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Abstract

Docosahexaenoic acid (DHA, 22:6) is an n-3 polyunsaturated fatty acid (n-3 PUFA) that 

influences immunological, metabolic, and neurological responses through complex mechanisms. 

One structural mechanism by which DHA exerts its biological effects is through its ability to 

modify the physical organization of plasma membrane signaling assemblies known as 

sphingomyelin/cholesterol (SM/chol)-enriched lipid rafts. Here we studied how DHA acyl chains 

esterified in the sn-2 position of phosphatidylcholine (PC) regulate the formation of raft and non-
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raft domains in mixtures with SM and chol on differing size scales. Coarse grained molecular 

dynamics simulations showed that 1-palmitoyl-2-docosahexaenoylphosphatylcholine (PDPC) 

enhances segregation into domains more than the monounsaturated control, 1-palmitoyl-2-oleoyl-

phosphatidylcholine (POPC). Solid state 2H NMR and neutron scattering experiments provided 

direct experimental evidence that substituting PDPC for POPC increases the size of raft-like 

domains on the nanoscale. Confocal imaging of giant unilamellar vesicles with a non-raft 

fluorescent probe revealed that POPC had no influence on phase separation in the presence of SM/

chol whereas PDPC drove strong domain segregation. Finally, monolayer compression studies 

suggest that PDPC increases lipid-lipid immiscibility in the presence of SM/chol compared to 

POPC. Collectively, the data across model systems provide compelling support for the emerging 

model that DHA acyl chains of PC lipids tune the size of lipid rafts, which has potential 

implications for signaling networks that rely on the compartmentalization of proteins within and 

outside of rafts.
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1. INTRODUCTION

Docosahexaenoic acid1 (DHA) is an n-3 polyunsaturated fatty acid (n-3 PUFA) that is 

generally consumed in low amounts in the western diet [1]. Pre-clinical and clinical studies 

suggest that dietary DHA supplementation has the potential to improve cardiovascular and 

inflammatory endpoints for a range of metabolic diseases [2–9]. Furthermore, DHA plays a 

critical role in neuronal development, which has implications for a range of 

neurodegenerative disorders [10]. Therefore, the clinical development of DHA for differing 

diseases requires a fundamental understanding of its underlying mechanism of action.

DHA influences cellular function through overlapping and complex mechanisms. These 

include DHA serving as a substrate for enzymes such as lipoxygenases to generate potent 

downstream metabolites, targeting of transcription factors to modify gene expression, and 

controlling cellular signaling [11] (and references within). Many studies demonstrate that 

DHA acyl chains, upon esterification into plasma membrane phospholipids, reorganize 

plasma membrane phospholipid-protein spatial distribution that is critical for downstream 

signaling networks and gene activation across cell types [12;13]. In particular, DHA acyl 

chains remodel the architecture of lipid raft domains, which are operationally defined as 

sphingolipid/cholesterol-enriched nanoscale assemblies that can coalesce into larger 

signaling platforms [13–17].

Studies of protein-free model membranes of well-defined composition have established that 

DHA strongly influences the molecular composition and formation of lipid raft-like domains 

1Abbreviations: docosahexaenoic acid (DHA), oleic acid (OA), omega-3 polyunsaturated fatty acid(s) (n-3 PUFA), 1-palmitoyl-2-
docosahexaenoyl-phosphatidylcholine (PDPC), 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), phosphatidylcholine (PC), 
sphingomyelin (SM)
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enriched in sphingomyelin (SM) and cholesterol (chol) [12;18]. We previously reported that 

DHA-containing phosphatidylethanolamines (PE), due to the poor affinity of DHA for chol, 

laterally separated from lipid raft molecules in monolayer and bilayer models [19–21]. 

Strikingly, in subsequent NMR work we found that a DHA-containing phosphatidylcholine 

(PC) directly infiltrated raft-like domains [22]. This finding was in agreement with data from 

in vitro and mouse models showing that DHA incorporated directly into lipid raft-like 

domains [17;23–27]. However, what DHA does to raft organization is unclear – whether 

rafts become bigger or smaller remains controversial [23;28]. To address this issue, our 

focus here is on how DHA esterified to a phospholipid affects the size of rafts.

In this study, we investigated the influence that a heteroacid PC containing palmitic acid in 

the sn-1 position and DHA in the sn-2 position has on domains formed in mixtures with the 

lipid raft molecules SM and chol (Figure 1). By a combination of coarse grained molecular 

dynamics (CG MD) simulations, solid state 2H NMR, small angle neutron scattering 

(SANS) and imaging of giant unilamellar vesicles (GUVs), we observed the impact of 1-

palmitoyl-2-docosahexaenoyl-phosphatidylcholine (16:0–22:6PC, PDPC) vs. 1-palmitoyl-2-

oleoyl-phosphatidylcholine (16:0–18:1PC, POPC), as a monounsaturated control, on the size 

of raft-like and non-raft domains on the nanometer and micron scale. Complementary 

studies with monolayers were conducted to calculate the excess area per molecule and Gibbs 

free energy of lipid mixing.

2. MATERIALS AND METHODS

2.1 MD simulations

The CG MD simulations of membrane bilayers were performed by the GROMACS program 

v4.6.5 [29] with the Martini CG force field (version 2.1) [30]. Followed by the standard 

setup protocols, the initial membrane-water system was constructed using the Insane python 

tool [31] with an initial size of 17.5 nm × 17.5 nm in the xy dimension (plane of the 

membrane) and 8 nm total length in the z direction (normal to the membrane). The 

simulated bilayers were composed of 352 unsaturated lipids (POPC or PDPC), 352 SM and 

352 chol molecules (1:1:1 mol). There were 8544 CG waters and 94 Na+ and Cl− ions in the 

POPC/SM/Chol system, and 8254 CG waters and 91 Na+ and Cl− ions in the PDPC/SM/

Chol system. The topology files used in the simulations were obtained from http://

cgmartini.nl.

The initial systems were energy minimized and equilibrated for 10 ns with a 0.02 ps time 

step. After that, 30 μs production runs with 0.03 ps time steps were performed. All 

simulations were run in the NPT (isobaric-isothermal) ensemble with periodic boundary 

conditions. The van der Waals (vdW) interactions were cut off at 1.2 nm, the Lennard-Jones 

interactions were shifted to zero in the range of 0.9–1.2 nm, the Columbic interactions were 

smoothly shifted to zero from 0 to 1.2 nm and the relative dielectric constant was 15 as the 

default value used in the force field [30]. V-rescale heat baths [32] were coupled to both the 

bilayer and the solution separately with a temperature of 303 K and a coupling constant of 1 

ps. The semi-isotropic Parrinello-Rahman pressure coupling scheme [33] was applied to the 

system to maintain the pressure at 1 bar with a coupling constant of 12 ps and a 

compressibility of 3×10−4 bar−1. A 10 ns time step was used to update the neighbor list of 
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non-bonded interactions, and the corresponding cutoff was 1.4 nm. The simulations were 

run on the Karst high-throughput computing cluster Karst at Indiana University. Trajectory 

analysis and visualizations were done in VMD [34].

2.2 Solid state 2H NMR

[2H31]-N-palmitoyl-sphingomyelin (PSM-d31) was synthesized as previously described [35], 

while the sources for PDPC and POPC and for chol were Avanti Polar Lipids (Alabaster, 

AL) and Sigma Chemical (St. Louis, MO), respectively. Multilamellar dispersions of 50 wt

% PDPC/PSM-d31/chol and POPC/PSM-d31/chol (1:1:1 mol) were prepared in 50 mM Tris 

(pH 7.5) buffer implementing precautions to minimize oxidation as described in earlier 

publications [22].

Solid state 2H NMR experiments were performed on a homebuilt NMR spectrometer 

operating at 46.0 MHz with a 7.05 T superconducting magnet (Oxford Instruments, Osney 

Mead, UK) [22]. A phase-alternated quadrupolar echo sequence (90°x-τ-90°y-aquire-delay) 

was used to eliminate spectral distortion due to the receiver recovery time [22]. Parameters 

were 90° pulse width = 3.7 μs; separation between pulses τ = 50 μs; delay between pulse 

sequences = 1.0 s; sweep width = ±100 kHz; and number of scans = 8,192. The 2H NMR 

spectra acquired are a superposition of powder patterns from all positions of isotopic 

labeling in the amide-linked chain of PSM-d31 [36]. Each powder pattern has a pair of most 

intense peaks split in frequency by Δvr that relates to an order parameter SCD for the C-2H 

bond in a chain segment according to a standard expression [37].

2.3 Small-angle neutron scattering

Large unilamellar vesicle (LUV) samples were prepared as previously described [38], with 

most steps performed in a glove box purged with argon to < 0.1% O2 (OXY-sen oxygen 

monitor, Alpha Omega Instruments). POPC and PDPC were obtained from Avanti Polar 

Lipids and chol from Nu Check Prep, Inc. (Elysian, MN). Briefly, lipid mixtures were 

prepared by transferring volumes of lipids and chol stocks in chloroform to a glass vial with 

a glass syringe. Organic solvent was removed with a nitrogen stream, followed by vacuum 

drying for > 3 h. Dry lipid films were hydrated to a concentration of 15 mg/ml, with a 

29.0 % (v/v) D2O/H2O mixture preheated to 40 °C, and then vortexed to generate 

multilamellar vesicles (MLVs). The MLV suspension was incubated at 40 °C for 1 h, 

followed by 5 freeze/thaw cycles between −80 and 40 °C. LUVs were prepared using a 

miniextruder (Avanti Polar Lipids) assembled with a single 50 nm pore size polycarbonate 

filter, and heated to 40 °C. After extrusion, a 0.3 ml aliquot of the sample was loaded into a 

1 mm path-length quartz banjo cell (Hellma USA, Plainview, NY). A separate 0.2 ml sample 

aliquot was mixed with 0.4 mL D2O, and the resulting 78% D2O sample (~ 5 mg/ml lipid 

concentration) was loaded into a 2 mm path-length banjo cell.

Small-angle neutron scattering (SANS) experiments were conducted at Oak Ridge National 

Laboratory (ORNL) using the CG-3 BioSANS instrument of the High Flux Isotope Reactor 

(HFIR). Banjo cells containing the LUV suspensions were mounted in a temperature-

controlled cell holder with an accuracy of 1°C. Data were collected at a 14.5 m sample-to-

detector distance (SDD) using 6 Å wavelength neutrons (FWHM 15%), resulting in a total 
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usable scattering vector of 0.006 < q < 0.05 Å−1. Scattered neutrons were collected with a 

two-dimensional (1 × 1 m2) 3He position-sensitive detector (ORDELA, Inc., Oak Ridge, 

TN) with 192 × 192 pixels. The 2D data were reduced using the software package Mantid 

[39]. During reduction, data were corrected for detector pixel sensitivity, dark current, 

sample transmission, and background scattering from water. The one-dimensional scattering 

intensity I(q) [q = 4π sin(θ)/λ, where λ is the neutron wavelength and 2θ is the scattering 

angle relative to the incident beam] was obtained by radial averaging of the corrected 2D 

data.

Nanodomain sizes were determined by analysis of I(q) data using a coarse-grained Monte 

Carlo method described elsewhere [40]. Additional details are found in the Supporting 

Information.

2.4 Confocal imaging and analyses of giant unilamellar vesicles

GUVs were constructed by electroformation as previously described [41]. Briefly, 

PDPC/SM/chol (1:1:1) or POPC/SM/chol (1:1:1) were co-dissolved in the presence of 0.1 

mol% of the non-raft probe Texas-Red DHPE. 5.0 μg of total lipid were spread onto the 

conductive side of an indium tin oxide coated glass slide. The lipid-coated slide was 

subjected to overnight vacuum pumping in the dark to remove excess solvent. GUV 

electroformation was performed at 55 °C, in the dark, using a 250 mM sucrose solution. 

Imaging was conducted with an Olympus FV1000 Confocal Microscope using a 60X 

1.35NA oil immersion objective (Olympus, Waltham, MA). The Texas-Red DHPE probe 

was excited with an Argon laser as previously described. All acquired images were of GUV 

equatorial cross-sections. Analysis of lipid domains was conducted with NIH ImageJ 

software [41;42].

2.5 Langmuir monolayer compression studies

Pressure-area isotherms of PDPC/SM/chol (1:1:1) or POPC/SM/chol (1:1:1) were generated 

at 23°C [41;42]. Isotherms were acquired by spotting lipids on a degassed subphase of 10 

mM sodium phosphate buffer (pH 7.4). Excess chloroform was allowed to evaporate for 10 

min prior to monolayer compression. The surface pressure-area isotherms were used to 

calculate the surface elasticity modulus ( Cs
−1):

Cs
−1 = ( − A)(dπ /dA)π (Eq. 1)

A represents the mean molecular area of the lipid mixture of interest at the indicated surface 

pressure (π) [43]. The ideal mean molecular area of multi-component mixed monolayers at 

a constant surface pressure (π) was calculated from the isotherms with:

Aideal = X1(A1)
π

+ X2(A2)
π

+ …Xn(An)
π

(Eq. 2)
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Xn represents the mol fraction of each individual component and An represents the mean 

molecular area of each component [43]. The excess area/molecule (Aex) was calculated at a 

given surface pressure (π) by:

Aex = (A12…n)
π

− (X1A1 + X2A2 + …XnAn)
π

. (Eq. 3)

Here, (A12…n) represents the mean molecular area of the mixed monolayer of interest at a 

given surface pressure (π) [44–46]. A negative excess area/molecule indicates attractive 

forces and a positive excess area/molecule indicates repulsive forces [44]. The Gibbs free 

energy of mixing (ΔGmix) was calculated by the following relation to quantify lipid-lipid 

miscibility:

ΔGmix = ΔGex + ΔGideal (Eq. 4)

ΔGex represents the excess Gibbs free energy of mixing and ΔGideal is the ideal Gibbs free 

energy of mixing. ΔGex was calculated from the pressure-area isotherms according to the 

following expression:

ΔGex = ∫
0

π
[A12…n − (X1A1 + X2A2 + XnAn)]dπ (Eq. 5)

An and Xn are the mean molecular area and mol fraction of each component, respectively, at 

a given surface pressure (π) [44]. ΔGideal was calculated from:

ΔGideal = RT(X1lnX1 + X2lnX2 + XnlnXn) (Eq. 6)

R represents the ideal gas constant, and T represents the temperature in Kelvin [44]. All lipid 

mixtures were acquired multiple times to ensure reproducibility.

2.6 Statistical analyses

Statistical analyses for imaging and lipid-lipid mixing studies were conducted as previously 

described. We first ensured data sets displayed parametric distributions followed by two-

tailed Student’s t test. For the NMR spectroscopy studies, a reproducibility of ±1–2% 

applies to the first moment that characterizes the spectral shape (29) obtained from multiple 

acquisitions in single 2H NMR experiment. P values <0.05 were considered significant.
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3. RESULTS

3.1 CG MD simulations reveal PDPC enhances segregation into domains in raft-forming 
mixtures

We performed CG MD simulations comparing the evolution in lateral distribution of lipids 

in POPC/PSM/chol and PDPC/SM/chol bilayers (1:1:1 mol) at 30 °C. Top-view snapshots 

of the simulated monolayers (POPC- and PDPC-containing in upper and lower left panels, 

respectively) at the beginning (left column) and end (right column) of a 30 μs production run 

are presented in Figure 2. Color-coded circles represent the lateral location of the lipids, 

while chol is hidden. By visual inspection, it is apparent that the PDPC-containing mixture 

becomes more heterogeneous over time than the POPC-containing mixture. The grouping 

together of like lipids at the end of simulation is greater in PDPC/SM/chol (PDPC with 

PDPC (blue) and SM with SM (red) - Fig.2, lower right panel) than in POPC/SM/chol 

(POPC with POPC (green) and SM with SM (red) - Fig.2, upper right panel).

A quantitative measure of lipid clustering was achieved by counting nearest neighbors, 

which we define as lipid molecules within 1 nm of each other. The results are formatted as 

bar graphs of the number of nearest neighbor lipid [POPC (green bar), PDPC (blue bar), SM 

(red bar) and chol (white bar)] molecules around each POPC or PDPC and SM molecule on 

average over the entire duration of the simulation (Figure 3, upper panel). This analysis 

confirms that PDPC molecules segregate away from SM and chol in the PDPC/SM/chol 

bilayer, a segregation that is not apparent in the data for POPC in the POPC/SM/chol bilayer. 

PDPC has more PDPC (4.16 ± 0.23) and less SM (2.74 ± 0.23) and chol (3.30 ± 0.14) 

molecules for nearest neighbors, while SM has more SM (4.55 ± 0.35) and chol (4.49 

± 0.19) and less PDPC (2.74 ± 0.28) for nearest neighbors (Fig. 3, right upper panel). POPC 

has the same number of POPC (3.48 ± 0.13), SM (3.47 ± 0.13) and chol (3.71 ± 0.09) 

molecules for nearest neighbors as, within uncertainty, SM has SM (3.48 ± 0.13), POPC 

(3.47 ± 0.13) and chol (3.75 ± 0.09) molecules for nearest neighbors (Fig. 3, left upper 

panel).

Order parameters Smol for lipid chains were calculated to further examine the lateral 

redistribution in location produced by PDPC vs. POPC in the bilayers with SM and chol. 

Values of Smol for the second bead, in practice describing a time and ensemble average of 

the angular fluctuations undergone by a vector connecting the first and third beads, in the 

CG MD representation of the sn-1 chain in POPC (green bar) or PDPC (blue bar) and of the 

sphingosine chain in SM (red bar), are compared in Figure 3 (lower panel). Smol illustrates 

the definitive role that the high disorder conferred on PDPC by DHA plays in driving SM 

into domains. The difference in order parameter for PDPC (Smol = 0.549 ± 0.013) relative to 

SM (Smol = 0.717 ± 0.017) in PDPC/SM/chol (Fig. 3, right lower panel) substantially 

exceeds that for POPC (Smol = 0.694 ± 0.012) (Fig. 3, left lower panel) relative to SM (Smol 

= 0.753 ± 0.012) in POPC/SM/chol.
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3.2 2H NMR spectroscopy shows PDPC increases the size of domains in raft-forming 
mixtures on the nanometer scale

Solid state 2H NMR spectra recorded for multilamellar dispersions of PDPC/PSM-d31/chol 

and POPC/PSM-d31/chol (1:1:1 mol) at 35 °C are plotted in Figure 4. Their shape is 

determined by the molecular organization of PSM-d31 in the mixed membranes. The 

contrast in shape illustrates that DHA increases domain size.

The 2H NMR spectrum for POPC/PSM-d31/chol (Fig. 4, bottom) has a shape that is 

characteristic of lipid bilayers in the liquid crystalline state [36]. It consists of a 

superposition of powder patterns from all segments along the perdeuterated palmitic chain of 

PSM-d31 in the mixture with POPC and chol. A plateau region of methylene groups with 

approximately constant order parameter (SCD ~ 0.38) in the upper portion is responsible for 

the sharp edges (±~24 kHz). Progressively more disordered methylene groups in the lower 

portion of the chain produce progressively narrower powder patterns, culminating in a pair 

of peaks (±~3 kHz) in the center of the spectrum due to the highly disordered terminal 

methyl group (SCD ~ 0.05). As thoroughly discussed in our recent study [47], we interpret 

the spectrum in terms of the presence of more ordered SM-rich and less ordered POPC-rich 

domains that are nanometer scale in size. The exchange of PSM-d31 between the domains, 

which is mediated by lateral diffusion, is fast because the domains are small (r < 45 nm) - 

the rate of exchange is faster than the difference in splitting of powder patterns for PSM-d31 

in each domain - and a time averaged spectrum results [48;49].

Two spectral components assigned to PSM-d31 in more ordered SM-rich (raft like) and 

disordered PC-rich (non-raft) domains are resolved in the 2H NMR spectrum for PDPC/

PSM-d31/chol (Fig. 4, top). Grey and red arrows indicate the edges of spectral components 

(±~27 and ±~16 kHz) assigned to the plateau region of order (SCD~ 0.42 and ~ 0.25) in the 

upper portion of the chain in PSM-d31 and to the peaks (±~3.2 and ±~1.0 kHz) assigned to 

terminal methyl group (SCD ~ 0.05 and ~ 0.02) of PSM-d31 in the respective domains. 

Separate components are observed because the domains are larger in the DHA-containing 

mixture. As a result, the rate of diffusion-mediated exchange of PSM-d31 in and out of them 

is too slow to produce time averaging [48;49]. The difference in the splitting (Δν) of the 

powder pattern for the spectral component assigned to each domain provides a lower limit to 

the lifetime (τ > (2πΔν)−1) for PSM-d31 in a domain from which, assuming a typical value 

reported for the coefficient of lateral diffusion (D~5 × 10−12m2/s) [50], a rough estimate of 

the corresponding domain size ( r < 4Dτ) can be calculated (Table 1). The values for the 

size obtained in this way from the differential in splitting between domains for the terminal 

methyl and plateau regions are 28 and 12 nm, respectively. These values in the same range 

as estimates made previously on the basis of the splitting of signals resolved in 2H NMR 

spectra for deuterium labeled analogs of PDPC and chol, as well as PSM-d31, in PDPC/SM/

chol mixtures (1:1:1 mol) [47]

3.3 Neutron scattering reveals a 2.5-fold increase in ordered domain size for PSM/Chol 
mixtures containing PDPC, compared to POPC

SANS is sensitive to lateral lipid inhomogeneities on nanometer length scales in mixtures of 

protiated and deuterated lipids - due to the large difference in coherent scattering lengths of 
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hydrogen and its stable isotope deuterium [51]. It is an approach that has previously been 

applied to monitor the size of domains in mixtures of POPC and 1,2-

dioleoylphosphatidylcholine (DOPC) with 1,2-distearoylphosphatidylcholine (DSPC) and 

cholesterol and of POPC or DOPC with SM and cholesterol [40;52]. Figure 5 shows SANS 

data for ~ 50 nm diameter vesicles composed of PSM-d31/POPC/chol (1:1:0.56 mol, blue 

symbols) and PSM-d31/PDPC/chol (1:1:0.56 mol, orange symbols). At 78% D2O, the 

scattering signal is dominated by the large contrast between the solvent and bilayer, and the 

SANS intensity can be adequately modeled with a conventional homogeneous bilayer form 

factor (solid lines) to recover the vesicle size distribution [53]. At 29% D2O, the solvent 

NSLD is approximately matched to the average bilayer NSLD, which dramatically 

attenuates the homogeneous component of the signal as evidenced by a nearly 100-fold 

reduction in intensity. Under these conditions, the NSLD contrast arises primarily from 

lateral segregation of the protiated low-melting lipid (i.e., POPC or PDPC) and chain-

deuterated PSM-d31 between the raft and non-raft domains, and the scattering form factor 

depends strongly on the size, shape and spatial configuration of domains [54]. The stronger 

scattering and lack of a pronounced low-q peak are qualitatively consistent with more 

extensive lipid segregation and larger domains for the PDPC-containing mixture.

To gain further insight, we used a previously-described Monte Carlo method [40] to model 

the lateral structure in terms of circular liquid ordered (lo) domains randomly arranged in a 

continuous liquid disordered (ld) matrix, where the sole adjustable parameter was the 

domain radius. Consistent with the qualitative interpretation of the scattering data, modeling 

indicated that replacing POPC with PDPC results in a ~ 2.5-fold increase in the average 

domain radius, from 9 nm for the POPC-containing sample to 24 nm for the PDPC-

containing sample (Supplemental Tables).

3.4 Imaging reveals PDPC, but not POPC, promotes phase separation in the presence of 
SM and chol

The next set of experiments tested the effect of PDPC on macroscopic phase separation. To 

directly image the formation of lipid domains on the scale of confocal microscopy, we 

constructed GUVs of POPC/SM/chol (1:1:1) (Fig. 6A) and PDPC/SM/chol (1:1:1) (Fig. 

6B). The non-raft probe Texas-Red DHPE was employed for these studies. Note that kinetic 

studies were not conducted with GUV formation.

GUVs containing POPC showed no evidence of macroscopic phase separation (Fig. 6A). 

The incorporation of PDPC into SM/chol produced strong phase separation between 

domains (Fig. 6B). This contrast in behavior is reflected in the average area occupied by the 

non-raft fluorophore (Fig. 6C). In the PDPC/SM/chol vesicles, the fluorophore is 

presumably excluded from the raft domains promoted by PDPC and occupies a smaller area 

than in POPC/SM/chol where, because phase separation is not exhibited, the fluorophore is 

found throughout the perimeter of GUV. It should be noted that the differences in domain 

areas occupied by the Texas-Red DHPE probe were not due to differences in the diameter of 

the POPC and PDPC containing GUVs (Fig. 6D).
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3.5 PDPC in the presence of SM/chol increases the excess area per molecule and lowers 
the Gibbs free energy of mixing relative to POPC/SM/chol

We performed experiments to explain how PDPC promoted the formation of lipid domains. 

Studies were specifically constructed to determine if PDPC influenced the excess area/

molecule and Gibbs free energy of mixing in a manner that was distinct from POPC in the 

presence of SM/chol. To address this, pressure-area isotherms were generated for 

POPC/SM/chol (1:1:1) and PDPC/SM/chol (1:1:1) monolayers. All analyses were 

conducted at the physiologically relevant surface pressure of 30 mN/m.

Sample pressure area isotherms are presented in Fig. 7A. The inverse elasticity modulus (Cs
−1) was significantly decreased (Fig. 7B) and the excess area per molecule was increased by 

~ 1.5 Å2 (Fig. 7C) in the presence of PDPC relative to POPC containing mixtures. The 

Gibbs free energy of mixing was significantly lowered with PDPC relative to POPC-

containing monolayers (Fig. 7D).

4. DISCUSSION

4.1. PDPC increases domain size

A major result from this study was that PDPC, compared to POPC, enhances the size of 

lipid rafts on the nanometer and micrometer size scales. The applied methods ranged from 

MD simulation to spectroscopies and imaging, and all directly and/or indirectly supported 

the notion that the DHA acyl chains of PC promote phase separation and enhance raft size. 

The rationale for using biomimetic membranes was to tightly control the lipid composition, 

which is difficult to do in cellular systems due to changes in lipid metabolism. We are able 

to present a unified picture of how substituting DHA (PDPC) for OA (POPC) affects the size 

of raft-like domains in mixtures with the same raft forming lipid molecules - SM and 

cholesterol.

Two spectral components that we assigned to PSM-d31 in raft-like (more ordered) and non-

raft (less ordered) domains were resolved in the 2H NMR spectrum for PDPC/PSM-d31/chol 

(Fig. 4, top), while only a single component was resolved for PSM-d31 in the spectrum for 

POPC/PSM-d31/chol (Fig. 4, bottom). Our interpretation involves fast exchange between 

small domains in the POPC-containing mixture slowing when domains become larger in the 

PDPC-containing mixture on the nanoscale (Table 1). This interpretation is substantiated by 

the Monte Carlo modeling of SANS data for LUVs (Fig. 5) in terms of lo (raft-like) 

domains, surrounded by a continuous ld (non-raft) environment. Those data indicate an 

increase in domain size from 9 to 24 nm upon replacing POPC by PDPC in mixtures with 

PSM-d31 and chol (Table S1). On the microscale, confocal imaging of Texas-Red DHPE in 

GUVs detects the presence of lo domains in PDPC/SM/chol (Fig. 6B) that are not apparent 

in POPC/SM/chol (Fig. 6A).

The enhanced disorder associated with the multiple double bonds in DHA is the molecular 

origin for the formation of larger domains by PDPC. Our CG MD simulations illustrate this 

point. The order parameter Smol calculated for PDPC is relatively small and substantially 

reduced in comparison to SM, while the value of Smol for POPC is bigger and closer to that 

for SM (Fig. 3, lower panel). Visual inspection of snapshots (Fig. 2) and counts of nearest 
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neighbor molecules (Fig. 3, upper panel) show that PDPC molecules separate away from SM 

and chol molecules more than POPC molecules. The high disorder of DHA chains also 

deters close packing with the ordered saturated chains of SM and rigid steroid moiety of 

chol [55], which is reflected in the poor miscibility seen for monolayers of PDPC/SM/chol 

compared to POPC/SM/chol (Fig. 7). An alternative explanation may be that PDPC is not 

influencing large-scale lipid-lipid miscibility in the monolayer model but is driving changes 

in cholesterol-induced condensation. This will require further investigation in future studies.

The results presented here add to the growing consensus from earlier work that DHA 

increases the size and stability of raft domains. Following a study of the effects of DHA on 

molecular organization in model membranes and intact plasma membranes (PM) from 

mammalian cells, it was concluded that disordered DHA-containing lipids enhance the 

stability of ordered rafts by increasing the difference in order between raft and the non-raft 

environments [56]. The study included CG MD simulations on PDPC or POPC in a bilayer 

with 1,2-dipamitoyl-phosphatidylcholine (16:0–16:0PC, DPPC) (serving as a proxy for SM) 

and chol that, like the current simulations, displayed an evolution with time into domains 

with the polyunsaturated phospholipid but not its monounsaturated counterpart. A switch 

from nano- to micro-scopic phase separation into lo and ld domains when 1-stearoyl-2-

docosahexaenoyl-phosphatidylcholine (18:0–22:6PC, SDPC) replaced POPC in PC/SM 

(brain)/chol mixtures was reported on the basis of Förster resonance energy transfer (FRET) 

and fluorescence imaging microscopy (fluorescent dye C12:0 DiI) [57]. Lo/ld phase 

separation into domains in PC/SM/chol mixtures that become micron size, as opposed to 

nano size, with PDPC vs. POPC was observed by a combination of fluorescence imaging 

(fluorescent dye egg rhodamine PE), ESR and XRD [58].

Our results support an emerging view that the level of DHA incorporated into phospholipids 

in PM plays an important role in regulating the size of rafts. The molecular origin lies in the 

high disorder of the PUFA. To give context here, order parameters are ~10% lower when 

DHA replaces OA at the sn-2 position in PC with a saturated sn-1 chain [55]. This 

differential in order parameter is comparable to the reduction measured between DOPC that 

is another, albeit non-physiological, lipid known to promote phase coexistence [40], and 

POPC [59]. However, the mechanism by which DHA promotes the formation of larger 

domains has yet to be determined. There are two schools of thought. According to one 

scenario, DHA-rich non-raft regions are thinned by the increased cross-sectional area that 

accompanies greater disorder, causing rafts to grow to relieve the line tension associated 

with enhanced hydrophobic mismatch [40]. The alternative scenario links increased raft size 

to the greater differential in order between raft and non-raft domains [58;60]. We plan to 

address this issue in the future by a combination of 2H NMR, SANS and XRD 

methodologies that will enable us to non-invasively determine the composition, order, size 

and thickness of domains [40;47].

4.2 Limitations of the study

It is important to acknowledge limitations of the current study. One, the concentration of 

PDPC was very high. Our previous in vivo work in human and mouse intervention studies 

with fish oil show that DHA levels can increase several fold [23;61]; however, the levels of 
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DHA-containing phospholipids do not reach an equimolar concentration relative to SM/

Chol. Thus, future studies need to establish how lower concentrations of PDPC influence 

raft size.

Vulnerability to oxidation is a concern in all experiments on PUFA and has the potential to 

influence membrane architecture. Precautions were taken during sample preparation and 

data collection to minimize this problem. In the future, we aim to intentionally oxidize 

PDPC to determine how oxidization of DHA influences raft molecular organization. This is 

of high relevance since dietary intake of oxidized DHA, or oxidation in response to changes 

in cellular metabolism, would have a strong influence on cellular signaling.

4.3. Implications of a DHA-containing phospholipid to promote phase separation for 
immunological outcomes

The ability of PDPC to promote raft formation has strong implications for numerous 

biological systems. For simplicity, we focus on immunological studies given that our labs 

are currently studying how DHA, due to its immunomodulatory properties, can be used for 

improving chronic inflammation and simultaneously enhancing humoral immunity. We 

previously reported that dietary administration of DHA to mice and humans enhances B 

lymphocyte activation [25;61;62]. This was relevant for select clinical populations such as 

the obese that have impaired B cell activation and thereby poor responses to infections and 

vaccinations [63;64]. Mechanistically, we discovered that DHA enhanced the binding of the 

cholera toxin subunit B (which reports on GM1-enriched rafts) to the B lymphocyte plasma 

membrane [23]. The data from this manuscript now advance studies at the murine and 

human level by explaining how DHA may be enhancing lipid raft formation.

DHA, which incorporates into PEs and PCs of B lymphocytes, enhances phase separation 

and increases the size of lipid rafts, as measured with confocal and total internal reflection 

microscopy [23]. Thus, we speculate that enhanced raft formation allows for increased 

cellular signaling through metabolites generated from DHA and ultimately targeting of 

transcription factors and gene expression. The results from this study also have 

consequences for other immune cells such as helper T cells and the formation of the 

immunological synapse, which is a key regulator of inflammatory signaling [65]. Finally, we 

speculate that DHA-induced modification to raft size could have an effect on 

neurotransmission, which has implications for a variety of mental health disorders such as 

depression [66].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• DHA regulates raft size in model membranes

• DHA enhances phase segregation

• DHA promotes unfavorable lipid-lipid interactions
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Figure 1. Molecular structure of lipids
Detailed structures for the following lipids are illustrated: 1-palmitoyl-2-docosahexaenoyl-

sn-glycero-3-phosphocholine (PDPC; 16:0–22:6PC), 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine (POPC; 16:0–18:1PC), palmitoyl-sphingomyelin (PSM; 16:0SM), 

cholesterol (Chol).
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Figure 2. CG MD simulations of POPC and PDPC in the presence of SM/chol
Top-view snapshots of monolayers of POPC/SM/chol (upper panel) and PDPC/SM/chol 

(lower panel) at the beginning (t = 0 μs, left column) and end (t = 30 μs, right column) of CG 

MD simulation production runs. Scale bar (yellow) is 2 nm. Color-coded circles indicate the 

lateral location of the phosphate head group on SM (red), POPC (green) and PDPC (blue). 

Chol is hidden to improve image clarity. The CG MD representation of the molecular 

structure of the lipids is shown to the side of the snapshots.
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Figure 3. Nearest neighbor and order parameter analyses of CG MD simulations
Upper panel: Number of POPC (green bar), SM (red bar) and chol (white bar) molecules as 

nearest neighbors around POPC and SM in PDPC/SM/chol (left panel) and of PDPC (blue 

bar), SM (red bar) and chol (white bar) around PDPC and SM in PDPC/SM/chol (right). A 

nearest neighbor is defined as a lipid molecule that is within 1 nm of another lipid molecule, 

with the position of a lipid defined by its head group (phosphate bead for PC and SM, and 

polar OH bead for chol). Lower panel: Order parameters Smol for the second bead of the 

sn-1 chain in POPC (green bar) or PDPC (blue bar) and of the sphingosine chain in SM (red 

bar) in POPC/SM/chol (left panel) and PDPC/SM/chol (right panel) bilayers. Values are an 

average over the entire trajectory and the standard deviation is indicated.
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Figure 4. 2H NMR spectra for PDPC and POPC in the presence of SM/Chol
2H NMR spectra at 35 °C for PDPC/PSM-d31/chol (top) and POPC/PSM-d31/chol (1:1:1 

mol) (bottom). The arrows designate pairs of signals assigned to the terminal methyl group 

(upper) and to methylene groups in the plateau region (lower) on PSM-d31 (upper) in more 

ordered SM-rich/chol-rich (grey dashed arrows - outer splitting) and more disordered PDPC-

rich/chol-poor (black full arrows - inner splitting) domains for the PDPC/PSM-d31/chol 

mixture. The POPC/PSM-d31/chol spectrum lacks these features. Spectra are symmetrized 

about the central frequency to enhance signal/noise.
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Figure 5. SANS data for POPC and PDPC in the presence of SM/Chol
SANS data at 20 °C for vesicles composed of POPC/PSM-d31/chol (1:1:0.56 mol, blue 

symbols) or PDPC/PSM-d31/chol (1:1:0.56 mol, orange symbols), in 78% D2O solvent 

(open circles) or 29% D2O solvent (open triangles). Solid lines show fits to the data using 

either a homogeneous form factor for the 78% D2O data, or a laterally heterogeneous form 

factor for the 29% D2O data, as described in the text and Supporting Information. The inset 

shows schematic vesicle images corresponding to the average domain structure for the 

POPC-containing (blue) and PDPC-containing (orange) systems.
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Figure 6. PDPC promotes phase separation in raft-containing GUVs
Sample GUV image of (A) POPC/SM/Chol (1:1:1) and (B) PDPC/SM/Chol (1:1:1). GUVs 

were imaged with the non-raft fluorescent probe DHPE-Texas Red. (C) The average domain 

area and (D) GUV diameter for POPC and PDPC containing GUVs. Data are average ± 

SEM from 3 independent experiments. ****P<0.0001.
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Figure 7. PDPC promotes lipid-lipid immiscibility in the presence of SM/Chol
(A) Pressure area isotherms of POPC/SM/Chol (1:1:1) and PDPC/SM/Chol (1:1:1) 

generated at 23°C on a buffer subphase (pH=7.4). Pressure area isotherms were analyzed at 

30 mN/m for the (B) inverse elasticity modulus Cs −1, (C) excess area per molecule and (D) 

Gibbs free energy of mixing. Data are average ± SEM from 5–6 independent experiments. 

*P<0.05, **P<0.01.
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