and AUC of the top 80 features selected by the five

methods in the master data set and the results are shown below.
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Figure 4: Comparison of Accuracy of five feature selection methods
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As we infer from the figure, all the five methods achieves the highest possible accuracy with

features not more than 32. Top 32 features selected using SVMATttributeEval classifies the
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samples with accuracy of 92.5% and AUC 0.98. Both ReliefF and Lasso shows accuracy of
about 89% and AUC 0.94. OneR is the least performing method in case of both accuracy and
AUC. As we used 10 fold cross validation accuracy to compare the results, it is no surprise that
SVMAttributeEval perform better in this case. Since it is an embedded feature selection method
which uses linear SVM classifier weights to rank the attribute, it may over fit the model. To
overcome this problem, we run our analysis in partition coverage using separate training and
testing set. We compared the predictive power of top features from both ReliefF and
SVMAttributeEval by reducing the number of features in the multiples of 3. Results shows that
top 15 features performs better in most of the partitions with ReliefF achieving a maximum

accuracy of 89% with AUC 0.93 in the case of partition coveragel.

Table 5: Classification accuracy of Top 30 analytes using LMT

Classifier ReliefF SVMAttributeEval

Accuracy MCC AUC Accuracy MCC AUC
Top 30 features 0.80 0.59 0.89 0.77 0.49 0.83
Top 27 features 0.84 0.65 0.92 0.80 0.56 0.86
Top 24 features 0.80 0.56 0.88 0.74 0.41 0.80
Top 21 features 0.86 0.70 0.92 0.75 0.46 0.81
Top 18 features 0.86 0.70 0.94 0.74 0.43 0.83
Top 15 features 0.89 0.75 0.93 0.80 0.57 0.87
Top 12 features 0.83 0.61 0.90 0.72 0.37 0.81
Top 09 features 0.80 0.54 0.90 0.75 0.44 0.81
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3.3.3 Consistency of selected analytes

We earlier assessed the consistency of the five feature selection algorithm by their prediction
accuracy with LMT classifier in all the partition. In the five methods, SVMAttributeEval ranks
the features while all the other four methods assign weight to them. We decided to compare the
consistency of these methods in selecting analytes across the partition. Since the weight values
produced by the algorithms are heterogeneous with weights ranging from -1 to 1, 0-100, a

unified weighting schema was devised.

First we ranked the features based on their weight values for all the feature selection method
except SVMAttributeEval for which we already have the ranks available from Weka for all the

partition. When more than one analyte has same weight, they were alphabetically sorted.

Once we have the standardized weight for each analyte, the average standard deviation is
calculated which we call as consistency score. Lower the score, higher the consistency.
Consistency score for the five methods were shown in table 6. As we infer from the table 6,
ReliefF has low score of 0.13 with higher consistency in selecting the features across 20

partitions. It was followed by Lasso and ElasticNet with scores 0.15 and 0.15 respectively.
3.3.4 Significance of selected analytes

We identified that top 32 features selected by the five feature selection methods contributes more
for the classification. To explore the association between these features and Alzheimer’s disease
we performed a literature analysis for all the top 32 analytes. We searched the pubmed with
search criteria ("Analyte" OR "Full Name" OR "Gene Symbol") AND "Alzheimer" and get the
number of records. A significant score was calculated for each method by taking average of log
transformed count. Higher the score, more significant are the features selected by the approach.

The significance here means the agreement between the analytes selected by the feature selection
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methods with the evidence found in the current literatures. Features selected by Elastic Net

shows higher significancy with significant score of 1.22 followed by ReliefF and Lasso.

Table 6: Consistency and significance scores of Top 32 analytes

ReliefF SVM OneR Elastic Net Lasso | Integrated
Consistency score 0.13 0.18 0.21 0.15 0.15 N/A
Significance score 1.21 0.94 1.07 1.22 1.13 1.19
Few Supported 4 8 8 6 6 10
Nature 2007 (18) 0 1 0 3 2 3
PloS one 2008 (5) 0 1 0 3 2 3
ANYAS 2008 (89) 13 15 10 16 15 28

3.3.5 Protein Interaction network

Figure 6: Integrated CRC network showing Subnetwork signatures
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We identified that top 32 features selected by the five feature selection methods contributes more
for the classification. We expanded the top features in HAPPI with confidence score (Cl >=0.75,

i.e. 4-star rating) for interactions, to obtain a protein-protein interaction (PPI) network.

3.4 Discussion

Sub network 1 shows the GPCR Signaling pathway induced by Follicle Stimulating Hormone
(FSH), Luteinizing Hormone (LH) and pancreatic polypeptide (PPY). Both FSH and LH has
been linked to Neuroactive ligand receptor interaction pathway too. G Protein Coupled
Receptors (GPCRs) are involved in the process of cleavage of amyloid precursor proteins and
also in various key neurotransmitters system. There are various studies which supports the notion
that GPCRs and activation of their downstream signal cascades increases the non-amyloidogenic
processing of APP [44, 45]. GPCRs are also involved in neuroinflammation and plays role in
Amyloid B mediated toxicity. Class A receptors of GPCRs seen in the hippocampus and cortex
of the brain are abundantly expressed in the microglial cells of AD patients. Several attempts had
been made to use this adenosinergic system as a potential therapeutic target for managing
cognitive dysfunction in AD [46]. Though the involvement of these hormones with AD has been
reported earlier, role of hormone induced GPCR signaling in AD is quite a fascinating one.
Surprisingly both FSH and LH induce GPCR signaling through Class A receptors. This provides
an interesting insight in to the pathways involved in AD which could be a potential therapeutic
target and complement the current treatment approaches that focus mainly on secretase inhibitors

and amyloid immunotherapy.

Analytes from sub network 2 involved in four pathways viz. lipid metabolism, Complement
activation, Renin Angiotensin System and Hemostasis. Role of Lipid metabolism in AD has been

well known with central obesity is related to a high risk of Late Onset Alzheimer’s disease
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(LOAD) [47]. Apart from this, the majority of the analytes from this sub network involves in
complement and coagulation pathways. The interactions between the components in complement
activation pathways and hemostasis is well established [48]. Both the complementation cascade
and the blood clotting were activated by same kind of stimuli. Multiple regulatory loops between
these two systems provide an effective host response against infection. Complement system
activation due to accumulation of Amyloid B and the involvement of other key analytes in

hemostasis was captured in sub network 2.

Sub network 3 connected to network 2 through C3 has around 8 analytes that involves in
Cytokine — cytokine receptor interaction and Chemokine signaling. Cytokines plays crucial role
in innate and adaptive inflammatory responses, cell growth, differentiation, angiogenesis and
homeostasis. There are considerable evidences to suggest that an inflammatory response is
involved in the AD neurodegenerative cascade. A detailed review on the cytokine AD
association highlighted the elevated levels of several key analytes that was shown in sub network

2 such as TNF-a, IL-6r, IL-16 and I1L-1847.

Sub network 4 shows analytes that involves in various pathways such as Cytokine — cytokine
receptor interaction, various cancer pathways (Pancreas and Bladder cancer), Hemostasis and
mTOR Signalling pathway. Analytes that participates in cancer related pathways are involved in
two key processes, while Epidermal Growth Factor (EGF) involves in evading apoptosis,
Vascular Endothelial growth factor (VEGF) and Matrix metallopeptidase 1 (MMP1) involves in
VEGEF Signaling which eventually helps in Angiogenesis. Moreover, mTOR signaling pathway
plays a central role in various neuronal functions and maintains hemostasis, it also regulates

different forms of learning and memory.
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Another promising feature in the integrated network is the coherence between the sub networks
achieved through bridge analytes. Sub network 1 connects to sub network 4 through Insulin-like
growth factor binding protein 2 (IGFB2). Insulin signaling plays a role in learning and memory
and deregulated insulin signaling occurred in the brains of patients with AD[46]. Hence Type 2
diabetes has been identified as a major risk factor for AD, and the onset of diabetes worsens
cognitive disorders even in the absence of amyloid plaques. Cognitive decline associated with
neuronal cell death (apoptosis) has been targeted in AD treatment using anti diabetic medicine.
IGFB2 involves in insulin signaling pathway which controls vital brain functions such as cell
survival, energy metabolism and neuroregeneration [49]. Similarly, sub network 2 connects with
GPCR Signaling sub network 4 through AAT and with Sub network 2 through analytes that in

complement system activation.

We also confirmed the results from sub network by Gene Ontology (GO) analysis. Results from
GO performed with DAVID and pathway analysis with Kyoto Encyclopedia of Genes and
Genomes (http://www.genome.jp/kegg/) and Reactome
(http://www.reactome.org/ReactomeGWT/entrypoint.html) also confirmed the involvement of
the selected analytes in Chemokine Signalling pathway, Hematopoetic Cell Lineage,

Complement Activation pathway and Focal Adhesion.
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4. INTEGRATIVE NETWORK ANALYSIS OF MICRO RNA AND MRNA
4.1 Background

4.1.1 MDSC and T-cell suppression

Myeloid derived suppressor cells (MDSC) constitute a unique component of immune system that
expand during cancer, inflammation, and infection, and capable of suppressing T-cell responses.
In addition to T-cell suppression, MDSCs have also been linked to innate immune response
regulation through cytokines. MDSCs were described more than 20 years ago in patients with
cancer and found to play significant roles in tumor angiogenesis and metastasis [50]. They are
heterogeneous group of cells that consists of myeloid progenitor cells and immature myeloid
cells (IMCs). In normal conditions, these IMCs matures in to granulocytes, macrophages and
dendritic cells, while in pathological conditions such as cancer, auto immune disorders, sepsis
and in some infectious disease, a partial block in the differentiation of IMCs in to mature
myeloid cells results in the expansion of this population. It results in upregulation of immune
suppressive Arginase 1 (ARG1), inducible Nitric oxide synthase (iNOS), Nitric oxide (NO) and

Reactive oxygen Species.

In Mouse, MDSCs are characterized by the co-expression of myeloid cell differentiation antigen
(GR-1) and CD11b (a integrin). Subtypes of MDSC have been defined in the mouse based on the
antibody specificity of GR1’s two epitopes LY6G and LY6C. Granulocytic MDSCs have a
CD11b+Grl+ phenotype, whereas MDSCs with monocytic morphology are CD11b+Grl1-. These
two subsets have different functions in cancer, infectious and auto immune diseases and employs
different mechanism to suppress T cell function. Mouse bone marrow has 20-30% of these cells,

while spleen has 2-3% and absent completely in Lymph nodes. Previous studies had observed
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significant functional activity in freshly isolated cells at the site of infection (functional MDSC)

while it is completely absent in peripheral cells (MDSC precursors) [51].
4.1.2 MicroRNA and Immune system

Micro RNAs are small, single stranded non-coding RNAs that are involved in the regulation of
protein expression in many biological systems. They are about 22 nucleotides long and they
predominantly bind to the 3’ untranslated region (3’'UTR) of messenger RNAs (mRNAs) to
inhibit translation or to induce cleavage. So far more than 700 miRNAs have been identified in
human genome and each have the potential to suppress the expression of thousands of genes.
More than 100 different miRNAs are expressed by cells of the immune system; they have the
potential to broadly influence the molecular pathways that control the development and function
of innate and adaptive immune responses. Depending on the nature of the target, miRNAs have

tumor suppressive or tumor promoting effect on various cancers of immunological origin [52].

In this study, we identified and validated crucial miRNA-gene associations that can be used to
study the difference in the molecular mechanism between functional MDSCs and MDSC
precursor. We have compiled all the existing Micro RNA resources and used a knowledge
guided approach to build an integrated miRNA-gene network to identify the significant genes.

miRNAs and pathways through which functional MDSCs differ from their precursors.

4.2 Approach

4.2.1 Differential expression analysis

We isolated both the granulocytic (G™#") and monocytic (G ') subtypes of MDSC cells from
spleen and peritoneal cavity (PC) that has a peritoneal tumor. Spleen cells are G"€" or G .

Peritoneal cavity cells are G, G™ and G"", Totally, there are six contrast groups: PC GM¢" vs.
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Sp G PC G™ vs. Sp G, PC G'V vs. Sp G"&", PC G"#" vs. Sp G"°¥, PC G™ vs. Sp GV, PC
G"Y vs. Sp G'. We have mRNA arrays (GeneChip® Mouse GENE 1.0 ST) and micro-RNA

arrays (GeneChip® miRNA array) from the same RNA samples.

Data preprocessing, including quality control and normalization, will be implemented by using
standard packages in Bioconductor. Filters based on fold changes, p-values, and detection
numbers will be applied to obtain differential miRNAs for each contrast group. Criteria of

miRNA array filters will be determined based on existing literatures [53].

For the same six contrast groups, data preprocessing, including quality control and
normalization, will also be implemented by using standard packages in Bioconductor. Filters
based on fold changes, p-values, and presence/absence calls of mRNA probe IDs will be applied
to obtain differential genes for each contrast group. In many cases, crucial genes show relatively
slight changes, and many genes selected are also poorly annotated [2]. So criteria of mRNA

array filters will be determined according to how many genes are finally obtained.
4.2.2 Data integration for miRNA-gene associations
Table 7 shows some of the primary databases that provide a comprehensive view of microRNAs.

Table 7: Primary microRNA databases and feature comparisons

miRBase HMDD miRecords | TarBase | miR2Disease | miRGator miRo

Predicted
Target Gene Only . Only
an
Information Predicted NA Validated Yes Yes Yes
Validated
genes genes
genes
Disease NA Yes NA NA Yes Yes NA
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Association
Gene
NA NA NA NA NA NA Yes
Ontology
Download Yes Yes Yes Yes Yes Yes Yes
548
450 miRNA 1300
Statistics for 1048 miRNAs, ) 349 miRNA, | Expression
genes, 258 validated ; NA
Human records ) 1579 target 134 Disease profile
diseases, targets
genes
Tissue & Largest Second
Central HMDD with ]
Gene wise source of | largest of i Expression .
Comments Repository Additional GO info
disease validated validated Profile
of miRNA features
association target targets

There are around 12 prediction tools (Table 8 shows main 8 tools of them) are available which
can predict the miRNA-targeted genes. These algorithms uses various structural features such as
hairpin length, hairpin loop length, thermodynamic stability of miRNA-mRNA duplex, base
pairing, and distance of microRNA from the loop of its hairpin precursor; and sequence features
such as nucleotide content and location, 3'UTR sequence complementarity, and nucleotide
repeats [54]. However, for the most part, all these target prediction methods generate a large
number of false positives. Several algorithms addressed this problem by considering

conservation of sequences across the species which eliminates poorly conserved sites [55].
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Table 8: Tools for microRNA-targeted gene prediction and feature comparisons

Database
Diana
miRDB TargetScan picTar microRNA | RNAhybrid PITA
MicroT
Features
Search miRNA,
miRNA
Features Gene miRNA miRNA miRNA, miRNA
Gene Name | and Gene
Name and name sequence(s) | Gene Name | sequence
Name
batch
Download Yes Yes No Yes Yes Yes Yes
Statistics 1100
17821
2295 Human NA
Human NA NA NA
microRNA miRNA
Genes
Update ) Release 5.2, | March 26, August )
April 2009 2006 April 2009 NA
June 2011 2007 2010
Comments Mouse
SVM )
Sequence based, Official Has
based o ) Seq.
similarity looks for source of miRPathand | =
target ) ) Free energy ) similiarit
o and conservati | expression miRExtra
prediction ) ) y
conservation on in profile tools
method.
Human

A recent review paper [56] shows

that three computational algorithms - TargetScan,

DianaMicroT and miRanda/mirSVR can provide miRNA target gene prediction with higher

precision. TargetScan 5.2 [57] is one of the most widely used microRNA prediction algorithm.

It predicts the microRNA binding sites through the identification of 7 nucleotide seed matches on

the 3'UTR of mRNAs and the assessment of their evolutionary conservation across several

species. It uses RNA Fold to calculate thermodynamic free energy of the binding, and scores

both the single and multiple binding sites. DianaMicroT [58] is an algorithm based on several

parameters calculated individually for each microRNA and it combines conserved and non-

conserved microRNA recognition elements (MRE) in to a final prediction score. The total
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predicted score of a miRNA-gene association is the weighted sum of conserved and unconserved
MRE:s of a gene. Both DianaMicroT and TargetScan estimated to achieve a precision level of
66% and 60% respectively in a recent study, outperforming most other prediction algorithms.
Algorithm miRanda [59] uses a position weighted matrix to emphasize binding on microRNA
5'end segment, uses RNA Fold for free energy calculation and relies on evolutionary
conservation of binding sites. Algorithm mirSVR [55] is a most recent machine learning method
that ranks microRNA target sites by a down regulation score. The algorithm trains a regression
model using the sequence and contextual features extracted from the target sites predicted by
miRanda, thereby combining the efficiency of two methods. Algorithm miRanda/mirSVR is
competitive with other target prediction methods and in addition it has a unique ability to predict
the extent of downregulation by specific miRNA at mRNA or protein level. Importantly, this
method identifies a significant number of experimentally determined non-canonical and non-
conserved sites. All these three algorithms will be used to predict the genes targeted by specific

miRNAs in our project.

4.2.3 Correlation analysis between miRNA and mRNA arrays

Both Pearson’s correlation and Spearman’s correlation (non-parametric) will be calculated to
correlate the expressions of all miRNAs with all mRNAs through all samples. According to the
distributions of miRNA arrays and mRNA arrays, filters based on correlation coefficients and p-
values will be applied to obtain statistically significant miRNA-gene correlations. Then the
filters based on fold changes, p-values, and detection numbers of miRNAs will also be applied to
obtain statistically significant miRNA-gene correlations for differential miRNAs. These

differential miRNA-gene correlations will be used as a supplementary data for miRNA-gene
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associations retrieved from databases and computational prediction after a functional enrichment

validation.

4.2.4 Validation for miRNA-gene associations at pathway-level

Since miRNA-gene association data retrieved from databases is far from complete, while
miRNA-gene association data predicted by computational algorithms is very noisy (high FPR -
false positive rate), it is not easy to validate miRNA-gene correlations from miRNA and mRNA
array correlation analysis at molecule-level. Hence, functional enrichment for miRNA target
genes will be processed for miRNA-gene association validation first. For functional enrichment,

both pathway analysis and Gene Ontology (GO) analysis will be applied.

As shown in Table 9, there are six online tools which can be used for miRNA target gene
functional enrichment and pathway analysis. Of these tools, Diana miRPath uses only list of
miRNAs to predict target genes and enrich these predicted genes in KEGG pathways, while
other tools requires array datasets. We will mainly use miRPath for microRNA-targeted gene

functional enrichment analysis at pathway-level.

Table 9: Tools for miRNA target gene functional enrichment and annotation

Database

miRPath miTALOS Magia miRGen mirAct
Features
From miRanda, miRanda,
miRanda,
Target Gene | Uses DianaMicroT Uses picTar, picTar,
PITA &
Information to predict gene TargetScan TargetScan & TargetScan &
TargetScan
DianaMicroT PITA
Functional KEGG KEGG, tissue GO, Network | Maps to UCSC Clustering
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Annotation specific enrichment genome

expression browser
Expression Based on user User Input
No Yes No
Profiling input data
Tissue specific | Analyze user Positional Using
Both single and
Comments enrichment input exp. relationships & expression
batch processing
method Data Cluster info data

First, miRNAs will be input into miRPath (and other tools will be also tested) for target gene
prediction and functional enrichment, which will generate a list of pathways ranked by -log(p-
value) [60]. Second, experimentally-validated miRNA target genes will be enriched in a
comprehensive human pathway database (HPD) [61], which has integrated heterogeneous
pathways from five data sources - NCI-Nature curated Pathway Interaction Database (PID),
Reactome, BioCarta, KEGG and ProteinLounge. An online pathway analysis tool based on HPD
will also generate a list of pathways ranked by similarity scores [62]. Third, two ranked pathway
lists will be compared to assess whether predicted miRNA target genes have same enriched
functions with experimentally-validated miRNA target genes at pathway-level. Finally,
differential miRNA-gene correlations will also be validated by the same way of pathway
enrichment analysis, but using both experimentally-validated and computationally-predicted

miRNA target genes.

4.2.5 Network of differential miRNAs and genes
An integrated network will be constructed to connect miRNAs and genes differentially-
expressed in miRNA arrays and mRNA arrays respectively. First, differential miRNAs will be

connected to target genes from the above integrated miRNA database and also computational

predictions. Validated miRNA-gene correlations will be also added into connections. Second,
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differential genes will be connected to the genes targeted by differential miRNAs by using high-
quality interactions from the human annotated and predicted protein interaction (HAPPI)
database [63]. One or two intermediate proteins will be used to bridge the connections. Third, we
will integrate miRNA-gene associations and gene/protein-gene/protein interactions together, to
build the network connecting differential miRNAs and differential genes. Finally, the
comprehensive network will not only provide a systems-level view for the study on functional
activities of MDSCs, but will also serve as a molecular interaction network model to identify
significant miRNAs and genes, which could be used as biomarkers to distinguish functional

MDSCs from MDSC precursors.

4.3 Results

Of the six contrast groups in this preliminary study on mRNA arrays for MDSC, we focused on a
result of 2-way ANOVA analysis on PC Glow vs. SP Glow contrast in mRNA arrays. From a
recent review [50], we selected 11 MDSC-related genes - ARGI1, NOS2, ILIRL2, VDR,
SLC7A2, TLR4, FOLR2, HIF1A, S100A9, CEBPB, and S100A8, which are all differentially

expressed in PC Glow vs. SP Glow contrast from mRNA arrays (each group has 4 samples).

4.3.1 Experimentally validated miRNA-gene association network

We focused on a result of 2-way ANOVA analysis on PC Glow vs. SP Glow contrast in miRNA
arrays (each group has 4 samples). From differential analysis, 153 miRNAs, of which 13 are
duplicates (Same miRNA from different species), have been selected by using the filter (p-value
<=0.05 and |Fold Change| >= 1.5). We combined 153 experimentally-validated miRNA-gene
associations from two databases (miRecords and Tarbase) and 42 protein-protein interactions
with 4-5 star quality retrieved from HAPPI to build a differential miRNA targeted gene network,

shown in Figure 5. The network contains 35 differential miRNAs having target genes (validated
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by experiments from two databases — miRecords and Tarbase) out of totally 140 differential
miRNAs. Although some interesting differential genes are found, such as VEGFA and MYC, the
network that built from only experimentally-validated data shows limited information. In the
network, many MDSC-related genes are not involved, which implies that high-quality miRNA-

gene association data is quite incomplete.
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Figure 7: Differential miRNA target gene network from experimentally-validated
databases. The network contains 35 differential miRNAs having targeted genes (validated by
experiments from two databases — miRecords and Tarbase) out of totally 140 differential
miRNAs (p-value <=0.05 and |Fold Change| >= 1.5) from the 2-way ANOVA analysis on PC
Glow vs. SP Glow contrast in miRNA array, and 107 targeted genes with expression values (not
filtered) in mRNA array out of 140 targeted genes. Fold changes on PC Glow vs. SP Glow
contrast in mRNA array for these107 targeted genes are also represented as node color, by using
the same color map as for miRNA. Node color here represents Log2-transferd fold change.
Genes without expression values are labeled with gray font. Vee node shape represents miRNA,

while ellipse node represents gene/protein.
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4.3.2 Computationally predicted miRNA-gene association network

We connected the 11 significant genes and the 5 differential miRNAs to the network (shown in

Figure 1), by using computationally-predicted miRNA-gene associations and 5-star interactions

from HAPPI. If there is no direct interaction, one intermediate protein will be used to bridge the

connections.

Another network

integrated with computationally-predicted miRNA-gene

associations is shown in Figure 8, from which, we can see that the integrated network contains

more interesting information than the one in Figure 7.
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Differential miRNA targeted gene and significant gene network. The network

contains 15 differential miRNAs and 97 genes. Fold changes for miRNAs and genes on PC Glow

vs. SP Glow contrast in miRNA and mRNA arrays are all represented as node color. Node color

here represents Log2-transferd fold change. Vee node shape represents miRNA, while ellipse

node represents gene/protein.
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4.3.3 Validation of computationally predicted association

Based on the three computational miRNA-gene association prediction algorithms - TargetScan,
DianaMicroT and miRanda/mirSVR, 153 miRNAs (after removing duplicates, 115 unique
miRNAs) have potentials to target these 11 significant MDSC-related genes. By using the filter
(p-value <=0.05, |[Fold Change| >= 1.5, and Max detection number > 0), 5 differential miRNAs

(4 of which are in the network shown in Figure 1) are selected:

e mmu-miR-106a — HIF1A, NOS2

e mmu-miR-125a — VDR, SLC7A2

e mmu-miR-19b — HIF1A
e mmu-miR-204 — S100A9
e mmu-miR-351 — SLC7A2, VDR

By using miRPath, top-10 KEGG pathways associated with these 5 miRNAs are listed below:

(a) Axon guidance (b) MAPK signaling pathway (c) Long-term potentiation (d) Insulin
signaling pathway (¢) mTOR signaling pathway (f) Renal cell carcinoma (g) Melanogenesis

(h) Glioma (i) Chronic myeloid leukemia (j) Focal adhesion

Most of the pathways (highlighted with fold font) are overlapped with the pathways enriched in
HPD from the 5 differential miRNA-targeted genes, which implies that computationally-

predicted miRNA-gene associations can be trusted at pathway-level.

We used an online gene set analysis toolkit Web Gestalt [64] for Gene Ontology (GO) analysis.
Significant genes overrepresentation was found by hypergeometric statistical. Genes were
enriched in the following three sub categories which are strongly associated with signal

transduction pathways in immune response.
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e Biological Process: Regulation of Lymphocyte Activation
e Molecular Function: Cytokine Receptor Activity
e Cellular Location: External Side of Plasma membrane

4.3.4 MDSC specific Molecular Interaction Network

We expanded (similar to enrichment process) the curated genes in HAPPI to construct a MDSC-
specific molecular interaction network (shown in Figure 9). Many expanded genes are also
highly differentially-expressed, such as ARG2, SMAD3, MYB, EGLN3, TAP1, STATI, and
MS4A1, CD40 etc., which implies that the network expansion/enrichment strategy is extremely

useful to identify significant genes, even if those genes are neglected at first beginning curation.
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Figure 9: A MDSC-specific molecular interaction network, constructed based on 11 MDSC-
related genes - ARG1, NOS2, IL1RL2, VDR, SLC7A2, TLR4, FOLR2, HIF1A, S100A9, CEBPB,
and S100A8. Other genes are expanded from HAPPI. There are totally 112 genes and 134

interactions in the network.
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4.3.5 MDSC specific Pathway Association Network

We also enriched the genes/proteins from the MDSC-specific molecular interaction in HPD to
construct a MDSC-specific pathway association network (shown in Figure 10). The pathway

results further confirmed the role of MDSC in T Cell Suppressor function through various

signaling pathways.
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Figure 10: A MDSC-specific pathway association network, enriched from the MDSC-specific
molecular interaction network shown in Figure 1. All the pathways are enriched from HPD. The

number of overlapped genes between two pathways is also labeled on each edge.

We further combined the interrelated ontological process and pathways together through
GARNET [65] (Gene Annotation Relationship NEtwork Tools), an integrative platform for gene
set analysis. The result is shown in Figure 11, which provides a systems-level view for the study

on functional activities of MDSCs.
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Figure 11: Significantly enriched Ontology and Pathway network
4.4 Discussion

We used integrated expression profiling, protein interaction information and existing miRNA
related databases to identify significant miRNA’s that regulates T-cell suppression through
Monocytic subset of MDSC. We also verified our analysis on pathway level and identified the
role of MAPK signaling pathway, mTOR signaling pathway and Insulin signaling pathways
through which T-cell suppression happens in Tumor microenvironment. Rather than pure data
driven approach, we employed knowledge guided approach to fill the gaps in the existing
information about miRNA. We performed analysis both from mRNA and miRNA and finally
integrated them to identify potential miRNAs and pathways. As our analysis focused more on the

monocytic subset, we would be expanding our studies to granulocytic subset in the future.

5. LESSON’S LEARNED AND FUTURE DIRECTIONS

We have used various system biology techniques to identify sub network signatures from
genomics, proteomics and integrated MicroRNA data set. We used existing gene signature and

pathway databases to identify significant molecular expression patterns from high throughput
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data. Currently, gene expression signature analysis and pathway analysis remains two separate
processes, since in many cases, extensive data preprocessing, comprehensive gene selection
statistics, and downstream pathway/network analysis cannot be replaced by GSEA. Having a
single repository for comprehensive disease associated gene and network/pathway enrichment
analysis will be of great use to the scientific community. As a future study, we decided to build
an integrated online database - Pathway and Gene Enrichment Database (PAGED), to enable
comprehensive search for phenotype-associated gene sets, network modules, and pathways, by
integrating gene set based molecular patterns at three dimensions — DNA/genome,
RNA/transcriptome, and Protein/proteome. First, disease-gene association data are curated and
integrated from Online Mendelian Inheritance in Man (OMIM) database and Genetic
Association Database (GAD). Second, functionally-grouped gene sets are evaluated and
integrated by using gene signatures in Molecular Signatures Database (MSigDB) and Gene
Signatures Database (GeneSigDB). Third, signaling pathways/protein interaction networks and
transcription factors/gene regulatory networks are retrieved from Human Pathway Database
(HPD) and Human Annotated and Predicted Protein Interaction (HAPPI) database. This
integrated database will be of great use to the system biology studies on high throughput data
sets.
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