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Abstract  

Introduction: Pharmacotherapy with visual cycle modulators (VCMs) is under 

investigation for multiple diseases, including retinitis pigmentosa (RP), Leber congenital 

amaurosis (LCA), Stargardt macular dystrophy (SMD) and nonexudative age-related 

macular degeneration (AMD), all blinding diseases that lack effective treatment options. 

Areas Covered: Oral retinoids, including 9-cis-retinyl-acetate (Zuretinol) and 9-cis-β-

carotene, restore 11-cis-retinal levels in RP and LCA caused by LRAT and RPE65 gene 

mutations, and may improve visual acuity and visual fields. Therapies for SMD aim to 

decrease accumulation of toxic Vitamin A dimers and lipofuscin in the retina and retinal 

pigment epithelium (RPE) include C20-D3-vitamin A (ALK-001), isotretinoin, VM200 

(aldehyde trap), emixustat, and A1120. Mouse models of SMD show promising data for 

these treatments, though proof of efficacy in humans is currently lacking. Fenretinide and 

emixustat are investigational VCMs for dry AMD, though neither has been shown to 

reduce geographic atrophy or improve vision in human trials. A1120 prevents retinol 

transport into the RPE and may spare the side effects typically seen in VCMs (nyctalopia 

and chromatopsia) according to mouse studies. 

Expert Opinion: Oral VCMs may be feasible treatment options for degenerative retinal 

diseases based on pre-clinical studies. Further trials are warranted to assess their efficacy 

and safety in humans. 

 



 2 

Keywords: 9-cis-retinyl-acetate, C20-D3-vitamin A, emixustat, fenretinide, geographic 

atrophy, Leber’s Congenital Amaurosis, Retinitis Pigmentosa, Stargardt macular 

dystrophy, visual cycle 

 

1. The Visual Cycle 

  The visual cycle refers to an enzymatic process that takes place in the outer retina 

photoreceptors and retinal pigment epithelium (RPE), in which light is converted into an 

electrical signal that is ultimately conveyed to the brain. As understanding of the visual 

cycle progresses, the ability to manipulate the visual cycle dysfunction to treat retinal 

disease is becoming a reality. 

 The rods are single photon receptors that allow visual perception in low 

illumination, while the cones are less sensitive but can distinguish various wavelengths of 

light, allowing for color vision.  Both rods and cones use 11-cis-retinal, which binds to 

opsins to then form visual pigments such as rhodopsin or cone opsins [1].  When light 

strikes rhodopsin (composed of the protein opsin bound to the chromophore 11-cis-

retinal, a vitamin A derivative) in the rod outer segments, 11-cis-retinal is converted to its 

all-trans-retinal isomer.  This, in turn, activates the opsin and initiates a signal 

transduction cascade, closing a cyclic GMP-gated cation channel, and hyperpolarizing the 

photoreceptor cell. In the visual cycle, the all-trans-retinal must be converted back to 11-

cis-retinal, via a series of steps catalyzed by enzymes, including retinol dehydrogenases 

(RDH), which catalyze reduction and oxidation reactions in the photoreceptor, as well as 

lecithin retinol acyltransferase (LRAT) and retinoid isomerohydrolase (a 65 kilodalton 
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protein, encoded by the RPE65 gene), both of which are located in the RPE [2]. The 

visual cycle is diagrammed in Figure 1, which also shows the role of select therapeutics 

that influence the visual cycle. 

 Within the visual cycle, the ATP binding cassette subfamily A member 4 

(ABCA4) is localized to the outer segments of photoreceptors and acts as a 

membrane transporter for the recycling of chromophore during the visual cycle. 

Specifically, within the visual cycle, ABCA4 binds with high affinity and shuttles N-

retinylidene-phosphatidylethanolamine trapped inside the photoreceptor disc 

across the membrane surface, where it is ultimately further processed by the 

adjacent retinal pigment epithelial cells.   

  The visual cycle plays a key role in several retinal disorders.  For example, 

dysfunction of enzymes in the visual cycle leads to several inherited retinal diseases 

(IRDs) such as retinitis pigmentosa (RP), Leber’s congenital amaurosis (LCA), and 

Stargardt macular dystrophy (SMD), due to the inability to either produce an adequate 

supply of 11-cis-retinal or an inability to remove the accumulation of various retinoid 

products. The visual cycle has become the focus of therapeutic strategies as several 

compounds have the potential to address defects in this cycle to treat rare IRDs.  Several 

clinical trials have utilized these visual cycle modulators in an attempt to slow the 

progression of SMD and age-related macular degeneration (AMD), the leading cause of 

irreversible blindness in the industrialized world. The drugs discussed in this review are 

summarized in Table 1. 

 

2.  Dysfunction Within the Visual Cycle and Therapies to Address Dysfunction 
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2.1. LRAT and RPE65 Dysfunction: Inherited Retinal Disease 

 Retinitis pigmentosa (RP) is the most common IRD, with a prevalence of 

approximately 1 in 3500 [3]. The term RP describes a group of genetically-heterogeneous 

progressive rod-cone retinal degenerations. Patients typically develop night blindness in 

the early phase of the disease, followed by loss of mid-peripheral visual field with 

progressive visual loss towards central vision [4].  Figure 2 shows a montage fundus 

photo of a patient with RP, which demonstrates the classic triad of optic disc pallor, 

retinal vessel attenuation, and “bone-spicule” pigmentary changes in the retinal 

periphery. 

  Leber congenital amaurosis (LCA) is a group of congenital or early onset forms 

of RP, with an autosomal recessive inheritance pattern, that occurs in approximately one 

in 81,000 births and inevitably leads to severe early visual impairment [5]. Patients with 

LCA typically have poor central and peripheral vision, early-onset nystagmus and 

severely diminished electroretinogram (ERG) responses. Figure 3 shows a montage 

fundus photo of a patient with LCA, which demonstrates retinal vessel attenuation and 

pigmentary changes similar to those seen in RP. 

 

Genes mutated in IRDs encode proteins that are involved in multiple mechanisms 

and pathways, including the phototransduction cascade (which includes the visual cycle 

described above), maintenance of photoreceptor structure, gene transcription and ciliary 

function. Mutations in more than 200 genes have been identified in IRDs. These genes 

account for only about 60% of all patients; whereas the remainder have defects in 

unidentified genes [3]. Mutations in LRAT and RPE65 are among those known to cause 
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RP and LCA [6, 7]. As noted above, RPE65 and LRAT are responsible for production 

and recycling of 11-cis-retinal and rhodopsin. Deficiencies of 11-cis retinal and 

rhodopsin cause severe rod and cone dysfunction leading to retinal degeneration and 

several visual loss [8] 

 

2.1.1  Bypass of LRAT and RPE65 Visual Cycle Defects: 9-cis-retinyl-acetate 

(QLT091001, Zuretinol) 

 In models of LRAT and RPE65-deficient mice, treatment with the chromophore 

pro-drug, 9-cis-retinyl-acetate, prevented loss of cone photoreceptors (examined 

histologically) and partially preserved the ERG b-wave compared to mice in the control 

group [9].  9-cis-retinyl-acetate combines with opsin to form isorhodopsin, which is also 

capable of starting the phototransduction cascade when activated by light [10]. 

Essentially, 9-cis-retinal administration can bypass defects in the visual cycle and 

regenerate visual pigment as isorhodopsin, thereby restoring visual function and 

ameliorating the progression of retinal degeneration in LRAT and RPE65-deficient 

animals. High doses of prolonged 9-cis-retinyl-acetate administration are well tolerated 

by the retinas of the enzyme-deficient mice, as determined by preservation of retinal 

thickness and morphology on spectral-domain optical coherence tomography (SD-OCT); 

no significant increases in fundus autofluorescence were detected at 6 months [11]. 

Batten et al demonstrated visual functions could be rescued in LRAT-deficient 

mice, as measured by recovery of levels of visual chromophore and pigment and 

improved ERG responses. Successful restoration of retinal signaling, as measured by 

pupillary responses, was also achieved.  Treatment with orally administered pro-drugs 9-
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cis-retinyl acetate and 9-cis-retinyl succinate (which chemically circumvent the LRAT-

catalyzed step in chromophore regeneration) caused enduring renewal of retinal function 

in LRAT-deficient mice and amplified ERG response from roughly 5% of wild-type 

levels in LRAT-/- mice to approximately 50% of wild-type levels in treated LRAT-/- mice.  

In the same study, the authors also showed that gene therapy with intraocular injection of 

recombinant adeno-associated virus (AAV) carrying the LRAT gene successfully 

restored ERG responses; oral and gene therapy techniques were complementary when 

combined. While full restoration of the ERG could not be obtained in LRAT-/- mice in the 

tested experimental conditions, the finding of nearly complete restoration of single cell 

responses suggests that remodeling of the neuronal retina in LRAT-/- may limit 

functional rescue [12]. 

 In a human phase 1b trial, patients with LCA or early onset RP caused by 

mutations in RPE65 (78%) or LRAT (22%) were given once daily oral 9-cis-retinyl-

acetate (also known as QLT091001 or Zuretinol acetate - developed by Novelion 

Therapeutics) 40 mg/m2/day for 7 days and many were found to have improvement in 

visual field and best-corrected visual acuity (BCVA) [13].  Eight of 18 (44%) patients 

showed a ≥20% increase and 4 of 18 (22%) showed a ≥40% increase in functional retinal 

area as measured by Goldmann visual fields (GVF). 12 (67%) and 5 (28%) of 18 patients 

showed a ≥5 and ≥10 ETDRS letter score increase of visual acuity, respectively, in one or 

both eyes at two or more visits within 2 months of treatment. The specific genotypes 

(LRAT or RPE65) did not appear to affect how patients responded to the drug [13]. There 

were no detectable improvements observed on standard electroretinography (ERG), 

similar to what has been previously observed in gene therapy trials for LCA [14-16].  
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In the same phase 1b trial, which included 14 patients with LCA caused by LRAT 

and RPE65 mutations, treatment with a 7-day course of 9-cis-retinyl-aceteate 

(QLT091001, 10-40 mg/m2) was followed by an improvement in GVF areas (mean 

increase in retinal area of 28–683%) in 10 patients (71%) for a median duration of 163 

days [16]. Patients with small to medium baseline GVF had greater improvement than 

those with a larger baseline GVF. Six patients (43%) had an improvement in visual acuity 

(mean increase of 2–30 letters) along with subjective reporting of improvement in 

activities of daily living. The median duration of the visual acuity response was 315 days 

(interquartile range: 111–534 days). After 2 years, three (21%) patients had a sustained 

GVF response and four (30%) had a sustained visual acuity response. ERG function did 

not improve in this trial, possibly due to the level of retinal degeneration already present 

at initiation of therapy. Four patients had functional MRI scans, which all correlated with 

visual response - there was increased cortical activation in one patient with increased 

GVF area, and there was no increased cortical activation in three patients that did not 

show increase in GVF area. No serious adverse events were noted, though 6 patients 

(43%) developed moderate-severe headache that resolved within 1-2 days of the last 

treatment of QLT091001, 7 patients developed moderate-severe photophobia that 

corresponded with visual improvement, and 8 patients (57%) had a transient increase in 

serum triglyceride levels [17]. 

 Measuring the outer segment length of the photoreceptor layer with SD-OCT was 

highly predictive of treatment responses, with responders having a significantly larger 

baseline outer segment thickness (11.7 ± 4.8 μm, mean ± 95% CI) than non-responders 

(3.5 ± 1.2 μm). This structure-function relationship suggests that treatment with 
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QLT091001 is more likely to be efficacious if there is sufficient photoreceptor integrity 

[13]. According to the Novelion website, 9-cis-retinyl-acetate (Zuretinol) has Orphan 

Drug designation from both the U.S. Food and Drug Administration (FDA) and European 

Medicines Agency, along with FDA Fast Track designation. [18].  

   

 

2.1.2 Bypass of LRAT and RPE65 Visual Cycle Defects: 9-cis β-carotene  

 Another randomized placebo-controlled crossover trial (NCT01256697) examined 

the effect of 9-cis-β-carotene-rich powder in patients with RP of various genotypes [19].  

Oral 9-cis β-carotene can access the retina, where it can be converted to 9-cis-retinal and 

combine with opsin to form isorhodopsin [20]. The retinoid 9-cis-retinal, which has a 

light absorption spectrum similar to that of 11-cis-retinal, can replace the latter when its 

availability is limited owing to a retinoid cycle defect.  9-cis-retinal also induces an 

increase in the endogenous production of 11-cis-retinal, as observed in mice with a 

different inborn error in the retinoid cycle [10]. Furthermore, the 9-cis β-carotene or its 

metabolites may reduce inflammation and serve as an antioxidant [21]. 

 

 29 participants completed the trial, in which they were treated daily for 90 days 

with 4 capsules each containing 300 mg of alga Dunaliella bardawil (a 9-cis-β-carotene-

rich powder, for a total approximately 20 mg of β-carotene) or placebo. The over-the-

counter Dunaliella capsules are approved by the US FDA and have been used for more 

than 20 years with no known significant adverse effects. Following a 90-day washout 

period, the groups crossed over and received treatment with the other capsule for 90 days. 
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This crossover design allows for each patient to receive both treatments, thus allowing 

each participant to serve as their own control for comparison. The primary outcome of 

the study was the dark-adapted ERG maximal b-wave response amplitude, representing 

rod and cone function objectively. The 4 secondary outcomes were light-adapted ERG b-

wave response amplitudes (objective cone function), dark adapted chromatic visual field 

area (subjective rod or cone function), conventional light-adapted visual field area 

(subjective cone and rod function), and BCVA. The measurements were obtained at 

baseline, at the end of the first 90 day treatment period, at the end of the 90 day washout 

period, and at the end of the second 90 day treatment period [19].  

 

 In 10/29 patients (34.5%, 5 patients in each group), the maximal b-wave response 

increased by more than 10 μV (range 11-42 μV) in both eyes. Relative to initial baseline, 

treatment with Dunaliella yielded a significant increase in maximal dark-adapted ERG b-

wave amplitude (+8.4 μV), whereas placebo treatment resulted in a decrease −5.9 μV 

(p=0.001). The percentage change in light-adapted b-wave response was +17.8% for 9-

cis β-carotene vs −3.0% for placebo (P = .01). Thus, both objective measures (rod and 

cone photoresponse functions) showed significant improvements after 90 days of 

Dunaliella treatment. No significant differences were found between the groups for visual 

field and BCVA. No adverse effects were observed. Based on these results, the authors 

concluded that 9-cis-β-carotene may serve as a new therapeutic approach for some 

patients with RP, possibly as an adjuvant to gene therapy. Further trials with larger 

groups of patients and a larger washout period are planned for the future [19]. 
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2.1.3  RPE65 Gene Therapy 

 Another area of research focus for LCA and RP is gene therapy to correct RPE65 

mutations. Although a comprehensive review of genetic therapy options is beyond the 

scope of this review, it is worth noting that Spark Therapeutics completed a phase 3 trial 

of its adeno-associated viral vector containing RPE65 complementary DNA (called SPK-

RPE65), which is delivered via subretinal injection. To fully assess the functional 

benefits of RPE65 gene therapy in IRD patients, a proprietary multiluminance mobility 

test (MLMT) was developed, with feedback from the FDA in order to more functionally 

assess VA, visual fields, light sensitivity, and mobility [22].  In this test, patients progress 

through a mobility test with 12 standardized templates, under multiple standardized 

lighting conditions, to determine the lowest illumination under which they can 

successfully navigate the course in under 3 minutes.  The seven levels of illumination 

reproduce the lighting conditions encountered in daily life, from 1 lux, simulating a 

moonless night, to 400 lux, simulating an office setting.  A change in score, based on 

illumination level, functions as the endpoint and has been validated.  

 Spark initiated the Phase III trial in November 2012 enrolling 31 patients with a 

mean age of 15 years; the patients were randomized 2:1 into control or receiving 1.5 x 

1011 vg of SPK-RPE65 in both eyes within 18 days. After the 12-month time point, the 

control subjects were eligible to cross over into the treatment group. In October 2015, 

Spark announced positive top-line results.  There were no serious adverse events (SAEs) 

or significant immune responses related to SPK-RPE65.  The trial met its primary 

endpoint of change at one year in the bilateral MLMT from baseline (p=0.001), with an 

average improvement 1.8 light levels in the treatment group versus 0.2 light levels in the 
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control group. Of the 20 subjects randomized to initial treatment, 13 (65%) were able to 

pass the MLMT at the lowest light level (1 lux, demonstrating maximal possible 

improvement) at one year versus none in the control group.  Secondary endpoints 

successfully met included full-field light sensitivity threshold testing (full-field scotopic 

threshold)  with 100-fold improvement in light sensitivity in treated subjects (p<0.001) 

and MLMT change score for the first injected eye (p=0.001).  There was a mean 

improvement in VA of 9 ETDRS letters, although this did not reach statistical 

significance (p=0.17) [23].  In May 2017, Spark announced that it had completed its 

rolling Biologics License Application (BLA) submission to the FDA for SPK-RPE65, 

Voretigene Neparvovec [24]. 

 Other companies that are sponsoring gene therapy trials for LCA include Applied 

Genetics Technology Corporation (AGTC) [25] and MeiraGTx.  MeiraGTx has initiated 

a phase 1 clinical trial of AAV-OPTRPE65 [26]. 

 

2.2. ABCA4 Dysfunction: Stargardt Macular Dystrophy 

 Autosomal recessive Stargardt macular dystrophy (SMD) is a dystrophy resulting 

from mutations in the ABCA4 (ABCR) gene. It is the most common form of inherited 

juvenile macular degeneration, affecting roughly in 1 in 10,000 people. Mutations in 

ABCA4 also result in RP and cone-rod dystrophy. The age of onset of juvenile and early 

adult SMD is usually 8–25 years with some cases occurring in older adults (late-adult 

onset SMD) [27, 28]. A hallmark of the disease is premature accumulation of lipofuscin 

(the “wear and tear cellular debris”) in the retinal pigment epithelium (RPE) of the eye, 

causing a pattern of yellowish flecks that extend outward from the macula (see Figure 4).  
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The brown-yellow, autofluorescent, electron-dense material is also found in cells of the 

liver, kidney, heart muscle, adrenals, nerve, and ganglion and is considered one of the 

most consistent morphologic features of aging, with a rate of accumulation inversely 

related to longevity [29, 30]. The RPE is critical for the neurosensory retina homeostasis; 

it acts as a transport exchange system with blood capillaries and is critical for 

regeneration and phagocytosis of photoreceptor outer segments. It is hypothesized that 

when RPE lipofuscin reaches a critical level, it contributes to a decline in cell function, 

resulting in the degeneration of the macular region with subsequent loss of central vision 

[31, 32].  

 

 The faulty gene in SMD, ABCA4, encodes for an outer segment rim protein 

(RmP). The function of RmP is to transport the all-trans –retinaldehyde-

phosphatidylethanolamine (retinaldehyde-PE) Schiff base from the luminal side of the 

disk membrane to the cytosolic face, where retinaldehyde can then be transformed back 

to retinol [33]. Without its functional transporter, the retinaldehyde-PE conjugates may 

react to form vitamin A dimers (including A2E and ATR-dimer), which then accumulate 

in the RPE after phagocytosis of the photoreceptors outer segments. Vitamin A dimers 

are toxic to cultured RPE cells and are thought to play a significant role in lipofuscin 

formation and subsequent retinal degeneration [34, 35]. A2E sensitizes 

RPE cells to light-induced apoptosis [36] and has an inhibitory effect on phospholipid 

turnover in RPE phagolysosomes [37]. 

 

2.2.1  Decrease Toxic Byproducts of ABCA4 Dysfunction: ALK-001 (C20-D3-
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vitamin A) 

 Kaufman and colleagues have shown that the rate determining step in vitamin A 

dimerization is the cleavage of a C20 carbon-hydrogen bond of the retinaldehyde-PE 

Schiff base [38]. Replacing the C20 hydrogen atoms of vitamin A with deuterium atoms 

(i.e. C20-D3 -vitamin A) makes this bond harder to cleave and impedes vitamin A 

dimerization. Several studies have sought to determine whether slowing the intrinsic 

reactivity of vitamin A to dimerize could slow lipofuscin formation in the RPE and delay 

changes associated with human SMD. Ma and colleagues raised ABCA4-/- mutant albino 

mice (the mouse model of human SMD) on diets containing either C20-D3 –vitamin A 

(the treated group) or vitamin A at its natural isotopic abundance (the control group) and 

measured the concentration of vitamin A dimers, lipofuscin and other biological markers 

indicative of ocular health in both groups. Treated mice exhibited an 80% reduction in 

A2E, a 95% reduction in ATR dimer and a 70% decrease in fundus autofluorescence at 

three months of age. After six months, the treated group showed fewer lipofuscin 

granules as visualized qualitatively by electron microscopy, and at 12 months they 

showed improved eye function as measured by ERG. These results suggest that 

pathological phenotypes that arise from defects in the ABCA4 gene may result from the 

dimerization of vitamin A and may be improved by hindering the ability of vitamin A to 

dimerize [39].  

 Similar results were found in another mouse model of SMD, in which Vitamin A 

dimerization contributed to over 50% of lipofuscin accumulation and caused 

transcriptional dysregulation of several complement genes associated with inflammation 

[40]. Replacing Vitamin A with C20-D3-vitamin A impeded dimerization of Vitamin A 
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(by approximately fivefold for A2E), and additionally normalized the aberrant 

transcription of complement genes without impairing retinal function. Phenotypic rescue 

by C20-D3-vitamin A was also observed noninvasively by quantitative autofluorescence 

in as little as 3 months after the initiation of treatment, whereas upon interruption of 

treatment, the age-related increase in autofluorescence resumed. These results further 

indicate that administration of C20-D3 -vitamin A may be a feasible therapeutic approach 

to slow the progression of associated retinal disease caused by Vitamin A dimerization. 

During these mice studies, no side effects were noted, and the animals were administered 

the drug for 12 months. 

 The promising results of the aforementioned pre-clinical studies have paved the 

way for the oral once-daily C20-D3-vitamin A molecule, ALK-001 (Alkeus 

Pharmaceuticals, Boston, MA), to begin human clinical trials in SMD. A Phase 1 trial 

(NCT02230228) to assess the safety and pharmacokinetics in healthy volunteers has been 

completed [41]. The phase 2 TEASE study (NCT02402660) is ongoing [42].  

 

2.2.2  Decrease Toxic Byproducts of ABCA4 Dysfunction:  VM200 

 Vision Medicine’s VM200 molecule for SMD is currently in pre-clinical trials. 

This oral drug sequesters the toxic compound, all-trans retinal, to prevent retinal cell 

death [43].  Specifically, VM200 is a primary amine that reacts with the aldehyde group 

of all-trans retinal to form an inactive Schiff base, thus making it unable to form A2E. 

VM200 was shown to preserve retinal structure in ABCA4-/- Rdh8-/- mice, as measured 

by SD-OCT. According to unpublished data from Case Western Reserve University, 

VM200 has also demonstrated ability to preserve retinal function, as mice treated with it 
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were noted to have increased concentration of 11-cis retinal (a biomarker of intact 

photoreceptors) compared to controls [44]. No significant toxicities were noted in 2-week 

and 13-week long studies. The molecule of VM200 is an enantiomer of pregabalin, which 

is used to treat neuropathic pain, though its affinity for the pregabalin target is 10-fold 

less than that of pregabalin. VM200 is also indicated for other inborn errors of aldehyde 

metabolism including Sjogren-Larsson Syndrome, Best Disease, and Succinic 

semialdehyde-dehydrogenase deficiency. Pre-clinical studies are continuing [44].  

 

2.2.3  ABCA4 Gene Therapy 

 Gene therapy is also being explored to treat SMD. The ABCA4 gene (6.8 kb) far 

exceeds the 4.5-5.0 kb capacity of the AAV vector and has required utilization of an 

equine infectious anemia lentivirus (EIAV) for gene transfer [45]. Subretinal injection of 

EIAV-ABCA4 was found to be effective in a knock out mouse model and the StarGen 

(Sanofi) gene replacement lentivector carrying the ABCA4 gene is currently in Phase 1/2 

trials [46] [47]. 

 

3 Therapeutic Inhibition of the Visual Cycle 

3.1 11-cis-retinol dehydrogenase 

3.1.1. Isotretinoin 

 Isotretinoin (Accutane) is a drug that is used to treat acne, but has also been 

shown to inhibit lipofuscin formation in a mouse model [48]. It works by inhibiting 11-

cis-retinol dehydrogenase in the visual cycle, thus slowing the synthesis of 11-cis-

retinaldehyde and regeneration of rhodopsin. This explains the side effect of decreased 
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night vision in patients who use isotretinoin for acne [49] , though isotretinoin has not 

been shown to induce photoreceptor degeneration, and actually protects against light-

induced damage [50]. Light activation of rhodopsin results in its release of all-trans-

retinaldehyde, which constitutes the first reactant in toxic A2E biosynthesis. ABCA4-/-  

mice that were injected with isotretinoin had decreased production of A2E, along with 

less formation of lipofuscin granules in the retina compared to controls, as viewed by 

electron microscopy. Additionally, wildtype mice treated with isotretinoin for 2 months 

had a 40% reduction of A2E formation in the RPE compared to controls. On ERG, both 

wild-type and ABCA4-/- mice showed smaller delays in dark adaptation after isotretinoin 

administration with bright compared with dim probe flashes. These results suggest that 

isotretinoin reduced rhodopsin levels in both wild-type and ABCA4-/- retinas. The authors 

propose that isotretinoin may delay visual loss in SMD and other retinal diseases linked 

to lipofuscin accumulation. 

 

3.2 RPE65 

3.2.1 Emixustat. 

 Emixustat (ACU-4429, developed by Acucela Inc) is a small non-retinoid 

derivative of retinylamine that inhibits RPE65, thus reducing the conversion of all-trans-

retinyl ester to 11-cis-retinol and preventing accumulation of A2E. Phase 1 studies 

showed that the drug was well-tolerated up to 75 mg with expected dose dependent 

suppression of scotopic ERG in healthy subjects [51].  It was initially developed to slow 

the progression of geographic atrophy in age-related macular degeneration (AMD), but it 

also being tested for SMD. 
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  AMD is the leading cause of irreversible legal blindness in people ≥ 65 years of 

age in the Western world, affecting over 1.7 million people in the United States and 

expected to reach almost 3 million by 2020 [52]. AMD is classified into one of two 

general subgroups: the non-neovascular (non-exudative or dry) form of the disease and 

the neovascular (exudative or wet) form of the disease.  The non-neovascular form of 

AMD accounts for approximately 90% of all AMD cases, and is often characterized by a 

slow degeneration of the macula, resulting in atrophy of the central macula with gradual 

vision loss over a period of years.  In contrast, neovascular AMD (nAMD), although less 

prevalent, commonly causes sudden and often substantial loss of central vision, 

accounting for most cases of severe vision loss in this disease.  This type of AMD is 

characterized by the growth of pathologic choroidal neovascularization (CNV) beneath 

the macula, which causes exudation of blood and/or fluid into the macula.  Ultimately, 

neovascular tissue and associated exudates develop into a destructive macular scar, 

leading to central blindness.  

 The advanced stage of dry AMD, geographic atrophy (GA), is characterized by 

loss of retinal photoreceptors, RPE, and choriocapillaris, and is responsible for 

approximately 20% of all cases of legal blindness in North America. Currently, the major 

unmet need in AMD is there is no available treatment for GA. Figure 5 shows a color 

fundus photo of a patient with GA, which demonstrates a patch of atrophic retina and 

RPE, with prominent underlying choroidal vessels visible in the macula. 

 One strategy for the treatment of GA is the interruption of the visual cycle by 

reducing the accumulation of toxic metabolites, A2E and lipofuscin,  Acucela launched 

its Phase 2 clinical trial of emixustat in patients with dry AMD in January 2010. In March 
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2010, emixustat was granted Fast Track status by the U.S. FDA for the treatment of dry 

AMD. In this 90-day, dose-escalation safety study, 72 subjects with GA received either 

emixustat (2, 5, 7, or 10 mg in the morning or 5 mg in the evening) or placebo once per 

day. 54 subjects received emixustat and 18 received placebo. Approximately four hours 

after subjects were given either emixustat or placebo, and following pupil dilation and 

dark adaptation, ERG measurements were recorded at multiple time points after three 

minutes of exposure to a bright, bleaching light. Rod photoreceptor b-wave sensitivity 

was suppressed in a dose-dependent manner in subjects receiving emixustat, as measured 

by ERG, for doses up to 10 mg (range 26% - 89% suppression of b-wave in the 2 mg and 

10 mg groups respectively). This effect was reversible, as the post-bleach mean b-wave 

amplitudes returned to baseline 7-14 days after treatment, with exception of the 10 mg 

group, whose results were influenced by an outlier. There was no significant effect of 

emixustat on the cone photoresponse as measured by single flash or 31-Hz flicker ERG. 

Ocular adverse events were noted in a dose-dependent manner, and included 

chromatopsia (57% of emixustat group) and delayed dark-adaptation (48% of emixustat 

group). 85% of these adverse events resolved within 7-14 days of discontinuing 

emixustat [53]. 

 
 In May 2016, Acucela announced the results of its Phase 2b/3 “S.E.A.T.T.L.E.” 

clinical trial. This study enrolled 508 patients with GA due AMD and sought to 

demonstrate that emixustat could reduce the growth rate of GA compared to placebo. 

The lesion growth rates over 24 months for the 10 mg, 5 mg, 2.5 mg and placebo groups 

were 1.84 mm2/year, 1.83 mm2/year, 1.69 mm2/year, and 1.69 mm2/year, respectively. 

The study failed to meet its primary endpoint, as there was no statistically significant 
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difference in lesion growth rate for any treatment group compared to placebo. There was 

no significant difference in the mean change of BCVA from baseline to month 24 

between treatment groups. There was a small numerical treatment difference observed in 

certain patients with specific genetic profiles in favor of emixustat. The profile of adverse 

events was similar to that of earlier trials [54]. Acucela has broadened its scope to testing 

emixustat as treatment for SMD, and approximately 30 patients are enrolled in a phase 2a 

study that will take place in the United States [53].   

 

3.3 Vitamin A Transport 

3.3.1 Fenretinide  

 Fenretinide (Sirion Therapeutics) is an oral synthetic retinoid derivative that 

competes with retinol to bind with retinol-binding protein 4 (RBP4), thus preventing 

transport of retinol into the RPE.  Serum retinol is maintained in circulation as a tertiary 

complex with RBP4 and transthyretin (TTR). Reduction in delivery of retinol-RBP-TTR 

to the RPE is thought to decrease accumulation of A2E and potentially slow the rate of 

GA growth. Once fenretinide binds to RBP, the RBP-fenretinide complex is rapidly 

eliminated in the urine [55].  Fenretinide has been shown to reduce formation of A2E in a 

mouse model of SMD [56]. Possible downsides to fenretinide therapy include its 

tendency to induce apoptosis in many cell types (including RPE) [57], along with 

teratogenic effects that would limits its use in women of child-bearing age (more 

pertinent in treating SMD than AMD) [58]. 

 A recent phase 2 study assessed fenretidine (100 and 300 mg orally administered 

daily versus placebo) for slowing lesion growth in 246 patients with GA.  There was a 
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dose-dependent reduction of serum RBP in fenretinide-treated patients.  There was also a 

trend for reduced annual lesion growth rates in patients in the 300 mg fenretinide group 

who achieved serum retinol levels of ≤1µM (1.70 mm2/year vs. 2.03 mm2/year, mean 

reduction of 0.33 mm2 compared to placebo, p = 0.1848). Only 51% of patients receiving 

300 mg and completing the 2-year study achieved this level of serum retinol reduction, 

resulting in a non-significant change in lesion growth rate versus the placebo group. RBP 

reductions < 2 mg/dL correlated with further reductions in lesion growth rates (r2= 

0.478). There was a 45% reduction in CNV formation among fenretinide groups, though 

all groups in the study lost a mean of 10-11 letters of vision at 2 year follow up, 

consistent with the natural history of GA and suggesting no visual benefit to the modest 

reduction in GA growth [59]. The 300 mg fenretinide group had 20.2% of patients 

withdraw from the study due to adverse effects, though only complaints related to the 

skin or eye were thought to be drug related. The most common ocular adverse events that 

were reported (but did not necessarily lead to study withdrawal) included decreased 

visual acuity (71 %), night blindness (37.3 %), and visual disturbance (26.5 %).    

   

3.3.2 A1120  

 A1120 (ICR-14967) is another drug that aims to lower serum retinol levels to 

treat AMD and SMD. It was originally developed as a potential treatment for diabetes. 

Like fenretinide, A1120 is a RBP4 antagonist, though A1120 differs in that it is not a 

retinoid and not an agonist to Retinoic Acid Receptor-alpha. This property may spare 

patients from the side effect profile associated with retinoids, which includes nyctalopia 

and delayed dark adaptation. ABCA4 -/- mice that were administered A1120 30 mg/kg 
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daily for 6 weeks were found to have a 75% reduction of serum RBP4 along with 50% 

reduction of lipofuscin bisretinoids compared to the control group. On ERG testing, no 

statistically significant difference in kinetics of the b-wave recovery after photobleaching 

was found between the groups of A1120- and vehicle-treated wild-type animals, 

suggesting that A1120's capacity for reduction of lipofuscin bisretinoids in the retina may 

not be associated with the appreciable suppression of the visual cycle. This finding 

supports the notion that A1120 is unlikely to cause side effects of nyctalopia or delayed 

dark-adaptation, which is seen in the other visual cycle modulators [60]. Based on this 

preclinical data, clinical trials are under development by a collaborative effort between 

iCura Vision, Columbia University, and the National Institutes of Health [60].  

 

5. Conclusion  

 Pharmacological modulation of the visual cycle serves as a novel approach to the 

treatment of degenerative retinal diseases. Four classes of therapeutics, which work by 

inhibiting vitamin A dimer and lipofuscin accumulation in the retina, are emerging as 

potential treatments for SMD and AMD. These include direct inhibitors of key visual 

cycle enzymes (isotretinoin and emixustat), RBP4 antagonists (fenretinide and A1120), 

primary amine-containing aldehyde traps (VM200), and deuterated analogs of vitamin A 

(ALK-001). For treatment of RP and LCA, 9-cis-retinyl acetate (zuretinol) and alga 

Dunaliella bardawil aim to bypass inherited defects in RPE65 and LRAT function in 

order to regenerate the visual chromophore 11-cis-retinal, thus allowing the next photon 

of light to initiate the next visual cycle. 
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6. Expert Opinion (500-1000 words) 
  

 The pathophysiology of AMD is very complex and not fully elucidated, and 

would thus require a multi-targeted approach to maximally halt the disease process. 

Oxidative damage, chronic inflammation, malfunction of the complement system, beta-

amyloid deposition, and lipofuscin accumulation are all thought to contribute to AMD 

progression to varying degrees. For this reason, several different classes of medications 

are being tested to target these pathways, including mammalian target of rapamycin 

(mTOR) inhibitors, complement inhibitors, matrix metalloproteinase inhibitors, low-

density lipoprotein (LDL)-lowering drugs, anti-amyloid beta drugs, antioxidants, 

neuroprotectants, choroidal perfusion enhancers, neurotrophins, and stem cell therapy 

[61]. Visual cycle modulation is just one piece of this convoluted puzzle, and many 

questions remain regarding its efficacy in slowing progression of GA. The emixustat and 

fenretinide trials both failed to show a statistically significant improvement in GA 

progression or BCVA, while also causing a notable amount of ocular and non-ocular side 

effects.  

 For management of both SMD and AMD, A1120 may one day serve as an 

intriguing option, as its developer suggests that it may not be associated with mechanism-

based ocular side effects typical for direct visual cycle inhibitors, such as nyctalopia and 

delayed dark-adaptation [62]. However, given that it has only been tested in mouse 

models of SMD, it is too soon to speculate about its efficacy in humans. Aldehyde 

trapping (VM200) could also represent an appealing approach to inhibiting retinal 

bisretinoid formation, as it may also lack the mechanism-based ocular side effects typical 

for direct visual cycle inhibitors. However, the compounds may need to be administered 
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at very high systemic doses to act as aldehyde traps in the retina, which raises safety 

concerns. Local retinal delivery may be considered as an alternative to systemic 

administration of aldehyde traps to overcome potential systemic toxicities [62].  

 Isotretinoin, which has been used as an acne treatment for many years with an 

acceptable safety proposal (aside from teratogenicity), has shown some promise in 

reducing lipofuscin formation in mouse models of SMD, but there is a paucity of data to 

confirm its beneficial effect on humans with SMD at this point in time. C20-D3-vitamin 

A (ALK-001) has shown similarly impressive results in reducing accumulation of 

Vitamin A dimers and lipofuscin in the retina, along with improved ERG function in 

Stargardt mouse models, though the results of the completed phase 1 trial have not been 

released, to the best of the authors’ knowledge. 

  There are many different genetic mutations that may cause RP and LCA, so much 

like AMD, there is no one-size-fits-all treatment for this group of diseases. Modulation of 

the visual cycle with retinoids such as 9-cis-retinyl-acetate (zuretinol) and 9-cis-β-

carotene may help those patients with mutations in LRAT or RPE65. Human trials, while 

limited in sample size, have demonstrated that some RP and LCA patients taking 

zuretinol have shown improvements in visual field and visual acuity. However, given that 

over 100 genes account for about 70% of RP patients while the remainder have unknown 

mutations [3], it is likely that only a small subset of patients would be candidates for the 

therapies mentioned in this article. Given the recent success of viral vector gene therapy 

for LCA, it will be interesting to see if oral retinoids will have a supplementary role in 

patients with LCA who opt for gene therapy, or if pharmacotherapy will be bypassed 

altogether. 
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Article Highlights Box  

• Degenerative retinal diseases such as dry age-related macular degeneration 

(AMD), retinitis pigmentosa (RP), Leber’s congenital amaurosis (LCA), and 

Stargardt macular dystrophy  (SMD) may cause blindness and currently lack 

effective therapies. 

• Oral retinoid therapies such as 9-cis-retinyl and 9-cis-β-carotene may help to 

restore 11-cis-retinal levels in cases of RP and LCA caused by mutations in 

LRAT and RPE65. Phase 3 clinical trial data will be needed to definitively 

determine improvements in visual acuity and visual fields. 

• Oral therapies for SMD aim to decrease accumulation of Vitamin A dimers and 

lipofuscin in the retina and RPE, and include ALK-001, isotretinoin, VM200, 

emixustat, and A1120. There is an abundance of data that shows efficacy of these 

treatments in mouse models of SMD, though evidence of efficacy in humans is 

currently lacking.  

• Visual cycle suppression is associated with nyctalopia, delayed dark-adaptation, 

and dyschromatopsia. 

• Fenretinide, emixustat and A1120 are visual cycle modulators (VCMs) under 

investigation for Dry AMD, though none of them has been shown to reduce 

geographic atrophy or improve vision in humans. 

•  Gene therapy with viral vectors is being explored as another option in treating 

RP, LCA, SMD, and AMD. 
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Figure Legends: 

Figure 1. The visual cycle pathway begins when light (starburst shape) interacts with 

rhodopsin (diamond shape), setting off a series of steps catalyzed by enzymes (cloud 

shapes). The chemical byproducts and investigational drugs are represented in box and 

oval shapes, respectively. The cross-through symbol denotes an inhibitory effect of a 

drug on the enzymes, while a plus sign indicates the effect of increasing rhodopsin levels.   

RDH = retinol dehydrogenase, ABCA4 = ATP-Binding Cassette Subfamily A Member 4, 

LRAT = lecithin retinol acyltransferase, RPE = retinal pigment epithelium. 

 

Figure 2. Montage fundus photo of a patient with retinitis pigmentosa, which 

demonstrates the classic triad of optic disc pallor, retinal vessel attenuation, and “bone-

spicule” pigmentary changes in the retinal periphery 

 

Figure 3. Montage fundus photo of a patient with Leber’s congenital amaurosis, which 

demonstrates retinal vessel attenuation and pigmentary changes similar to those seen in 

RP. 
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Figure 4. Fundus photography of a patient with Stargardt macular dystrophy shows 

yellowish flecks (representing lipofuscin accumulation in the RPE) that extend outward 

from the macula. 

 

Figure 5. Fundus photography of a patient with age-related macular degeneration with 

geographic atrophy, which highlights the atrophic appearance of the retina and RPE in 

the macula, leading to increased prominence of the underlying choroidal vasculature. 

 

Table 1.  Summary of the investigational drugs in development to treat inherited and age-

related degenerative diseases of the retina. 



Medication Chemical Structure Mechanism of action Indication Company  Stage of development  

QLT091001 
(Zuretinol) 9-cis-retinyl-acetate 

Combines with opsin to form 
isorhodopsin, thus bypassing defects in 
the visual cycle RP/LCA 

Novelion 
Therapeutics Phase 3 trials 

Alga Dunaliella 
bardawil 9-cis β-carotene  

9-cis β-carotene is converted to 9-cis-
retinal in the retina, which then 
combines with opsin to form 
isorhodopsin RP 

Available as generic 
OTC supplement Approved by US FDA 

ALK-001 C20-D3 -vitamin A 

Replacing the C20 hydrogen atoms of 
vitamin A with deuterium atoms makes 
cleavage of the carbon-hydrogen bond 
more difficult, thereby reducing Vitamin 
A dimerization and lipofuscin 

Stargardt 
disease 

Alkeus 
Pharmaceuticals Phase 2 trials 

Isotretinoin 13-cis-retinoic acid 

Inhibits 11-cis-retinol dehydrogenase, 
thus slowing the synthesis of 11-cis-
retinaldehyde and regeneration of 
rhodopsin.  

Stargardt 
disease 

available in generic 
form Pre-clinical trials 

VM200 
enantiomer of 
pregabalin 

Aldehyde trap (reacts with toxic all-tran-
retinal to form inactive schiff base) 

Stargardt 
disease Vision Medicine Pre-clinical trials 

ACU-4429 
(Emixustat) 

non-retinoid derivative 
of retinylamine 

Inhibits RPE65, thus reducing the 
conversion of all-trans-retinyl ester to 
11-cis-retinol and preventing 
accumulation of A2E.  

AMD/Stargardt 
disease Acucela Inc 

AMD: Phase 2b/3 trial 
did not meet endpoint. 
Stargardt disease: Phase 
2a trial enrolling  

Fenretinide 

synthetic retinoid 
derivative, "N-(4-
hydroxyphenyl)retinam
ide"  

RBP4 antagonist that  prevents transport 
of retinol into the RPE AMD Sirion Therapeutics 

Phase 2 trial did not 
meet primary endpoint 

A1120 (ICR-
14967) 

2-(4-[2-
(trifluoromethyl)phenyl
]piperidine-1-
carboxamido)benzoic 
acid 

Nonretinoid RBP4 antagonist that  
prevents transport of retinol into the RPE 

AMD/Stargardt 
disease iCura Vision 

Clinical trials in 
development 
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