RECONSTRUCTING HOLOCENE INDIAN SUMMER MONSOON VARIABILITY USING HIGH RESOLUTION SEDIMENTS FROM THE SOUTHEASTERN TIBET Melanie Marie Perello Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Department of Earth Sciences, Indiana University December 2020 Accepted by the Graduate Faculty of Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Doctoral Committee ______________________________________ Broxton Bird, Ph.D., Chair ______________________________________ Gabriel Filippelli, Ph.D. August 27, 2019 ______________________________________ William Gilhooly, Ph.D. ______________________________________ Lixin Wang, Ph.D. ______________________________________ Jeffrey Wilson, Ph.D. ii © 2020 Melanie Marie Perello iii DEDICATION I want to dedicate this work to my mother, Maria Louise Perello (1955-2015). My mother encouraged me to take every opportunity to explore the world and to try new things, including taking the big leap to start this doctorate. She is dearly missed, but her faith and love lives on. iv ACKNOWLEDGEMENT I first would like to acknowledge all of the support that I have received from my advisor, Dr. Broxton Bird. I am thankful for field assistance and support for this project provided by the Institute for Tibetan Plateau Research. I appreciate the opportunity to be a part of this exciting work and will remember these experiences for my entire life. It has been a tremendous privilege to visit Tibet and meet the amazing people that live and work there. I want to thank all of my family for their tremendous support of me throughout my education. I would not be able to have completed this degree without their help, particularly Dad and his first-class pet sitting services. I want to thank all of the faculty, staff and my fellow students in the Department of Earth Sciences, especially my committee, Cheryl Montgomery and Cathy Chouinard, for their support. Appreciation for research assistance to Dr. John Southon and the W.M Keck Carbon Cycle AMS Laboratory, Dr. Mark Abbott and his students in at the University of Pittsburgh, and Dr. Byron Steinman at the Large Lakes Observatory. I am especially grateful for Dr. Pratigya Polissar and Sam Phelps for all of their help with preparing and running our leaf-wax samples at Lamont Doherty Earth Observatory. Thank you for making me feel welcome and supporting this research. I wish to acknowledge that funding for this project was provided by the National Science Foundation (Award #1405072). v Melanie Marie Perello RECONSTRUCTING HOLOCENE INDIAN SUMMER MONSOON VARIABILITY USING HIGH RESOLUTION SEDIMENTS FROM THE SOUTHEASTERN TIBET The Indian summer monsoon (ISM) is the dominant hydrometeorological phenomenon that provides the majority of precipitation to southern Asia and southeastern Tibet specifically. Reliable projections of ISM rainfall are critical for water management and hinge on our understanding of the drivers of the monsoon system and how these drivers will be impacted by climate change. Because instrumental climate records are limited in space and time, natural climate archives are required to understand how the ISM varied in the past in response to changes in climatic boundary climate conditions. Lake sediments are high-resolution natural paleoclimate archive that are widely distributed across the Tibetan Plateau, making them useful for investigating long-term precipitation trends and their response to climatic boundary conditions. To investigate changes in monsoon intensity during the Holocene, three lakes were sampled along an east-west transect in southeastern Tibet: Galang Co, Nir’Pa Co, and Cuobu. Paleoclimate records from each lake were developed using isotopic (leaf wax hydrogen isotopes; δ2H), sedimentological, and geochemical proxies of precipitation and lake levels. Sediments were sampled at high temporal frequencies, with most proxies resolved at decadal scales, to capture multi-decadal to millennial-scale variability in monsoon intensity and local hydroclimate conditions. The ISM was strongest in the early Holocene as evidenced by leaf-wax n-alkane δ2H at both Cuobu and Galang Co corresponding with Cuobu’s higher lake levels and effective moisture. Monsoon intensity declined at Cuobu and Galang Co around 6 ka which corresponds to reduced riverine sediment influxes at Cuobu and deeper lake levels at Galang Co. The antiphase relationship between lake levels and monsoon intensity at Galang Co is attributed to air temperatures and effective moisture, with a warmer and drier local hydroclimate driving early Holocene low lake levels. The late Holocene ISM was more variable with wet and dry periods, as seen in the Nir’Pa Co lake level and leaf wax n-alkane δ2H record. These records demonstrate coherent drivers of synoptic and local hydroclimate that account for Holocene ISM expression across the southeastern Tibetan Plateau, indicating possible drivers of future monsoon expression under climate change. Broxton Bird, Ph.D., Chair vi TABLE OF CONTENTS LIST OF TABLES ...............................................................................................................x LIST OF FIGURES ........................................................................................................... xi 1. INTRODUCTION ...........................................................................................................1 1.1 Indian Summer Monsoon & Regional Climate .......................................................1 1.1.1 Seasonal Monsoon & Intra-Annual Variability ..............................................2 1.1.2 Historical Monsoon Variability ......................................................................3 1.2 Precipitation & Isotopes...........................................................................................6 1.3 Modern Monsoon & Climate Change ......................................................................8 1.4 Geological Settings ................................................................................................10 1.5 Records of Holocene ISM Intensity .......................................................................11 1.6 Research Questions & Site Selection .....................................................................15 1.7 References ..............................................................................................................16 2. RECONSTRUCTING LATE HOLOCENE HYDROCLIMATE VARIABILITY USING SHORT AND LONG CHAIN n-ALKANE HYDROGEN ISOTOPES, NIR’PA CO TIBET ...........................................................................................................27 2.1 Introduction ............................................................................................................27 2.2 Study Area .............................................................................................................29 2.3 Methods..................................................................................................................30 2.3.1 Sample Collection .........................................................................................30 2.3.2 Chronology ...................................................................................................30 2.3.3 Lipid Extraction & 2H Analysis ..................................................................31 2.3.4 Effective Moisture ........................................................................................32 2.4 Results ....................................................................................................................33 2.4.1 Sedimentology ..............................................................................................33 2.4.2 Short vs. Long-chain n-alkanes.....................................................................33 2.4.3 Leaf Wax δ2H................................................................................................34 2.4.4 Effective Moisture ........................................................................................34 2.5 Discussion ..............................................................................................................34 2.5.1 Localized Hydroclimate at Nir’Pa Co...........................................................34 2.5.2 Local & Synoptic Hydroclimate Relationships at Nir’Pa Co .......................36 2.5.3 Regional Paleoclimate ..................................................................................37 2.5.4 Forcing Mechanisms .....................................................................................38 2.6 Conclusions ............................................................................................................40 2.7 Tables .....................................................................................................................41 2.8 Figures....................................................................................................................42 2.9 References ..............................................................................................................50 3. HOLOCENE INDIAN SUMMER MONSOON INTENSITY OVER THE SOUTH-CENTRAL TIBETAN PLATEAU INFERRED FROM SEDIMENTOLOGY AND LEAF-WAX n-ALKANE HYDROGEN ISOTOPES ..........54 3.1 Introduction ............................................................................................................54 3.2 Study Area: Cuobu .................................................................................................56 3.3 Methods..................................................................................................................57 3.3.1 Sample Collection .........................................................................................57 vii 3.3.2 Sediment Dating............................................................................................58 3.3.3 Initial Core Description.................................................................................59 3.3.4 Lithics & Grain Size .....................................................................................59 3.3.5 X-ray Florescence (XRF) Geochemistry ......................................................60 3.3.6 Elemental Abundances & Isotopic Composition of Organic Carbon & Total Nitrogen ....................................................................................................60 3.3.7 Lipid Extractions & δ2H Isotopes .................................................................61 3.3.8 Effective Moisture Estimation ......................................................................63 3.4 Results ....................................................................................................................63 3.4.1 Core Description ...........................................................................................63 3.4.2 Age Model ....................................................................................................63 3.4.3 Elemental Abundances & Isotopic Composition of Organic Carbon & Total Nitrogen ....................................................................................................64 3.4.4 Lipid Biomarkers ..........................................................................................64 3.4.5 Hydrogen Isotopes ........................................................................................65 3.4.6 Effective Moisture ........................................................................................66 3.4.7 Sedimentology ..............................................................................................66 3.4.8 X-ray Fluorescence (XRF) Geochemistry ....................................................67 3.4.9 Statistical Analysis ........................................................................................68 3.5 Discussion ..............................................................................................................68 3.5.1 Inferred ISM Precipitation & Evaporation on the South-Central Tibetan Plateau ....................................................................................................................68 3.5.2 Monsoon-induced Cuobu River Overflow....................................................70 3.5.3 Synoptic vs. Local Hydroclimate at Cuobu ..................................................72 3.5.4 Millennial & Orbital Scale Drivers of ISM Variability ................................73 3.5.5 Drivers of Decadal & Centennial ISM Variability .......................................74 3.6 Conclusions ............................................................................................................76 3.7 Tables .....................................................................................................................77 3.8 Figures....................................................................................................................79 3.9 References ..............................................................................................................90 4. MULTI-PROXY EVIDENCE FOR AN EARLY HOLOCENE LOW LAKE STAND DURING A STRONG MONSOON: INVESTIGATING THE ELEVATION DEPENDENT EXPRESSION OF THE INDIAN SUMMER MONSOON ON THE TIBETAN PLATEAU ..................................................................97 4.1 Introduction ............................................................................................................97 4.2 Study Area: Galang Co ..........................................................................................98 4.3 Methods................................................................................................................100 4.3.1 Sample Collection .......................................................................................100 4.3.2 Geochronology ............................................................................................101 4.3.3 Initial Core Description...............................................................................101 4.3.4 Grain Size....................................................................................................102 4.3.5 XRF Geochemistry .....................................................................................102 4.3.6 Carbon and Nitrogen Isotopes ....................................................................102 4.3.7 Lipid Biomarker Extraction & 2H Analysis ..............................................103 4.4 Results ..................................................................................................................105 4.4.1 Core Description .........................................................................................105 viii 4.4.2 Age Model ..................................................................................................105 4.4.3 Organic Matter Chemistry ..........................................................................106 4.4.4 Sedimentology & Magnetic Susceptibility .................................................107 4.4.5 XRF Geochemistry .....................................................................................107 4.4.6 δ2H Lipid Biomarkers .................................................................................108 4.5 Discussion ............................................................................................................109 4.5.1 Holocene Hydroclimate & Lake Level Variability at Galang Co...............109 4.5.2 Hydroclimate Drivers of Galang Co Effective Moisture ............................112 4.5.3 Elevation-Dependent Expression of Monsoon Precipitation ......................113 4.6 Conclusions ..........................................................................................................115 4.7 Tables ...................................................................................................................116 4.8 Figures..................................................................................................................118 4.9 References ............................................................................................................131 5. CONCLUSIONS..........................................................................................................136 6. APPENDICES .............................................................................................................139 Appendix 1: Cuobu age model produced by Bacon® with composite depths vs. mean age ....................................................................................................................139 Appendix 2: Cuobu XRF Geochemistry ....................................................................145 Appendix 3: Galang Co age model produced by Bacon® with composite depths vs. mean age ..............................................................................................................271 Appendix 4: Galang Co XRF Geochemistry .............................................................275 CURRICULUM VITAE ix LIST OF TABLES Table 2.1: Average concentration of n-alkanes in Nir’Pa Co sediments ...........................41 Table 3.1: 210Pb dates from Cuobu B-17 surface core .......................................................77 Table 3.2: Radiocarbon dates from Cuobu B-17 and D-17 composite core ......................78 Table 4.1: 210Pb and 137Cs results from Galang Co E-15 Core ........................................116 Table 4.2: 14C dates from Galang Co D-15 Core .............................................................117 Table A 1.1 Depth and Mean Age (BP) for Cuobu composite core ................................139 Table A 2.1 Cuobu XRF Geochemistry Al - Ca ..............................................................145 Table A 2.2 Cuobu XRF Geochemistry Cl – Hf..............................................................166 Table A 2.3 Cuobu XRF Geochemistry Hg – Mo ...........................................................187 Table A 2.4 Cuobu XRF Geochemistry Ni – Rb .............................................................208 Table A 2.5 Cuobu XRF Geochemistry S – Tb ...............................................................229 Table A 2.6 Cuobu XRF geochemistry Te – Zn ..............................................................250 Table A 3.1: Galang Co Depth vs. Mean Age (BP) for composite core..........................271 Table A 4.1 Galang Co XRF Geochemistry Al – Br .......................................................275 Table A 4.2 Galang Co XRF Geochemistry Ca – Hf ......................................................290 Table A 4.3 Galang Co XRF Geochemistry Hg – Mo .....................................................305 Table A 4.4 Galang Co XRF Geochemistry Ni – Sc .......................................................320 Table A 4.5 Galang Co XRF Geochemistry Se – U ........................................................335 Table A 4.6 Galang Co XRF Geochemistry V – Zn ........................................................350 x LIST OF FIGURES Figure 2.1. The location of Nir’Pa Co (NPC; red circle) in reference to other regional climate records. Lake sediment archives including El Junico (EJ), Lake Zigetang (LZ), Pallcacocha (PA), Paru Co (PC), and Selin Co (SC) are represented with circles. Cave records from Dongge Cave (DC) and Qunf Cave (QC) are represented with squares. The Dunde ice core (DU) is represented with a triangle. Marine sediment cores from the Arabian Sea (AS), Eastern Pacific (EP), and the Western Pacific (WP) are represented with stars. The Lhasa weather station (LH) is marked with an open circle ............................................................................................42 Figure 2.2. The Nir’Pa Co watershed and surrounding area with the lake at the end of a 5 km long glacially carved valley. Digital elevation data is from the USGS SRTM (Shuttle Radar Topography Mission) dataset and is shown in 100 m contour intervals.................................................................................................................43 Figure 2.3. Bathymetric map of Nir’Pa Co with 2 m contour intervals. The respective core sites for A-11, A-15, and B-15 are designated with red circles. Location of the inlet and outlet to the lake are marked with the location of the moraine that terminates the watershed ...............................................................................44 Figure 2.4. Monthly total precipitation (mm ± s.d.) and average temperature (°C ± s.d.) at the Lhasa weather station. The monsoon season (May-September) is marked with a shaded gray ................................................................................................45 Figure 2.5. Total concentration of extracted long-chain C23 – C31 n-alkanes from sediment samples (ng/100 μL; A- E). Terrestrial lipid distribution as indicated with the Carbon Preference Index (CPI; F), Average Chain Length (ACL; G), and the aquatic vegetation index (Paq, H). Vertical black lines indicate the average value. The LIA and MCA time periods are marked with light blue and dark blue backgrounds (indicating wetter conditions) while 2250-1250 BP is marked with red background (indicating drier conditions) .....................................................................46 Figure 2.6. Leaf wax δ2H (‰ VSMOW) ±1 σ s.e.m. for C23 (A), C25 (B), C27 (C), C29 (D), and C31 I n-alkanes. ΔδC23-C31 shows the variation between isotopic values between nC23 and nC31 (F). A more positive Δδ value indicates higher evaporation while a more negative Δδ indicates lower evaporation. Vertical black lines indicate average values. The LIA and MCA time periods are marked with light blue and dark blue backgrounds (indicating wetter conditions) while 2250-1250 BP is marked with red background (indicating drier conditions) .....................................................................47 Figure 2.7. Nir’Pa Co δ2H nC23 (‰; A), δ2H nC31 (‰; B), ΔδC23-C31 (‰; C), Paq (D), and sand grain size (%, E). Compared with local climate records from Paru Co sand (%; F), principal components (G), δ2H for nC27 and nC29 (‰; H), Seling Co δ18O (‰; I), Lake Zigetang pollen index (J), and Dunde ice core δ18O (‰; K). Vertical black lines indicate the average value for each proxy. The LIA and MCA xi time periods are marked with light blue and dark blue backgrounds (indicating wetter conditions) while 2250-1250 BP is marked with red background (indicating drier conditions) .................................................................................................................48 Figure 2.8. Comparison of Nir’Pa Co δ2H nC31 (‰; A) and ΔδC23-C31 (B) data with regional monsoon records and global forcing. Regional monsoon records include Dongge Cave δ18O (‰; C), Qunf Cave δ18O (‰; D), and Arabian Sea marine core δ18O (‰; E). Pacific records include El Junico sand grain size (%, F), Pallcacocha red sediment color intensity (G), Eastern (H) and Western Pacific (I) and Indian Ocean (J) SSTs (Sea Surface Temperatures °C). Vertical black lines indicate the average value for each proxy. The LIA and MCA time periods are marked with light blue and dark blue backgrounds (indicating wetter conditions) while 2250-1250 BP is marked with red background (indicating drier conditions) ............................................49 Figure 3.1. Bathymetric map of Cuobu with core sites marked (red colored dots with core names). Bathymetry mapped with 0.5 m contour intervals. Inlets and outlets to the lake are marked with blue dashed lines and arrows. Cuobu River is marked with a blue dashed line. Grey background and black dashed line designate the extent of a moraine between Cuobu and Cuobu River. A delta feature on the moraine is present where an ephemeral stream bed cuts across the moraine ..................................................79 Figure 3.2. Topographic map of the area surrounding Cuobu, inset with the lake bathymetry (A). Cuobu watershed is designated with an orange dashed line. Topographic contours are at 50 m intervals while bathymetric contours are at 0.5 m intervals. An ephemeral stream (ii) and its delta (iii) that cut across the moraine are identified with a black box and shown in greater detail (B). The Cuobu River (i) is to the east of a moraine that forms the southeastern edge of Cuobu (iv). A transect (red dashed line) across the moraine is used to show the elevational profile (C) of the lake-moraine-river environment (B). The elevational profile is marked with red lines show the elevational difference between features .....................................................80 Figure 3.3. Average monthly temperature (°C ± s.d.) and total precipitation (mm ± s.d.) at Xigaze weather station from 1988-2018. Gray background indicates the annual monsoon season ................................................................................................81 Figure 3.4. Excess and supported 210Pb activity with 137Cs activity in the top 22 cm of Cuobu sediment core .....................................................................................................82 Figure 3.5. Age model for Cuobu produced by Bacon program using both 210Pb and 14 C dates .............................................................................................................................82 Figure 3.6. Cuobu B-17 and D-17 total organic matter (TOM %; A), total carbonates (TC %; B), δ13C (‰; C), δ15N (‰; D), and the ratio of C:N I. Black vertical line represents average values. The grey background indicates the period with highest C:N. Blue and red backgrounds indicate inferred wet and dry conditions at the lake ...........................................................................................................................83 xii Figure 3.7. Concentration of leaf wax n-alkanes extracted from Cuobu B-17 and D-17 sediments (ng/g) for C23 (A), C25 (B), C27 (C), C29 (D), and C31 I. Indices to distinguish between terrestrial (long-chain) and aquatic (short-chain) n-alkanes include average chain length (ACL: F), carbon preference index (CPI: G), and aquatic vegetation index (Paq: H). Black vertical line represents average values. Blue and red backgrounds indicate inferred wet and dry conditions at the lake ...............84 Figure 3.8. Coubo leaf wax n-alkane δ2H (‰) for C23 (A), C25 (B), C27 (C), C29 (D), and C31 I. Δδ2HC23-C31 is the balance of precipitation to evaporation (P:E; F). Black vertical line represents average values. Blue and red backgrounds indicate inferred wet and dry conditions respectively .......................................................85 Figure 3.9. Cuobu 5 pt. moving average (MA) dry bulk density (BD g cm-3: A), magnetic susceptibility (MS, SI 10 x -5: B), 5 pt. MA percent clay I, 5 pt. MA percent silt (D), 5 pt. MA percent sand I, histogram of grain diameter size for each sample (F), Ti (G) and 5 pt. MA Zr (H). The full record is shaded behind each moving average. Black vertical line represents average values. Red and blue background indicate periods with dry and wet conditions respectively, based on grain size ............................................................................................................................86 Figure 3.10. Principal Components Analysis (PCA) results from the Cuobu sediment record, indicating the contributions of each proxy in the overall variance of the dataset……………………………………………………………………87 Figure 3.11. Cuobu 5 pt. moving average (MA) %sand (A), 5 pt. MA Principal Component 1 (PC1; B) and Δδ2HC23-C31 (C) in comparison with Tibetan Plateau records from Paru Co n-alkane δ2HC27 and δ2HC29 (D) lithics I and primary component 1 (F), Lake Zigetang pollen index (G), and Koucha Lake effective moisture (H). The full record is shaded behind each moving average. Black vertical line represents average values. Blue and red backgrounds infer wet and dry conditions at Cuobu ...........................................................................................................88 Figure 3.12. Cuobu Δδ2HC23-C31 (A) and δ2HC31 (B) records in conjunction with records from the ISM span and Pacific SSTs. Records are from Tianmen Cave (C), Qunf Cave (D), El Junco I, and Eastern Pacific SST (F). Black vertical line represents average values. Blue and red backgrounds infer wet and dry conditions at Cuobu .................................................................................................................................89 Figure 4.1. Paleoclimate archives from the greater ISM region including Galang Co (GAL; red), Paru Co (PC), Mawmluh Cave (MA); Dongge Cave (DC), Qunf Cave (QC), Arabian Sea (AS), Eastern Pacific (EP), and El Junco (EJ). Lake and marine sediments are marked with circles and stars respectively. Cave records are marked with squares. The Qamdo weather station (QA) is marked with an open circle ...................................................................................................................118 xiii Figure 4.2. Galang Co (blue outline) and its watershed relative to the Parlang Zangbo River and surrounding region (A). Galang Co and its surrounding shoreline with the modified inlet on the southwest corner of the lake and the outlet on the southeast (B). On the lake, locations of core sites are marked with red circles while the surface sediments and soil samples are marked with blue circles .............................119 Figure 4.3. Thirty-year average of monthly total precipitation (mm ± s.d.) and average temperature (°C ± s.d.) at Qamdo weather station .............................................120 Figure 4.4. Stratigraphy of the composite Galang Co E-17 surface and D-17 Livingstone core. Core lithological units have been colored and marked to include clay (dashed lines), mud (silt and clay; horizontal lines), sand (small dots), gravel (large dots), and peat (solid grey). The location of radiocarbon dated material are designated with triangles..................................................................................................121 Figure 4.5. Supported (grey) and excess (blue) 210Pb activity (± 1 s.e.m,) and 137Cs activity (gray bar) from the top 35 cm of the E-17 surface core......................................122 Figure 4.6. Age model for Galang Co composite E-17 and D-17 core over the past 12.3 ka using both 210Pb and 14C dates .........................................................................123 Figure 4.7. Sedimentology and geochemistry of Galang Co E-17 and D-17 composite core including total organic matter (TOM %; A) and total carbonates (TC %; B) as derived from loss-on-ignition and the ratio of elemental carbon to nitrogen (C: N; C), organic matter δ13C (VPDB ‰; D), and sediment δ15N (air ‰;E). Black vertical lines denote average values over the record. Red and blue backgrounds indicate shallow and deeper lake conditions respectively ..................124 Figure 4.8. Physical sedimentology of Galang Co E-17 and D-17 composite core including dry bulk density (BD g x cm-3; A), wet sediment magnetic susceptibility (MS SI x 10-5), 5 point moving average (MA) percent total lithics I, percent clay 5 pt. MA (D), percent silt 5 pt. MA I, percent sand 5 pt. MA (F), and a histogram of grain size diameters (G). Black vertical lines denote average values over the record. Red and blue backgrounds indicate shallow and deeper lake conditions respectively ...........125 Figure 4.9. Select elemental XRF results from Galang Co E-17 and D-17 composite core including Ti (A), Fe (B), and Zr (C) and the ratios of Mn: Fe (F). All measurements are in counts per second (cps). Black vertical lines represent average values over the record. Red and blue backgrounds indicate shallow and deeper lake conditions respectively.....................................................................................................126 Figure 4.10. The concentration of Galang sediment n-alkanes (ng/g) for nC23 (A), nC25 (B), nC27 (C), nC29 (D), and nC31 I carbon chain lengths. The average chain length (ACL; F), carbon preference index (CPI; G), and aquatic vegetation index (Paq; H) of sediment n-alkanes. Black vertical lines denote average values over the xiv record. Red and blue backgrounds indicate shallow and deeper lake conditions respectively ......................................................................................................................127 Figure 4.11. Galang E-17 and D-17 composite core sediment δ2H (‰) for nC23 (A), nC25 (B), nC27 (C), nC29 (D), and nC31 I carbon chain lengths. Black vertical lines denote average values over the record. Red and blue backgrounds indicate shallow and deeper lake conditions respectively .............................................................128 Figure 4.12. Galang Co δ15N (‰; A), ratio of C to N (B), δ2HC23 (C), percent silt 5 pt. MA (D), percent sand 5 pt. MA I in conjunction with the reconstruction of effective moisture from Koucha Lake (F), the sand and lithics records from Paru Co (%; G-H), and temperature reconstruction from Lake Zigetang. Grey background indicates period of low lake level in Galang Co (12.5-6 ka). Average values over the record are designated as vertical lines. Red and blue backgrounds indicate shallow and deeper lake conditions respectively ...............................................129 Figure 4.13. Galang Co sand 5 pt. MA (%; A) and δ2HC23 (‰; B) compared with records from the broader ISM extent, the East Asian Monsoon, and the El Niño-Southern Oscillation. Records include Dongge Cave δ18O (‰; C), Mawmluh Cave δ18O (‰; D), Qunf Cave δ18O (‰; E), Eastern Pacific SSTs (°C; F), El Junco sand (%: G), and Pallcacocha (red color intensity). Grey background represents low lake level stand (12.5-6 ka) at Galang Co. Vertical lines denotes average values over each record. Red and blue backgrounds indicate shallow and deeper lake conditions respectively .................................................................................130 xv 1. INTRODUCTION The Indian summer monsoon (ISM) is one of the largest and most crucial hydrometeorological systems in the world, with over 40% of the world’s population living in its domain (Gadgil et al., 2004). The ISM serves as the dominant source of growing season precipitation on the Tibetan Plateau and surrounding region (termed the Third Pole; Qui, 2008), delivering ~80% of South Asia’s precipitation (Sinha et al., 2015). Major rivers with headwaters in the plateau, including the Ganges, Indus, Sutlej, and Brahmaputra, flow south through the Himalayas (Harris, 2006). The ISM is closely connected with other major climate systems including the East Asian Monsoon (EAM) and the Western Pacific Monsoon (Salinger et al., 2014). Concerns over future dependability of ISM precipitation underscores the need to understand natural variability of the monsoon and respective climatic drivers, including the increasing role of anthropogenic influences. Natural variability combined with changing global climatic conditions paints a bleak picture of a monsoon system that will be less dependable with less precipitation which is devastating in a region that struggles with food deficits and inadequate potable water availability (Bollasina et al., 2011; Niyogi et al., 2010; Sinha et al., 2015; Tiwari and Joshi, 2012; Vrese et al., 2016). Projections of future monsoon rainfall are reliant on accurate and precise modeling of the integration of natural variability and climate change, based on both paleoclimate records and modern observations. Despite the importance of the ISM and a plethora of paleoclimate records, considerable knowledge gaps remain concerning how monsoon intensity has varied both temporally and spatially, indicating a need for more studies of climate in the region. 1.1 Indian Summer Monsoon & Regional Climate The ISM, also referred to as the South Asian or summer Asian monsoon, is the dominant precipitation source for Southeastern Asia each summer (June-September). The monsoon is driven in part by the temperature gradient between sea surface temperatures (SSTs) and land, including the large arid land mass of the Tibetan Plateau (Molnar et al., 2010). Other recognized forces behind monsoon intensity include the migration of the Intertropical Convergence Zone (ITCZ), solar insolation, and larger climate systems, such as the El Niño-Southern Oscillation (Haug et al., 2001). The 1 modern extent of the monsoon is centered over the Indian subcontinent but expands north through the eastern Tibetan Plateau, west towards Pakistan and the tip of the Arabian Peninsula, and east in Bangladesh and western Myanmar. Isotopic signature of the monsoon is evident over a much larger area extending to the Arabian Peninsula (Fleitmann et al., 2003), Eastern China (Dykoski et al., 2005), and the Tanggula Mountains in central Tibet, China (Tian et al., 2001). 1.1.1 Seasonal Monsoon & Intra-Annual Variability The onset of the monsoon season is dictated by temperature gradients between the Indian Ocean and the dry, arid Tibetan Plateau along with the seasonal migration of the Intertropical Convergence Zone (ITCZ) and the orographic effects of the mountainous terrain (Chen et al., 2014; Gadgil, 2003). The maximum northern position of the ITCZ is reached during the summer months, which corresponds with the onset of the monsoon rainfalls and the respective strength of the monsoon (Fleitmann et al., 2007). The elevation of the TP plays a significant role in the intensity of the seasonal monsoons (Harris, 2006; Wu et al., 2007). A low-pressure system pulls in warm, humid air from the Indian Ocean, producing intense precipitation of the southern slopes of the Himalayas with moderate rainfall further inland (Harris, 2006). Intra-annual variability of the monsoon consists of active and break periods in rainfall that are attributed to tropical convergence zones and intra-seasonal oscillations (Goswami and Mohan, 2001). Monsoon seasons can vary year to year in intensities, rainfall amounts, and in timing of the onset and the length of the monsoon season. Failures of the monsoon, characterized by drought conditions during the monsoon season, have been attributed to reduced wind strength and cooler temperatures (Cook et al., 2010). Multiple drivers of these inter-annual changes in monsoon intensity have been identified through modern observations and supplemented with paleoclimate records. Ocean-atmosphere conditions in the Indian Ocean and tropical Pacific Ocean are considered to be key drivers of inter-annual variability in the ISM rainfall. Previous research indicates that the ENSO moderates the ISM by reducing the length of the rainy season resulting in decreased rainfall (Cook et al., 2010; Gadgil et al., 2004; Goswami and Xavier, 2005; Thompson, 2000). El Niño events have the greatest influence on the 2 ISM rainfall by cooling the air over the Indian subcontinent and weakening easterly trade winds along with increasing atmospheric subsidence and convection (Kumar et al., 2006; Yeh et al., 2009) and are associated with monsoon failures and drought conditions (Cook et al., 2010; Thompson, 2000); with La Nina conditions resulting in a stronger monsoon due to stronger easterly trade winds. The EQUINOO (Equatorial Indian Ocean Oscillation) when overlapping with ENSO conditions can also affect monsoon rainfall with positive (negative) phases being associated with stronger (weaker) monsoons (Surendran et al., 2015). Both the Indian Ocean Dipole (IOD) and the Pacific Ocean Dipole (POD) have a positive correlation with ISM rainfall, although research on how these climate forcings influence the monsoon on longer time-scales is still ongoing (Ashok et al., 2001). The ITCZ, where winds and precipitation converge in a latitudinal zone, is another crucial driver of the summer monsoon (Fleitmann et al., 2007). The summer position of the ITCZ drives how far inland precipitation falls, with a more northerly trajectory linked to higher rainfall amounts. The winter position of the ITCZ, which reaches its southern-most position in January, drives a winter monsoon system. The winter monsoon has an inverse relationship with the summer monsoon, with heavier snowfalls in Eurasia correlating with decreased summer monsoon rainfall (Blanford, 1884; Walker, 1910), but analyses suggest that this relationship is most apparent in extreme anomalies rather than an annual trend (Bamzai and Shukla, 1999). 1.1.2 Historical Monsoon Variability Decadal monsoon variability is affected by the same drivers of inter-annual variability: Indian and Pacific Ocean and atmosphere conditions. Modern records have shown a strengthening of the relationship between monsoon rainfall and the Indian Ocean post-1976 AD due to warming SSTs (Clark et al., 2000). The short instrumental record, however, prevents much analysis on longer time scales. As such there is a substantial need for understanding how the monsoon has varied on longer time scales using paleoclimate records. These paleoclimate records have identified long-term and abrupt changes to the monsoon in connection with the ITCZ, solar insolation, and ENSO 3 conditions (Bird et al., 2010; Cook et al., 2010; Dykoski et al., 2005; Fleitmann et al., 2007). The short instrumental (1930s to present) and historical records in the ISM region necessitate the need for developing paleoclimate records from natural archives, such as lake sediments, to interpret long-term changes. Centennial and decadal-resolved records are particularly sparse in the ISM region (Bird et al., 2017; Bird et al., 2014), which limits the understanding of monsoon variability on shorter-time scales. Existing studies of the ISM have demonstrated long-term millennial changes in the ISM since the early Holocene where the monsoon was strongest, before transitioning to a weaker monsoon in the Middle Holocene (5-3 ka) that persists today (Chen et al., 2014; Djamali et al., 2010; Seki et al., 2009). However, the timing of the weakening of the monsoon is not consistent between records, which suggests that the timing of changes in ISM rainfall may be spatially-dependent. Higher-resolution records have demonstrated that even within periods described by long-term records as either strong or weak monsoons, there can be significant variability on shorter-time scales (Bird et al., 2014). Consideration of the ISM response to climate events is important as there has not been agreement between global responses to the MCA and LIA and the responses seen in the ISM region which may be critical in understanding how climate forcings differ in this region (Bird et al., 2017; Mann et al., 2009; Sinha et al., 2015). Large-scale interpretations of regional climate are made possible with comparisons of paleoclimate records from a variety of deposits and environments using proxies or indicators of natural climate conditions. Paleoclimatology relies on proxies, or indicators, of past climate conditions that are preserved in natural archives including marine and freshwater sediments, ice caps, tree rings, and speleothems. Lakes are a critical, sensitive terrestrial archive for both within lake processes (i.e. water quality, lake level) and watershed environmental conditions (i.e. climate, land use). Lakes are well distributed across biomes and elevations and most have high sedimentation rates, making them sensitive to climate conditions on shorter-time scales and at higher spatial frequencies than most natural archives. Lake-specific sedimentation rates can provide information on varying time-scales, from seasonal to decadal. Sediments record information about conditions within the lake and the surrounding watershed with typical 4 proxies including geochemistry and isotopes, sedimentology, and biological fossils. The diverse proxies found in lake sediments can be used to interpret local, regional, and global climate-processes. Dating of these sediments makes it possible to interpret temporal changes in climate and compare records from other lakes and archives (Bird et al., 2017; Bird et al., 2014). In most lakes, sediments are continuously deposited, with rare hiatuses associated with extreme dry conditions (Fleitmann et al., 2003), and well preserved making them a useful archives of regional climate and watershed specific responses. In the Tibetan Plateau, lakes are a valuable archive for paleoclimate due to the high density of lakes in the region while other archives, such as tree rings, are less prevalent in the region. Precipitation is not as well constrained as temperature in paleoclimate records, because it is less spatially homogenous than temperature, with precipitation levels varying significantly with location. Indicators of precipitation and other measures of the hydrological cycle, such as evaporation, are recorded in lake sediments through multiple proxies, including isotopes, biological indicators, and directly through physical evidence of changing lake levels. This project utilizes both 18O and 2H isotopes, with a focus on 2H extracted from leaf-wax n-alkanes, to interpret hydrologic changes including precipitation and evaporation during the summer monsoon. The correlation between δ2H and δ18O reflects global and local meteorological water lines (GMWL and LMWL; Craig, 1961). Deuterium excess (d = δ2H – 8 x δ18O) is a measure of the deviation between the expected linear relationship of δ18O and δ2H (GMWL: δ2H = 8.0 x δ18O + 10%), which varies spatially and reflects local fractionation processes (Dansgaard, 1964). Both δ18O and δ2H values are impacted by temperature, elevation and amount effects, with amount effects playing the largest role in monsoon isotopic expression (Tian et al., 2003; Vuille et al. 2005). Isotopic records combined with other sedimentological proxies are crucial for interpretations of how the ISM has varied throughout the Holocene. The ISM was strongest during the early Holocene, during a period known as the Holocene Climate Optimum (10.5-6.5 ka), but began to weaken during the middle Holocene (~5.2 ka; e.g., (Campo and Gasse, 1993; Chen et al., 2014; Djamali et al., 2010). In the paleoclimate record from Paru Co, a lake sampled in this study, maximum ISM rainfall in the study 5 region was between 10.1 – 5.2 ka, after which conditions became drier (Bird et al., 2014). The timing of this transition to a weaker monsoon differed between isotopic and sedimentological proxies, which suggests that monsoon isotopic signatures reflect regional synoptic conditions while the sedimentology reflects local watershed responses. The monsoon continued to weaken into the late Holocene, where two climate events occurred: the Medieval Climate Anomaly (MCA: 950-1250 AD), and the Little Ice Age (LIA: 1400-1700 AD; Mann et al., 2009). Existing records are not in agreement about how these climate events influenced monsoon precipitation. Some records found a moderate strengthening of the monsoon during the MCA, but no response to the LIA (Bird et al., 2017; Sinha et al., 2015). 1.2 Precipitation & Isotopes Hydrogen and oxygen isotopes are useful for studying both relative volume and trajectories of precipitation across terrestrial landscapes and have been used in many studies of the Asian monsoons. Isotopic measurements of hydrogen (δ2H) and oxygen (δ18O) are strongly influenced by moisture source and climate, including temperature and the amount of precipitation (Gat, 1996; Tian et al. 2018). Modern isotopic observations have found that the ISM extends across the Indian subcontinent, west to the Brahmaputra Valley, and north towards the Tanggula Mountains, where both the tropical and temperate air masses converge and the northernmost extent of the summer ITCZ lies (Tian et al., 2001). Monsoon precipitation from the Indian Ocean and Indian subcontinent reaches the Tibetan Plateau in two primary directions: from the Bay of Bengal through the Brahmaputra Valley and across the subcontinent towards the Himalayan slopes, providing a significant orographic effect on northern India. Summer rainfall travels through the southeast corner of the plateau and is then redistributed to the north and west, reaching the central and western plateau through the Nyainqêntanglha Mountains. Mean annual precipitation in the Tibetan Plateau ranges from 172 to 650 mm with driest conditions in the western plateau and at higher altitudes (Tian et al., 2001; Tian et al., 2003). Isotopic analyses of modern precipitation have generally found there is little variation between the global and local meteoric water lines during the monsoon, 6 reflecting a low evaporation signal (Breitenbach et al., 2010; Tian et al., 2001). Isotopic measurements of δ18O and δ2H in northeastern India near the Bay of Bengal during the monsoon range from 0.8 to -18.8 ‰ and 18.5 to -144.4 ‰, respectively (Breitenbach et al., 2010). Monsoon rainfall on the Tibetan Plateau has been found to have consistently lower δ18O values between -5‰ to -20‰ (Tian et al., 2003). Winter precipitation, in contrast to summer monsoon rainfall, has been observed to be more enriched due to continental recycling and different moisture sources signal (Breitenbach et al., 2010; Tian et al., 2003). δ18O and δ2H values are more affected by amount effects than temperature in the monsoon region in contrast to areas on the plateau that are dominated by continental precipitation sources (Thompson, 2000; Tian et al., 2003). Modeling of different forcings, suggest that temperature, transportation, and distillation processes (i.e., rainout and depletion) all affect the isotopic signature of monsoon rainfall (Vuille et al., 2005). New techniques have allowed for the measurement of hydrogen isotopes incorporated into organic biological compounds, such as lipids produced by terrestrial and aquatic vegetation, producing new isotopic proxies (Aichner et al., 2010; Eglington and Eglington, 2008; Polissar and D’Andrea, 2013; Sachse et al., 2012). These new proxies allow for isotopic measurements of precipitation in lake systems that do not have carbonate sediments which was not possible previously. With the southeastern Tibetan Plateau dominated by non-carbonate lakes, this project is utilizing terrestrial and aquatic leaf-wax n-alkanes to measure hydrogen isotopic variability in the ISM region. These results will be verified with carbonate δ18O measurements where carbonate sediments are available. Both terrestrial and aquatic plants incorporate hydrogen atoms from their respective water sources and use them in the synthesis of lipids and other biological compounds. Studies have found that these organic biological compounds, including nalkanes, alkanoic acids, and fatty acids, provide an indirect measurement of the isotopic composition of precipitation at the time of synthesis (Aichner et al., 2010; Feakins et al., 2016; Hou, 2008; Nichols, 2010). Interpretations of these isotopic measurements should consider the influences of regional climate, local hydrology (i.e., evaporation and condensation), and plant physiology (i.e., photosynthetic pathways and water uptake) on isotopic fractionation 7 (Hou, 2008). Plant physiology significantly affects δ2Hwax values and is reflective of the δ2H of xylem water in plants, which is directly sourced from soil water (Feakins et al., 2016). δ2Hwax has been demonstrated to follow the same spatial trends as δ2H of precipitation and lake water, but is highly fractionated from those isotopic values (Hou, 2008). Site specific characteristics also influence δ2Hwax including a negative correlation with elevation and continentally (Feakins et al., 2016). Consideration of both regional and site-specific influences on precipitation isotopes is necessary to make interpretations of how monsoon and other precipitation systems vary spatially and temporally. Both δ18O and δ2H values have been shown to decrease through the monsoon season which has been interpreted more as either a reflection of the source waters (Breitenbach et al., 2010) or an amount effect (Clark and Fritz, 1997; Datta et al., 1991; Kurita et al., 2009; Tian et al., 2003; Vuille et al., 2005; Zhang et al., 2006). The surface waters of the Bay of Bengal, the water source for summer rainfall, undergoes significant isotopic variation throughout the monsoon season due to large fluxes of river runoff (Breitenbach et al., 2010). The amount effect has been observed through an inverse relationship between annual precipitation accumulation and δ18O values in both precipitation studies and ice core records (Thompson, 2000; Tian et al., 2003). Studies have found that the extent of the isotopic signatures of the monsoon has varied throughout the Holocene, reaching as far as the Near East (Djamali et al., 2010), the Arabian Peninsula (Fleitmann et al., 2003; Fleitmann et al., 2007) and caves in southern China (Dykoski et al., 2005; Maher, 2008). However, more records are needed to understand how isotopic measurements vary across different time scales (Thompson, 2000; Tian et al., 2003; Yao et al., 2000), as some paleoclimate records show that isotopic trends have varied significantly through the Holocene (Fleitmann et al., 2003; Zhang et al., 2008). 1.3 Modern Monsoon & Climate Change Modern weather monitoring in the Tibetan Plateau (TP) began around the 1930s and, currently, there are 97 monitoring stations above 2,000 m and an additional 100 at lower altitudes (Liu et al., 2000). Analysis of modern temperature records have shown that most of the plateau has experienced significant warming since the 1950s, with the 8 eastern plateau warming slower than other regions (Gou et al., 2007; Liu et al., 2000; You et al., 2008). Calculated evapotranspiration (ET) in the region has decreased in all seasons between the 1960s and 2000 (Shenbin et al., 2006). During that same period (1961-2000), precipitation for the region increased, particularly for the eastern Tibet, but declined in western Tibet (Xu et al., 2008). The growing season has increased throughout the region with an associated decline in the number of days with frost or ice (You et al., 2008). Temperature reconstructions from ice cores and glaciers have also shown a recent warming trend (Thompson et al., 1989; Thompson et al., 1993; Yao et al., 1995). Warming conditions in the TP have been linked with human-induced changing climate (Anmin et al., 2006). Recent warming on the plateau exceeds the average for the Northern Hemisphere, indicating that this region is particularly vulnerable to changing climate (Liu et al., 1998; Liu et al., 2000). Since the region contains abundant glaciers and permafrost, it is commonly referred to as The Third Pole Environment (Qui, 2008). Yet with warming temperatures, the Tibetan Plateau is already experiencing changing conditions, including glacial retreat, melting permafrost, and an altered hydrological cycle (Yang et al., 2011; Yao et al., 2007). Glacial retreat is widespread through the plateau (Tang et al., 1998; Yao et al., 2012) and is a significant concern as a water storage loss. Glacial retreat has been increasing since the 1960s when measurements first began and is connected to a roughly 5% increase in river discharge (Yao et al., 2007). In addition to glaciers, Tibet also has areas of discontinuous and sporadic permafrost. Permafrost melting has increased in relation to warmer soil temperatures connected to an overall warming region (Cheng and Wu, 2007). Soil temperatures are increasing at a faster rate than air temperatures, making the whole region more susceptible to changing climate (Zhao et al., 2004). Climate change has been recognized to have a greater impact at higher altitudes with alpine regions exhibiting greater sensitivity (Yao et al., 2000). Reviews of meteorological observations of the monsoon system has shown that the monsoon has underwent significant changes throughout the 20th and early 21st centuries. Monsoon intensity has decreased since the mid-20th century although the total precipitation has increased slightly (Bollasina et al., 2011). Simultaneous with decreasing monsoon intensity, the monsoon season has also been shortening, with the monsoon onset 9 occurring later (Mondal et al., 2014). A hypothesis for weakening monsoon intensity is that increasing volumes of aerosols in the region are impacting monsoon intensity (Bollasina et al., 2011; Sinha et al., 2015). The anthropogenic aerosols in the region, referred to as Asian Dust, are linked to the burning of wood and fossil fuels due to intensive industrialization and population growth. Another consideration is the increased importance of sea surface temperatures (SSTs) in the Indian and Pacific Oceans, which corresponds to warmer SSTs post-1976 AD (Clark et al., 2000). The future of the ISM is of great scientific interest and is particularly important in the context of the human communities in the region. The Tibetan Plateau has been inhabited for the past 15,000-20,000 years (Barton, 2016), with most communities dependent on subsistence agriculture and nomadic shepherding. Subsistence and nomadic agriculture are highly dependent on monsoon rainfall and its effects on the short growing season in the plateau, which will be substantially affected by monsoon variability. Models of future impacts of changing climate predict reduced rainfall, delayed onset and higher frequency of dry periods within the monsoon season (Ashfaq et al., 2009). Higher Indian Ocean temperatures are expected to produce more extreme storm events and unpredictability in the monsoon precipitation (Kumar et al., 2006). The future monsoon is also expected to be strongly impacted by anthropogenic processes, including agricultural intensification and aerosol emissions (Bollasina et al., 2011; Niyogi et al., 2010; Sinha et al., 2015; Vrese et al., 2016). With over 40% of the world’s population reliant on this rainfall, the social and economic ramifications of dry periods are potentially devastating (Gadgil et al., 2004). 1.4 Geological Setting The Tibetan Plateau (77°E to 105°E and 25°N to 40°N) encompasses the Tibetan Autonomous Region and the southern edge of Qinghai province in southwest China along with areas within Nepal and northern India. The plateau itself has a mean elevation greater than 5,000 m (ASL) and includes an area of approximately 2,500,000 km2 (Harris, 2006; Liu et al., 2000). Commonly called the Roof of the World, the plateau is highly mountainous and has steep surficial relief. The plateau is bordered by the Inner Himalayan Range to the south, the Kunlun Range to the north, and Qilian Range to the 10 northeast. This region was formed through orogenic processes resulting from a continental collision (convergent boundary) between the Indo-Australian and Eurasian plates that began approximately 50 Mya (Yin and Harrison, 2000; Zhiseheng et al., 2001). Terrestrial and marine sediment analyses have shown that the Asian monsoons developed in phase with uplift of the plateau (Zhiseheng et al., 2001). Modern dominant geomorphic processes revolve around glaciers, fluvial systems, and mass movements. The Tibetan Plateau is often referred to as the Third Pole Environment due to its high concentration of glaciers and ice caps (Xu et al., 2008). Glacial melt and snowmelt in the spring and early summer are a critical part of the region’s hydroclimate by providing base flow to rivers (Yao et al., 2007). Fluvial systems in the region move a massive volume of sediment and dissolved materials with rivers from this region are responsible for over a quarter of all dissolved matter deposited to the oceans (Palmer and Edmond, 1992). These morphological processes may be impacted by future climate conditions, with reduced glaciation and more intense rainfall which will affect fluvial systems and mass movements. 1.5 Records of Holocene ISM Intensity Existing Holocene climate records for the summer monsoon have been developed from ice cores, speleothems, and lake and bog sediments (Dykoski et al., 2005; Herzschuh et al., 2009; Liu et al., 1998; Mügler et al., 2008; Shao et al., 2010; Shi et al., 2001; Yanhong et al., 2006). Predicting how continued greenhouse gas emission induced warming will impact rainfall from the ISM requires high frequency resolved climate records. However, the majority of these proxies are at a low-resolution, often on centennial or millennial timescales, which can overlook climate variability on shorter time scales that are more relevant to human communities. Only three long-term records from the region were resolved at a decadal level: Mawmluh Cave (Berkelhammer et al., 2012), Tianmen Cave (Cai et al., 2012), and Nam Co (Zhu et al., 2008). An important consideration in the study of the ISM throughout the Holocene is how the monsoon rainfall and lake level has varied spatially. There is not a cohesive understanding of whether or not the monsoon extent has varied extensively during the Holocene and, if so, 11 what drives the spatial extent. That is why assessment of paleoclimate records in southeastern Tibet can provide more information on spatial trends. Most studies of Holocene climate divide the period into the early (11 – 6.5 ka), middle (6.5 – 2.5 ka), and late (2.5 ka – present) Holocene for their interpretations, with most studies focusing on either the early or late Holocene. The early Holocene was characterized by a strong monsoon, with higher rainfall interpreted in lake, ice, and cave records (Campo and Gasse, 1993; Chen et al., 2014; Djamali et al., 2010; Seki et al., 2009). The Holocene Climate Optimum (10.5-6.5 ka) was a period marked with wet and warm conditions across South Asia, with a strong Indian summer and East Asian monsoon (Seki et al., 2009). The middle Holocene was more varied, with most studies agreeing that the monsoon started to weaken during this period (Campo and Gasse, 1993; Chen et al., 2014; Djamali et al., 2010). Many studies of forcings for the changing monsoon in the early and middle Holocene focus on changes in solar insolation and the migration of the ITCZ (Bird et al., 2014; Cai et al., 2012; Chen et al., 2014; Fleitmann et al., 2007). Decreasing levels of solar insolation over the Holocene coincides with millennial scale decreases in monsoon intensity (Bird et al., 2014; Cai et al., 2012; Fleitmann et al., 2007). One record from the Chinese Loess Plateau suggests a connection between Bond Events in the North Atlantic Oscillation (NAO) and dry conditions on the plateau (Porter and Weijian, 2006), but there is not widespread agreement on this hypothesis between records. The ITCZ is also considered to play a role in the strength of the monsoon, with studies suggesting that a northern ITCZ coincided with stronger monsoon rainfalls in the early Holocene (Chen et al., 2014; Fleitmann et al., 2007). The ITCZ migrated further south during the middle Holocene at the same time as declines in solar insolation, however it is difficult to distinguish which driver played a more significant role in the weakening of the monsoon during this time period. Specific records vary on when the monsoon weakened during the middle Holocene with dates ranging from 5 – 3 ka (Bird et al., 2014; Cai et al., 2012; Herzschuh et al., 2006; Hong et al., 2003; Xuefeng et al., 2006; Yanhong et al., 2006; Zhu et al., 2008). There are two conflicting hypotheses about how the transition between a strong and weak monsoon occurred. The first hypothesis is that there was an abrupt decrease in monsoon rainfall that occurred sometime between 5 – 4.5 ka (Morrill et al., 2003). The 12 second, more prominent, hypothesis is that the monsoon weakened gradually simultaneous with decreasing solar insolation (Dykoski et al., 2005; Fleitmann et al., 2003; Gupta et al., 2003; Ivanochko et al., 2005; Wang et al., 2005). Hiatuses in some records, such as the speleothems in Mawmluh Cave around ~3.8 ka and Qunf Cave around ~2.7 ka, suggest dry conditions with insufficient moisture to continue carbonate deposition (Berkelhammer et al., 2012; Fleitmann et al., 2003). The timing of the transition to a drier climate and weaker monsoon varies between sites which may also reflect a spatial influence on the distribution of ISM moisture. One study in the near-east demonstrated that the decline of the monsoon during the middle Holocene led to major forest cover changes, which might have indicated a reduction in the influence of the monsoon on that area (Djamali et al., 2010). The late Holocene ISM has generally been described as weak, due to lower solar insolation and a more southerly ITCZ (Chen et al., 2014). High-resolution records for the ISM during the late Holocene are less prevalent than those for the early Holocene, due to insufficient material with many hiatuses present in paleoclimate record (Berkelhammer et al., 2012; Fleitmann et al., 2003). A key driver for variability throughout the Holocene, particularly the late Holocene, is the connection between Indian-Pacific Ocean SSTs and the ENSO (El Niño Southern Oscillation) system. El Niño conditions reduce ISM strength and La Niña conditions result in stronger monsoons, relationships that have been established in other published records (Cook et al., 2010; Thompson, 2000). The Dasoupu ice core made strong correlations between drought conditions, indicated by increased dust and chloride concentrations, and El Niño events in the late Holocene (1790-1796 AD, 1876-1877 AD; Thompson, 2000). In another study, Cook et al. (2010) identified large droughts, megadroughts, from tree rings with several events correlating with El Niños (1790-1796 AD, 1876-1877 AD, 1918-1919 AD). The effects of the ENSO system are moderated by the distribution of Indian and Pacific Ocean SSTs (Cook et al., 2010). The Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA) were two major climate events during the late Holocene that have been found in numerous Northern Hemisphere paleoclimate records, with the MCA being a period of anomalous warmth and increased precipitation and the LIA being a period of colder temperatures and reduced precipitation (Mann et al., 2009). Records from the ISM region have not 13 shown the same relationships between precipitation and the MCA and LIA as other Northern Hemisphere records, emphasizing a need to further understand how these events influenced monsoon intensity (Bird et al., 2017; Sinha et al., 2006; Sinha et al., 2015; Zhang et al., 2008). The modern late Holocene was also characterized by the industrialization-induced warming period that is exhibited in paleoclimate records including ice cores and lake sediments (Thompson, 2000; Wang et al., 2011). Some records have also shown that the 20th century warming period is also connected to a weaker monsoon, with lower lake levels and more frequent droughts (Cook et al., 2010; Wang et al., 2011). The MCA was marked by warmer temperatures (positive temperature anomalies) with persistent La Niña conditions in the tropical Pacific (Mann et al., 2009), however some modeling has contradicted this observation (González-Rouco et al., 2011). Warming was estimated to have exceeded early-20th century warming across the Northern Hemisphere including the North Atlantic, the Eurasian Arctic, Northern Africa, and North America (Goosse et al., 2012; Mann et al., 2009). Theoretical modeling of the temperature increases in MCA have suggested an integrated forcing with weak increases in solar radiation producing altered atmospheric-ocean circulations including northern migration of the Gulf Stream and Kuroshio currents (Goosse et al., 2012; Servonnat et al., 2010). The LIA is characterized by cooling across the Northern Hemisphere, but isolated warming in some areas in North America and Eurasia (Mann et al., 2009). Theorized forcing for the LIA are reduced solar radiation and increased atmospheric volcanic aerosols (Servonnat et al., 2010; Yan et al., 2015). How the Asian monsoons responded to these events is not fully understood. Select records suggest that the MCA may have resulted in a slight increase in ISM precipitation, which may be attributed to the La Niña state in the Pacific, and a weak response to the LIA (Bird et al., 2017; Sinha et al., 2015), which may have coincided with a southern migration and contraction of the ITCZ (Yan et al., 2015). Many paleoclimate records of the ISM emphasize millennial trends in hydroclimate, but finer resolution records have demonstrated that there are centennial and decadal-scale variabilities that are superimposed onto the long-term trends. Sedimentology at Paru Co, for example, demonstrated that during the strong monsoon in 14 the early Holocene, there were five distinct high and low lake stands (Bird et al., 2014). These events, described on centennial time scales, are an important indication that broader, millennial trends miss finer variability in monsoon rainfall. Other records have also demonstrated that greater rainfall variability exists through the Holocene, but is superimposed on the long-term trends (Fleitmann et al., 2007). Finer resolution records are also crucial in understanding how the hydroclimate system responds to specific events, such as the MCA and LIA (Bird et al., 2017). 1.6 Research Questions & Site Selection In this dissertation, I address some of this uncertainty of Holocene ISM expression by providing new, high-resolution lake sediment records from the southern Tibetan Plateau (TP), where precipitation is predominately from the ISM (Tian et al., 2001). Three small lakes were sampled along an east-west transect across the southeastern to south-central TP: Galang Co, Nir’Pa Co, and Cuobu. All three lakes have relatively small watersheds that showed no evidence of recent glaciation or humandisturbance, reducing non-climatic watershed influences on the sediment records. The plant communities at each site are dependent on monsoon precipitation during their growing season, allowing for the use of leaf-wax n-alkane proxies for assessing hydrogen isotopes. Both Cuobu and Nir’Pa Co are high-elevation lakes that were selected for understanding higher, temporal variability in local and synoptic hydroclimate variability in the south-central and southeastern TP respectively. Galang Co is a relatively lowelevation lake in a heavily vegetated watershed, selected to determine whether ISM expression is consistent between high and low elevation sites. Sediment cores from these three lakes are used to address the primary objectives of this project which include understanding 1) long-term ISM variability throughout the Holocene and what time-scales are appropriate for understanding hydroclimate variability, 2) timing of transitions between stronger and weaker monsoon conditions during the middle Holocene, and 3) how the ISM has responded to specific climatic events, such as the MCA and LIA. Each record consists of proxies that demonstrate changes in precipitation, lake levels, and watershed conditions throughout the Holocene (11.7 ka – present). These proxies were selected to address the primary objectives of this 15 project, as described earlier, and to test my hypotheses. With current climate models predicting an increase in droughts and delayed onset of the monsoon season, the reliability of the ISM for water during the growing season in this region is under threat. This project improves future climate modeling of the region by providing multiple decadally-resolved records of lake levels and precipitation across the eastern plateau during the past 10,000 years. Expanding the knowledge of the ISM region’s climate history is crucial for understanding how the monsoon may vary in the future and how those variabilities might impact the human communities dependent on that system. 1.7 References Aichner, B., Herzchuh, U., Wilkes, H., Vieth, A. and Böhner, J. 2010. δD values of nalkanes in Tibetan lake sediments and aquatic macrophytes – A surface sediment study and application to a 16-ka record from Lake Koucha. Organic Geochemistry 41, 779-790. Anmin, D., Guoxiong, W., Qiong, Z. and Yimin, L. 2006. New proofs of the recent climate warming over the Tibetan Plateau as a result of the increasing greenhouse gases emissions. Chinese Science Bulletin 51(11), 1396-1400. Ashfaq, M., Shi, Y., Tung, W., Trapp, R., Gao, X., Pal, J. and Diffenbaugh, N. 2009. Suppression of south Asian summer monsoon precipitation in the 21st century. Geophysical Research Letters 36, L01704. Ashok, K., Guan, Z. and Yamagata, T. 2001. Impact of the Indian Ocean Dipole on the Relationship between the Indian Summer Monsoon Rainfall and ENSO. Geophysical Research Letters 28(23), 4499-4502. Bamzai, A. and Shukla, J. 1999. Relation between Eurasian snow cover, snow depth, and the Indian summer monsoon: An observational study. Journal of Climate 12, 3117-3132. Barton, L. 2016. The cultural context of biological adaptation to high elevation Tibet. Archaelogical Research in Asia 5, 4-11. Berkelhammer, M., Sinha, A., Stott, L., Cheng, H., Pausata, F. and Yoshimura, K. (2012) Climates, Landscapes, and Civilizations, pp. 75-87, Geophysical Monograms AGU, Washington D.C. 16 Bird, B., Kirby, M., Howat, I. and Tulaczyk, S. 2010. Geophysical evidence for Holocene lake-level change in southern California (Dry Lake). Boreas 39, 131144. Bird, B., Lei, Y., Perello, M., Polissar, P., Yao, T., Finney, B., Bain, D., Pompeani, D. and Thompson, L. 2017. Late Holocene Indian summer monsoon variability revealed from a 3,300-year-long lake sediment record from Nir’pa Co, southeastern Tibet. The Holocene 27(4), 541-552. Bird, B., Polissar, P., Lei, Y., Thompson, L., Yao, T., Finney, B., Bain, D., Pompeani, D. and Steinman, B. 2014. A Tibetan lake sediment record of Holocene Indian summer monsoon variability. Earth and Planetary Science Letters 399, 92-102. Blanford, H. 1884. On the connexion of the Himalayan snowfall with dry winds and seasons of droughts in India. Proceedings of the Royal Society of London 37, 322. Bollasina, M.A., Ming, Y. and Ramaswamy, V. 2011. Anthropogenic Aerosols and the Weakening of the South Asian Summer Monsoon. Science 334, 502-505. Breitenbach, S., Adkins, J., Meyer, H., Marwan, N., KK Kumar and Haug, G. 2010. Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India. Earth and Planetary Science Letters 292, 212-220. Cai, Y., Zhang, H., Cheng, H., An, Z., Edwards, R., Wang, X., Tan, L., Liang, F., Wang, J. and Kelly, M. 2012. The Holocene Indian monsoon variability over the southern Tibetan Plateau and its teleconnections. Earth Planetary Science Letters 335-336, 135-144. Campo, E.V. and Gasse, F. 1993. Pollen- and diatom-inferred climatic and hydrological changes in Sumxi Co Basin (Western Tibet) since 13,000 yr B.P. Quaternary Research 39, 300-313. Chen, F., Chen, X., Chen, J., Zhou, A., Wu, D., Tang, L., Zhang, X., Huang, X. and Yu, J. 2014. Holocene vegetation history, precipitation changes and Indian Summer Monsoon evolution documented from sediments of Xingyun Lake, south-west China. Journal of Quaternary Science 29(7), 661-674. 17 Cheng, G. and Wu, T. 2007. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibetan Plateau. Journal of Geophysical Research 112, F02S03. Clark, C., Cole, J. and Webster, P. 2000. Indian Ocean SST and Indian summer rainfall: Predictive relationships and their decadal variability. Journal of Climate 13, 25032519. Clark, I. and Fritz, P. (1997) Environmental isotopes of hydrogeology, Lewis Publishers. Cook, E., Anchukaitis, K., Buckley, B., D’Arrigo, R., Jacoby, G. and Wright, W. 2010. Asian monsoon failure and megadrought during the last millennium. Science 328, 486-489. Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus 14, 436-468. Datta, P., Tyagi, S. and Chandrasekharan, H. 1991. Factors controlling stable isotope composition of rainfall of New Delhi, India. Journal of Hydrology 128, 223-236. Djamali, M., Akhani, H., Andrieu-Ponel, V., Braconnot, P., Brewer, S., Beaulieu, J.d., Fleitmann, D., Fluery, J., Gasse, F., Guibal, F., Jackson, S., Lézine, A., Médail, F., Ponel, P., Roberts, N. and Stevens, L. 2010. Indian summer monsoon variations could have affected the early-Holocene woodland expansion in the Near East. The Holocene 20, 813-820. Dykoski, C., Edwards, R., Cheng, H., Yaun, D., Cai, Y., Zhang, M., Lin, Y., Qing, J., An, Z. and Revenaugh, J. 2005. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters 233, 71-86. Eglington, T. and Eglington, G. 2008. Molecular proxies for paleoclimatology. Earth and Planetary Science Letters 275, 1-16. Feakins, S., Bentley, L., Salinas, N., Shenkin, A., Blonder, B., Goldsmith, G., Ponton, C., Arvin, L., Wu, M., Peters, T., West, A., Martin, R., Enquist, B., Asner, J. and Malhi, Y. 2016. Plant leaf wax biomarkers capture gradients in hydrogen isotopes of precipitation from the Andes and Amazon. Geochimica et Cosmochimica Acta 182, 155-172. 18 Fleitmann, D., Burns, S., Mudelsee, M., Neff, U., Kramers, J., Mangini, A. and Matter, A. 2003. Holocene forcing of the Indian Monsoon recorded from a stalagmite from Southern Oman. Science 300, 1737-1739. Fleitmann, D., Burns, S.J., Mangini, A., Mudelsee, M., Kramers, J., Villa, I., Neff, U., Al-Subbary, A.A., Buettner, A., Hippler, D. and Matter, A. 2007. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quaternary Science Reviews 26, 170-188. Gadgil, S. 2003. The Indian monsoon and its variability. Annual Review of Earth and Planetary Sciences 31, 429-467. Gadgil, S., Vinayachandran, P., Francis, P. and Gadgil, S. 2004. Extremes of the Indian summer monsoon rainfall, ENSO, and equatorial Indian Ocean oscillation. Geophysical Research Letters 31, L12213. Gat, J. 1996. Oxygen and hydrogen isotopes in the hydrologic cycle. Annual Review of Earth and Planetary Sciences 24, 225–262. González-Rouco, F.J., Fernández-Donado, L., Raible, C.C., Barriopedro, D., Luterbacher, J., Jungclaus, J.H., Swingedouw, D., Servonnat, J., Zorita, E., Wagner, S. and Ammann, C.M. 2011. Medieval Climate Anomaly to Little Ice Age transition as simulated by current climate models. PAGES news 19(1), 7-8. Goosse, H., Crespin, E., Dubinka, S., Loutre, M., Mann, M., Renssen, H., Sallaz-Damaz, Y. and Shindell, D. 2012. The role of forcing and internal dynamics in explaining the “Medieval Climate Anomaly”. Climate Dynamics 39, 2847-2866. Goswami, B. and Mohan, R.A. 2001. Intraseasonal oscillations and Interannual variability of the Indian summer monsoon. Journal of Climate 14, 1180-1198. Goswami, B. and Xavier, P. 2005. ENSO control on the south Asian monsoon through the length of the rainy season. Geophysical Research Letters 32, L18717. Gou, X., Chen, F., Jacoby, G., Cook, E., Yang, M., Peng, J. and Zhang, Y. 2007. Rapid tree growth with respect to the last 400 years in response to climate warming, northeastern Tibetan Plateau. International Journal of Climatology 27(11), 14971503. 19 Gupta, A., Anderson, D. and Overpeck, J. 2003. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421, 354-357. Harris, N. 2006. The elevation history of the Tibetan Plateau and its implications for the Asian monsoon. Palaeogeography, Palaeoclimatology, Palaeoecology 241, 4-15. Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C. and Ro, U. 2001. Southward Migration of the Intertropical Convergence Zone Through the Holocene. Science 293, 1304-1308. Herzschuh, U., Kramer, A., Mischke, S. and Zhang, C. 2009. Quantitative climate and vegetation trends since the late glacial on the northeastern Tibetan Plateau deduced from Koucha Lake pollen spectra. Quaternary Research 71, 162-171. Herzschuh, U., Winter, K., Wunnemann, B. and Li, S. 2006. A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra. Quaternary International 154-155, 113-121. Hong, Y., Hong, B., Lin, Q., Zhu, Y., Shibata, Y., Hirota, M., Uchida, M., Leng, X., Jiang, H., Xua, H., Wang, H. and Yi, L. 2003. Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene. Earth and Planetary Science Letters 211, 371-380. Hou, J., D’Andrea, W.J., and Huang, Y. 2008. Can sedimentary leaf waxes record D/H ratios of continental precipitation? Field, model, and experimental assessments. Geochimica et Cosmochimica Acta 72, 3503-3517. Ivanochko, T., Ganeshram, R., Brummer, G., Brummer, A., Ganssen, G., Jung, S., Moreton, S. and Kroon, D. 2005. Variations in tropical convection as an amplifier of global climate change at the millennial scale. Earth and Planetary Science Letters 235, 302-314. Kumar, K., Sahai, A., Kumar, K., Patwardhan, S., Mishra, P., Revadekar, J., Kamala, K. and Pant, G. 2006. High-resolution climate change scenarios for India for the 21st century. Current Science 90(3), 334-345. Kurita, N., Ichiyanagi, K., Matsumoto, J., Yamanaka, M. and Ohata, T. 2009. The relationship between the isotopic composition of precipitation and the 20 precipitation amount in the tropical regions. Journal of Geophysical Exploration 102, 113-122. Liu, K., Yao, T. and Thompson, L. 1998. A pollen record of Holocene climatic changes from the Dunde ice cap, Qinghai-Tibetan Plateau. Geology 26(2), 135-138. Liu, Z., Kutzbach, J. and Wu, L. 2000. Modeling Climate Shift of El Nino Variability in the Holocen. Geophysical Research Letters 27(15), 2265-2268. Maher, B. 2008. Holocene variability of the East Asian summer monsoon from Chinese cave records: a re-assessment. The Holocene 18(6), 861–866. Mann, M., Zhang, Z., Rutherford, S., Bradley, R., Hughes, M., Shindell, D., Ammann, C., Faluvegi, G. and Ni, F. 2009. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326, 1256-1260. Molnar, P., Boos, W.R. and Battisti, D.S. 2010. Orographic Controls on Climate and Paleoclimate of Asia: Thermal and Mechanical Roles for the Tibetan Plateau. Annual Review of Earth and Planetary Sciences 38, 77-102. Mondal, P., Jain, M., Robertson, A., Galford, G., Small, C. and DeFries, R. 2014. Winter crop sensitivity to inter-annual climate variability in central India. Climate Change 126, 61-76. Morrill, C., Overpeck, J. and Cole, J. 2003. A synthesis of abrupt changes in the Asian summer monsoon since the last deglaciation. Holocene 13, 465-476. Mügler, I., Sasche, D., Werner, M., Xu, B., Wu, G., Yao, T. and Gleixner, G. 2008. Effect of lake evaporation on δD values of lacustrine n-alkanes: A comparison of Nam Co (Tibetan Plateau) and Holzmaar (Germany). Organic Geochemistry 39, 711-729. Nichols, J. 2010. Procedures for extraction and purification of leaf wax biomarkers from peats. Mires and Peat 7-13, 1-7. Niyogi, D., Kishtawal, C., Tripathi, S. and Govindaraju, R. 2010. Observational evidence that agricultural intensification and land use change may be reducing the Indian summer monsoon rainfall. Water Resources Research 46, W03533. Palmer, M. and Edmond, J. 1992. Controls over the strontium isotope composition over river water. Geochimica et Cosmochimica Acta 56, 2099-2111. 21 Polissar, P. and D’Andrea, W. 2013. Uncertainty in paleohydrologic reconstructions from molecular D values. Geochimica et Cosmochimica Acta 129(146-156). Porter, S. and Weijian, Z. 2006. Synchronism of Holocene East Asian monsoon variations and North Atlantic drift-ice tracers. Quaternary Research 65, 443-449. Qui, J. (2008). The Third Pole. Nature 454, 393-396. Sachse, D., Billault, I., Bowen, G., Chikaraishi, Y., Dawson, T., Feakins, S., Freeman, K., Magill, C., McInerney, F., Meer, M.v.d., Polissar, P., Robins, R., Sachs, J., Schmidt, H., Sessions, A., White, J., West, J. and Kahmen, A. 2012. Molecular paleohydrology: interpretating the hydrogen-isotopic composition of lipid markers from photosynthesizing organisms. Annual Review of the Earth and Planetary Sciences 40, 221-249. Salinger, M., Shrestha, M., Ailikun, Wang, S., McGregor, J. and Dong, W. (2014) Security, Society and Sustainability. Manton, M. and Stevenson, L. (eds), pp. 1757, Springer. Seki, O., Meyers, P.A., Kawamura, K., Zheng, Y. and Zhou, W. 2009. Hydrogen isotopic ratios of plant wax n-alkanes in a peat bog deposited in northeast China during the last 16 kyr. Organic Geochemistry 40(6), 671-677. Servonnat, J., Yiou, P., Khodri, M., Swingedouw, D. and Denvil, S. 2010. Influence of solar variability, CO2 and orbital forcing between 1000 and 1850 AD in the IPSLCM4 model. Climate of the Past 6, 445-460. Shao, X., Xu, Y., Yin, Z., Liang, E., Zhu, H. and Wang, S. 2010. Climatic implications of a 3585-year tree-ring width chronology from the northeastern Qinghai-Tibetan Plateau. Quaternary Science Reviews 29, 2111-2122. Shenbin, C., Yunfeng, L. and Thomas, A. 2006. Climatic change on the Tibetan Plateau: Potential evapotranspiration trends from 1961-2000. Climatic Change 76(3), 291319. Shi, Y., Yu, G., Liu, X., Li, B. and Yao, T. 2001. Reconstruction of the 30-40 ka BP enhanced Indian monsoon climate based on geological records from the Tibetan Plateau. Paleogeography, Paleoclimatology, and Palaeoecology 169, 69-83. Sinha, A., Cannariato, K., Stott, L., Cheng, H., Edwards, R., Yadava, M., Ranesh, R. and Singh, I. 2006. A 900-year (600 to 1500 A.D.) record of the Indian summer 22 monsoon precipitation from the core of the monsoon zone of India. Geophysical Research Letters 34, L16707. Sinha, A., Kathayat, G., Cheng, H., Breitenbach, S., Berkelhammer, M., Mudelsee, M., Biswas, J. and Edwards, R. 2015. Trends and oscillations in the Indian summer monsoon rainfall over the last two millennia. Nature Communications 6, 6309. Surendran, S., Gadgil, S., Francis, P. and Rajeevan, M. 2015. Prediction of Indian rainfall during the summer monsoon season on the basis of links with equatorial Pacific and Indian Ocean climate indices. Environmental Research Letters 10, 094004. Tang, M., Cheng, G. and Lin, Z. (1998) Contemporary Climatic Variations over the Qinghai-Xizang (Tibet) Plateau and Their Influences on Environments, Guangdong Science and Technology Press, Guangzhou. Thompson, Mosley-Thompson, E., Davis, M., Bolzan, J., Dai, J., Klein, L., Yao, T., Wu, X., Xie, Z. and Gundestrip, N. 1989. Holocene-Late Pleistocene climatic ice core records from Qinghai-Tibetan Plateau. Science 246, 474-477. Thompson, L. 2000. Ice core evidence for climate change in the tropics: Implications for our future. Quaternary Science Reviews 19, 19-35. Thompson, L., Mosley-Thompson, E., Davis, M., Lin, N., Yao, T., Dyurgerov, M. and Dai, J. 1993.‘Recent warming’: ice core evidence from tropical ice cores, with emphasis on central Asia. Global Planet Change 7, 145-156. Tian, L., Masson-Delmotte, V., Stievenard, M., Yao, T. and Jouzel, J. 2001. Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes. Journal of Geophysical Research 106(22), 28081-28088. Tian, L., Yao, T., Schuster, P., White, J., Ichiyanga, K., Pendall, E., Pu, J. and Yu, W. 2003. Oxygen-18 concentrations in recent precipitation and ice cores on the Tibetan Plateau. Journal of Geophysical Research 108(9), 4293. Tian, C., Wang, L., Kaseke, K. F. and Bird, B. W. 2018. Stable isotope compositions (δ2H, δ18O and δ17O) of rainfall and snowfall in the central United States. Scientific Reports 8, 6712. Tiwari, P. and Joshi, B. 2012. Natural and socio-economic factors affecting food security in the Himalayas. Food Security 4, 195-207. 23 Vrese, P.D., Hagemann, S. and Claussen, M. 2016. Asian irrigation, African rain: remote impacts of irrigation. Geophysical Research Letters 43, 3737-3745. Vuille, M., Werner, M., Bradley, R. and Keimig, F. 2005. Stable isotopes in precipitation in the Asian monsoon region. Journal of Geophysical Research 110, D23108. Walker, G. 1910. Correlations in seasonal variations in weather. Memo Indian Meteorology Department 21, 22-45. Wang, R., Yang, X., Langdon, P. and Zhang, E. 2011. Limnological responses to warming on the Xizang Plateau, Tibet, over the past 200 years. Journal of Paleolimnology 45, 257-271. Wang, Y., Cheng, H., Edwards, R., He, Y., Kong, X., An, Z., Wu, J., Shen, C. and Dorale, J. 2005. The Holocene Asian monsoon: links to solar change and North Atlantic climate. Science 308, 854-857. Wu, G., Liu, Y., Zhang, Q., Duan, A., Wang, T., Wan, R., Liu, X., Li, W., Wang, Z. and Liang, X. 2007. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. Journal of Hydrometeorology 8, 770-789. Xu, Z., Gong, T. and Li, J. 2008. Decadal trend of climate in the Tibetan Plateau – regional temperature and precipitation. Hydrological Processes 22(16), 30563065. Xuefeng, Y., Weijian, Z., Franzen, L., Feng, X., Peng, C. and Jull, A. 2006. Highresolution peat records for Holocene monsoon history in the eastern Tibetan Plateau. Science of China: Series D Earth Sciences 49, 615-621. Yan, H., Wei, W., Soon, W., An, Z., Zhou, W., Liu, Z., Wang, Y. and Carter, R. 2015. Dynamics of the intertropical convergence zone over the western Pacific during the Little Ice Age. Nature Geoscience 8, 315-320. Yang, K., Ye, B., Zhou, D., Wu, B., Foken, T., Qin, J. and Zhou, Z. 2011. Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Climatic Change 109(3), 517-534. Yanhong, W., Lücke, A., Zhangdong, J., Sumin, W., Schlesler, G., Battarbee, R. and Weilan, X. 2006. Holocene climate development on the central Tibetan Plateau: 24 A sedimentary record from Cuoe Lake. Paleogeography, Paleoclimatology, and Palaeoecology 234, 328-340. Yao, T., Liu, X., Wang, N. and Shi, Y. 2000. Amplitude of climatic changes in QinhaiTibetan Plateau. Chinese Science Bulletin 45(13), 1236-1243. Yao, T., Pu, J., Lu, A., Wang, Y. and Yu, W. 2007. Recent glacial retreat and its impact on the hydrological processes on the Tibetan Plateau, China, and surrounding regions. Arctic, Antarctic, and Alpine Research 39(4), 642-650. Yao, T., Thompson, L., Mosley-Thompson, E. and Yang, Z. 1995. Recent warming as recorded in the Qinghai-Tibet cryosphere. Annals of Glaciology 21, 196-200. Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., Yang, X., Duan, K., Zhao, H., Xu, B., Pu, J., Lu, A., Xiang, Y., Kattel, D. and Joswiak, D. 2012. Different glacial status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change 2, 663-667. Yeh, S., Kug, J., Dewitte, B., Kwon, M., Kirtman, B. and Jin, F. 2009. El Niño in a changing climate. Nature 461, 511-514. Yin, A. and Harrison, T. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences 28, 211-280. You, Q., Kang, S., Aguilar, E. and Yan, Y. 2008. Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961-2005. Journal of Geophysical Research 113, D07101. Zhang, P., Cheng, H., Edwards, R., Chen, F., Wang, Y., Yang, X., Liu, J., Tan, M., Wang, X., Liu, J., An, C., Dai, Z., Zhou, J., Zhang, D., Jia, J. and Johnson, K. 2008. A test of climate, sun and culture relationships from an 1810-year Chinese cave record. Science 322, 940-942. Zhang, X., Jin, H. and Sun, W. 2006. Stable isotopic variations in precipitation in Southwest China. Advanced Atmospheric Science 23(4), 649-658. Zhao, L., Ping, C., Yang, D., Cheng, G., Ding, Y. and Liu, S. 2004. Changes of climate and seasonally frozen ground over the past 30 years in Qinghai-Xizang (Tibetan) Plateau, China. Global and Planetary Change 43, 19-31. 25 Zhiseheng, A., Kutzbach, J., Prell, W. and Porter, S. 2001. Evolution of Asian monsoons and phased uplift of Himalaya-Tibetan plateau since late Miocene times. Nature 411, 62-66. Zhu, L., Wu, Y., Wang, J., Lin, X., Ju, J., Xie, M., Li, M., Mäusbacher, R., Antje, S. and Daut, G. 2008. Environmental changes since 8.4 ka reflected in the lacustrine core sediments from Nam Co, central Tibetan Plateau. The Holocene 18, 831-839. 26 2. RECONSTRUCTING LATE HOLOCENE HYDROCLIMATE VARIABILITY USING SHORT AND LONG CHAIN n-ALKANE HYDROGEN ISOTOPES, NIR’PA CO TIBET 2.1 Introduction The Indian summer monsoon (ISM) is the primary precipitation source for the Tibetan Plateau and the adjacent region, which is referred to as the Third Pole Environment (Qui, 2008). Paleoclimate records from this region generally agree that ISM precipitation declined throughout the Holocene after having reached a broad maximum during the early Holocene (11.7 – 7 ka; Berkelhammer et al., 2012; Bird et al., 2014). Between 7 and 5 ka, the ISM weakened, reaching a minimum during the late Holocene around 3.5 ka. The late Holocene (3.5 ka to modern) has been described as an arid period relative to the early Holocene, with reduced monsoon precipitation and hiatuses in some archives (i.e., Berkelhammer et al., 2012; Fleitmann et al., 2003). The Medieval Climate Anomaly (MCA: 950-1250 AD) and the Little Ice Age (LIA: 1275-1700 AD) are two events during the late Holocene that produced temperature and precipitation anomalies across the northern hemisphere with the onset of these events attributed to volcanic aerosols, sea ice temperature feedbacks, and solar radiation (González-Rouco et al., 2011; Mann et al., 2009; Miller et al., 2012; Polissar et al., 2006). As a result, the spatiotemporal expression of late Holocene climate events, including the MCA and the LIA, are not as well represented in the paleoclimate record as other early and middle Holocene events. There are questions about whether the MCA or LIA had an impact on ISM precipitation and the extent of that impact, due to limited records from this period on the Tibetan Plateau. Previous results from Nir’Pa Co, a small alpine lake on the southeastern Tibetan Plateau, suggested that hydroclimate in this region and the ISM more broadly was driven by Pacific sea surface temperatures (SSTs), with warmer air temperatures on the Tibetan Plateau corresponding to warmer western Pacific SSTs and greater ISM intensity, with most of the late Holocene characterized by pronounced drought between 2.3 and 1.3 ka, evidenced by high sand content indicating shallow lake conditions, which is bracketed by wetter intervals (Bird et al., 2017). Higher silt and sand during the MCA and LIA 27 respectively both suggest that the monsoon was relatively stronger and weaker during these events, but is superimposed on a broader trend towards a stronger monsoon from 1.2 to 0.2 ka. The sedimentology record suggests that the MCA and LIA were minor hydroclimatic events compared to the drought between 2.3 and 1.3 ka (Bird et al., 2017). This period was characterized with a decrease in lithics and an increase in sand suggesting shallow lake conditions and reduce monsoon rainfall. These drought conditions corresponded with colder temperatures (Herzschuh et al., 2006) and drier conditions at other sites in the Tibetan Plateau (Gu et al., 1993) and was attributed to an El-Niño state in the Pacific. Climate forcings that contributed to the weaker monsoon during the late Holocene has also been attributed to the southward migration of the intertropical convergence zone (ITCZ), reduced solar radiation, and a shift towards El Niño-like conditions characterized by anomalous warming in the eastern Pacific and cooling in the western Pacific (Bird et al., 2017; Fleitmann et al., 2003). The MCA and LIA events, which were driven by volcanic aerosols, sea ice temperature feedbacks, and solar radiation (González-Rouco et al., 2011; Mann et al., 2009; Miller et al., 2012; Polissar et al., 2006), produced La Niña conditions (anti-phase of the El Niño) during the MCA while El Niño conditions characterized the LIA (Mann et al., 2009). An El Niño-state in the Pacific has also been attributed to a weaker monsoon from 2.3 and 1.3 ka when drought conditions were evident at Nir’Pa Co (Bird et al., 2017). Yet questions remain about ISM fluctuations during the late Holocene and the role of larger climate drivers of monsoon expression. One point of contention is when the strong relationship between the ISM and the El Niño-Southern Oscillation (ENSO) was established, with some records suggesting that the relationship between ISM precipitation and Indo-Pacific SSTs developed around the middle of the Holocene when the ITCZ shifted southwards (Bird et al., 2017; Bird et al., 2014). Another question is how ENSO conditions were expressed during the MCA and LIA and what role this played on the strength of ISM precipitation on the Tibetan Plateau. New hydroclimate records spanning the late Holocene from the Tibetan Plateau are needed to address these questions. To assess ISM precipitation variability during the late Holocene, this study uses a multi-proxy approach that integrates hydrogen isotopes (2H) of long- and short-chain n- 28 alkanes from sedimentary aquatic and terrestrial and leaf waxes with previously published geochemical and sedimentological data from Nir’pa Co (Bird et al., 2014; Mügler et al., 2008; Polissar and D'Andrea, 2014). The short-chain n-alkanes were specifically used to investigate the isotopic variability of Nir’pa Co’s lake water, which incorporates isotopic variability associated with ISM precipitation and the local precipitation:evaporation (P:E) balance, while long-chain n-alkane 2H variability was used to investigate synoptic scale ISM variability. By subtracting long- and short-chain nalkane 2H values from each other, I additionally derived an independent record of local P/E variability. When integrated with the previously published geochemical and sedimentological results, these new biogeochemical data provide a more robust and comprehensive perspective of late Holocene ISM variability at local and synoptic scales and their interrelationships. The 3.4 ka record of the isotopic composition of short vs. long-chain n-alkanes from Nir’Pa Co is compared with paleoclimate archives from around the Third Pole Environment and the broader Pacific region. This study addresses 1) how the monsoon at Nir’Pa Co is expressed across the late Holocene with an emphasis on the response to the weak monsoon from 2.2 to 1.2 ka as well as the MCA and LIA, 2) whether the isotopic expression of the monsoon at Nir’Pa Co agrees with the sedimentology record, and 3) whether monsoon expression is driven by SSTs in the IndoPacific. 2.2 Study Area Nir’pa Co is a small (0.1 km2), high elevation (4775 m a.s.l) alpine lake in the Nyainqêntanglha Mountains on southeastern Tibet (29.734° N, 92.386° E; Fig. 2.1). The lake has an ephemeral inlet on the northwestern shore with a small outflow on the southwestern shore. The lake’s bathymetry consists of a deep central basin (max. water depth = 15 m) and shallow shelves (water depth = ~1 m) on the northwestern and southeastern edges of the lake near the inlet and outlet, respectively (Fig. 2.3). With an ephemeral outlet, the lake is highly sensitive to evaporation as a closed lake system. The lake vegetation includes macrophytes, such as algae and grasses, in the shallow shelf while the deep basin is unvegetated. The surrounding watershed is sparsely vegetated 29 with C3 and C4 small flowering plants and mosses during the summer season, but vegetation is dormant during the cold winters. Nir’pa Co’s watershed consists of steep mountains (5120 m a.s.l.) and a narrow (1.5 km), glacially carved u-shaped valley (4815 a.s.l.) that extends for over 5 km (Fig. 2.2). The lake is positioned at the southeastern end of the valley and is dammed by a terminal moraine. The regional geomorphology is dominated by past glacial activity, but glaciers have been absent for the duration of the Holocene (Li et al., 1991). The regional climate is dominated by the ISM which accounts for 96% of total annual precipitation (total annual precipitation: 514 mm; May-September precipitation: 495 mm) with moderate summers and cold winters (mean annual temperature: 9.6°C; monthly average temperature range: 0.6-17.3°C; Fig. 2.4). Ice cover is present during the winter months (December-February), preventing evaporation during this time. Precipitation and temperature data were collected from the Lhasa station (Lhasa: 3650 m a.s.l.; 120 km from Nir’Pa Co; 29.667° N, 91.133° E). 2.3 Methods 2.3.1 Sample Collection A 90-cm surface core (A-11) was collected in May 2011 from the deepest part of the Nir’pa Co’s basin (water depth = 17.5 m) using an Aquatic Research hammer corer. Two additional cores, A-15 and B-15, were collected in June 2015 using a piston surface corer. Representative samples of the terrestrial and aquatic vegetation communities were collected from within the lake and around its immediate watershed in June 2015. 2.3.2 Chronology An age model for Nir’Pa Co A-11 was produced using a combination of 210Pb, 137 Cs, and 14C (Bird et al., 2017). Ten samples from the top portion of the core underwent direct gamma counting to measure 210Pb, 214Pb, and 137Cs (Appleby and Oldfield, 1978). Two radiocarbon (14C) dates were measured using accelerator mass spectrometry (AMS) at the Keck AMS Laboratory, University of California Irvine. Both samples consisted of charcoal fragments that were collected from a wet sieve at 63 um, manually cleaned, and 30 chemically pretreated with an acid-base-acid wash using 1 N HCl and 1 N NaOH (Olsson, 1986). Radiocarbon dates were calibrated using the IntCal 0.914c data set with the CALIB 6.0 program (Stuiver and Reimer, 1993). All dates for this core are reported as median probability age and 2σ error in calendar years before present (BP; 0 = 1950 CE). 2.3.3 Lipid Extraction & 2H Analysis Forty-two samples from the A-11 core were analyzed for n-alkane hydrogen (2H) isotopes at the Lamont-Doherty Earth Observatory Organic Geochemistry Lab, Columbia University. Sediment samples were dried and homogenized before undergoing total lipid extraction (TLE) using a 9:1 dichloromethane to methanol solvent on a Dionex ASE-350. The TLE then underwent separation on a silica column (70-230 mesh, 60A) with hexane solvent to isolate the aliphatic fraction. The aliphatic fraction underwent silver nitrate column (10 % AgNO3) chromatography separation with hexane as a solvent to isolate n-alkanes. The distributions and concentrations of n-alkanes in each sample were determined using an Agilent Technologies 7890A gas chromatography mass spectrometer (GCMS). Short chain n-alkanes (nC23) are produced by both submerged and emergent aquatic macrophytes (Ficken et al., 2000; Seki et al., 2009) while long chain n-alkanes (nC29 and nC31) are produced by terrestrial vascular plants (Meyers, 2003). Intermediate n-alkanes (nC25 and nC27) can reflect a mixture of aquatic and terrestrial vegetation sources, but are also produced by aquatic (nC25) and terrestrial vascular (nC27) vegetation. Several indices were used to assess the sources and distributions of n-alkanes. The average chain length (ACL) and carbon preference index (CPI) were calculated to assess changes in the distribution of n-alkanes (Diefendorf et al., 2015; Marzi et al., 1993). Higher ACL and CPI values indicate terrestrial vegetation inputs in lake sediments while lower values are indicative of aquatic vegetation (Mügler et al., 2008). The aquatic vegetation index (Paq) was calculated to assess the concentration of low and mid-chain nalkanes (aquatic inputs) versus longer chains (terrestrial inputs; Ficken et al., 2000). Higher Paq index values indicate greater aquatic productivity (Ficken et al., 2000; Seki et al., 2009). 31 25 𝐶25 ACL 𝐶𝑃𝐼 27 𝐶27 𝐶25 29 𝐶29 31 𝐶31 33 𝐶33 37 𝐶37 𝐶29 𝐶31 𝐶33 𝐶35 𝐶27 𝐶23 𝐶25 2 𝑋 C24 𝑃𝑎𝑞 𝐶25 𝐶27 C26 35 𝐶35 𝐶37 𝐶27 𝐶29 𝐶31 𝐶33 𝐶35 𝐶29 𝐶31 𝐶33 𝐶35 𝐶37 C28 C30 C32 C34 C36 𝐶23 𝐶23 𝐶25 𝐶25 𝐶29 𝐶31 2H n-alkane isotopic measurements were made using a Thermo Scientific Trace Ultra GCMS (GC column: 30m, 0.25mm, 14.2 psi, 60°C) and Delta V Plus IRMS (isotope ratio mass spectrometer). Both an isotopic (Mix A7) and a lab standard were run with replicate sample injections. Reported values are reported in standard delta notation with per mil (‰) units relative to the VSMOW (Vienna Standard Mean Ocean Water) scale after being corrected using MATLAB. Isotopic variability between replicate measurements ranged between 2.9-3.4% (Polissar and D'Andrea, 2014). 2.3.4 Effective Moisture nC23 is derived from aquatic plants, which incorporate hydrogen atoms directly from lake water, thereby reflecting its isotopic composition, but with some degree of offset (Mügler et al., 2008; Seki et al., 2009). nC31 is derived from terrestrial plants, which incorporate hydrogen atoms from soil water that is derived directly from precipitation (Xia et al., 2008). The δ2H for nC31 therefore reflects variations in the isotopic composition of precipitation, while δ2H for nC23 reflects changes in lake water isotopic compositions that incorporate evaporation and changes in lake volume as well as changes in the isotopic composition of the precipitation that fed the lake. The large difference in hydrogen isotope values between terrestrial (nC31) and aquatic vegetation (nC23) is driven by the enrichment of δ2H in lake water due to high evaporation of the system (Guenther et al., 2013) and fractionation during biosynthesis, with aquatic plants exhibiting a large, negative fractionation (Mügler et al., 2008). The subtraction of 32 normalized isotopic measurements of nC31 from nC23 hence removes isotopic variability in the lake water δ2H attributable to changes in precipitation δ2H and those factors that influence it (moisture source, distance from source, temperature, etc.), thereby providing an estimation the ratio of precipitation to evaporation (Mügler et al., 2008). Higher Δδ2HC23-C31 values indicate greater evaporation relative to precipitation and vice versa for lower values. 2.4 Results 2.4.1 Sedimentology The sedimentology of the A-11 core consisted of homogenous, fine grained sediments that were reddish-brown with slightly darker bands around 30 and 60 cm. Organic fragments including charcoal and grass were dispersed throughout the core (Bird et al., 2017). 2.4.2 Short vs. Long-chain n-alkanes Concentrations of n-alkanes varied significantly between the modern sediments and the early part of the record (~3.4 ka; Fig. 2.5 and Table 2.1). The full dataset is in Appendix 1, Table A 1.1. Throughout the record, short chain leaf waxes were more abundant (nC23-nC25: 1.07 – 1.36 x 108 ng/100 μl) than long chain alkanes in the record (nC27-nC31: 9.04x107 – 1.0x108 ng/100 μl). Noticeably n-alkanes were higher during the MCA (950-1250 AD) and decreased during the LIA (1275-1700 AD). ACL values ranged between 27.9 and 28.66 while CPI values ranged from 4.05 to 4.55 over the last 3.4 ka (Fig. 2.5F-G). Both the ACL and CPI were consistently low between 3.4-2.25 ka (average: ACL: 28.2, CPI: 4.2) and increased from 2.25-1.25 ka (average: ACL: 28.3, CPI: 4.3). ACL decreased sharply at the beginning of the LIA (~610 BP; ACL: 27.9). Paq ranged between 0.41 and 0.53, which shows that the contribution of aquatic vegetation was high for most of the sediment record, but peaked at the beginning of the LIA (~610 BP; Paq = 0.53; Fig. 2.5G). Aquatic vegetation steadily decreased after that peak and has remained lower in the modern sediments (300 yrs. BP to present). 33 2.4.3 Leaf Wax δ2H Hydrogen isotopic measurements (δ2H) for C23, C25, C27, C29, and C31 nalkanes extracted from the Nir’Pa Co sediments ranged from -287‰ to -237‰ for the last 3.4 ka (Fig. 2.6: A-E). δ2H shows high variability throughout the record for all chain lengths. All n-alkanes were higher at the beginning of the record (nC23-nC31: -270.5‰ to -247.2‰) and subsequently decreased by 6 to 8.6‰. δ2H remained lower until ~2750 BP when δ2H for all n-alkanes increased with nC23 and nC25 showing the greatest enrichment (5.3 and 6.7‰, respectively). Isotope values plateaued until they decreased again during the MCA with the lowest values occurring at the beginning of the LIA (620 BP: -280 to -253‰). The isotopic responses during the LIA were lower. Modern n-alkane sediment δ2H values are highest, with values ranging between -267.4 to -243.5‰ (300 yrs. BP to present). 2.4.4 Effective Moisture Δδ2HC23-C31 represents the hydrogen isotopic difference between nC23 and nC31 n-alkanes (Fig. 2.6F). Δδ2HC23-C31 ranged between -7.7 to 5.6‰ with high variability throughout the record. Δδ2HC23-C31 was positive between 3 and 1.2 ka and in the modern part of the record. Δδ2HC23-C31 was negative in the earliest part of the record from 3.3 and 3 ka and between 1 ka and 250 BP, which includes the MCA and LIA, with the lowest Δδ2HC23-C31 values at 600 BP (-7.7%). 2.5 Discussion 2.5.1 Localized Hydroclimate at Nir’Pa Co The previously published geochemical and sedimentological results from Nir’Pa Co suggested relatively wet conditions between 3.4 and 2.4 ka, an abrupt transition into and out of a pronounced dry interval at 2.4 and 1.3 ka, respectively, and a return to relatively wet conditions from 1.2 ka to the present (Bird et al., 2017). The new 2H results from Nir’Pa Co support this interpretation, but provide important additional information about the nature of local hydroclimate conditions and its relationship with 34 synoptic-scale ISM variability during the late Holocene. Here, I use the Δδ2HC23-C31 time series as an indicator of local hydroclimate conditions at Nir’Pa Co and compare it with established lithics and percent sand time series from the lake. The Nir’Pa Co record indicates that the ISM varied significantly over the late Holocene, transitioning between strong and weak phases that influenced the local hydroclimate as inferred by δ2H measurements and Δδ2HC23-C31. Local hydroclimate conditions are indicated by shortchain n-alkanes and Δδ2HC23-C31 while synoptic hydroclimate is inferred by long-chain nalkanes. At Nir’Pa Co δ2HC23, which incorporates both monsoon intensity and evaporation from lake water, is used to infer local hydroclimate while Δδ2HC23-C31 represents the hydrologic balance between precipitation and evaporation. The δ2H record is compared with the sedimentology record at Nir’Pa Co (Bird et al., 2017), with high sand content inferred as low lake level, attributed to the increased proximity of the core site to the littoral zone of the lake. While the modern monsoon is relatively weaker than at any other point in the Holocene, with enriched δ2HC23 and high terrestrial vegetation inputs, there are two earlier periods that show significant variability in the local hydroclimate record at Nir’Pa Co: the LIA and 2.4 to 1.3 ka, with the former characterized as a relatively strong monsoon and the latter as weak monsoon (Fig. 2.7). The event between 2.4 to 1.3 ka showed an extended significant impact on hydroclimate at Nir’Pa Co. During this period, Δδ2HC23-C31 values are high which indicates higher evaporation at Nir’Pa Co. Low lake level conditions during this weak monsoon period are indicated by high terrestrial vegetation inputs, exhibited with more abundant longer-chain n-alkanes and low Paq values. Observations for increased %sand during this period supports a low lake level interpretation and support the conclusion of arid conditions at Nir’Pa Co from 2.4 to 1.3 ka. Comparing the lake level signal of percent sand to the δ2HC23 and results, it is apparent that while the response of δ2H to changes in monsoon intensity is gradual the transition from low to high sand content are more abrupt. The sudden influx of sand could be an indication of the lake reaching a threshold where the stand is low enough to expose the shelf on the northeastern edge of the lake, with a minimum decrease of one meter in water level to expose the shelf. Δδ2HC23-C31 decreases across the MCA suggesting that evaporation was declining across this period. In contrast, the LIA (675-250 BP) showed significant variability in 35 δ2HC23 with the lowest values at the beginning of the LIA and an increase at the end of the event. Evaporation was low throughout the LIA as indicated by Δδ2HC23-C31. More abundant short-chain n-alkanes and high Paq values indicate that aquatic vegetation input has been high at Nir’Pa Co for most of the late Holocene, but there is a significant increase during the LIA which corresponds with the decrease in δ2HC23 (Fig. 2.7D). The positive correlation between aquatic productivity and strong monsoon conditions could be interpreted as a lake level signal with a deeper lake producing a greater area for submerged and emergent plant habitat. Comparing with the sand record at Nir’Pa Co (Fig. 2.7E; Bird et al., 2017), the MCA and LIA can be interpreted as a period with highly fluctuating lake levels, with deeper lake conditions towards the beginning of the LIA. The combined lake level and isotopic record suggest that there was little impact of the MCA on local hydroclimate at Nir’Pa Co, while the LIA had a larger, but more variable impact. 2.5.2 Local and Synoptic Hydroclimate Relationships at Nir’Pa Co Long-chain n-alkane δ2H closely reflects the isotopic expression of precipitation (Xia et al., 2008) and, therefore, is used to assess synoptic or regional scale expression of the ISM. Monsoon intensities inferred by δ2HC31 exhibit the same broad trends as local hydroclimate Δδ2HC23-C31 with wetter conditions at Nir’Pa Co from 3.4 to 2.4 ka and 1.3 ka to present. Synoptic ISM variability at Nir’Pa Co agrees with the weak monsoon interpretation from 2.4 to 1.3 ka and is also evident in the local hydroclimate proxies with high sand and terrestrial vegetation. The LIA is evident with a strong monsoon at the beginning of the event around 610 BP in conjunction with low Δδ2HC23-C31 and high aquatic vegetation. There is minimal evidence of any impact of the MCA on monsoon intensity on a synoptic scale, although the increase in silt and lithics suggests a local hydroclimate response with deeper lake conditions. The combination of local and synoptic hydroclimate records at Nir’Pa Co indicate that the drought event from 2.4 to 1.3 ka was consistently expressed at local and synoptic scales, while the LIA showed a small increase in monsoon strength while the MCA was not clearly expressed. 36 2.5.3 Regional Paleoclimate Late Holocene records of ISM variability on the Tibetan Plateau are generally coherent with the interpretation of hydroclimate variability at Nir’Pa Co. For example, local hydroclimate at Paru Co, located only 7.5 km northwest of Nir’Pa Co, shows a deeper lake from 3.4 to 2.5 ka and 1.3 ka to present, with an intermittent shallow lake from 2.5 ka to 1.3 ka which corresponds with lake level interpretations at Nir’Pa Co (Fig. 2.7F-G; Bird et al., 2014). Lake level at Paru Co is inferred by percent sand and principal component analysis of grain size data variability. Higher lake levels at Paru Co between 3.3 – 2.5 ka and 1.3 ka to present with an intermittent period of lower lake levels are consistent with a deeper lake at Nir’Pa Co from 3.4 to 2.4 ka and 1.3 ka to present and a shallow lake from 2.4 to 1.3 ka. Another lake on the Tibetan Plateau, Seling Co, 370 km northwest of NPC, shows high 18O between 2.2 and 1.2 ka, suggesting increased evaporation during this time that is consistent with the low stands at NPC and Paru Co (Gasse et al., 1996; Gu et al., 1993). Like NPC and Paru Co, the Seling Co 18O record also shows no significant departures during either the MCA or LIA, suggesting these events minimally impacted local hydroclimate. ISM precipitation on the plateau corresponds to shifts between cooler and warmer air temperatures as evidenced by the Lake Zigetang pollen index record from the central plateau, east of Seling Co (Herzschuh et al., 2006). The late Holocene was characterized by a more alpine steppe biome with greater dominance of Cyperaceae and similar cold hardy vegetation. This pattern was emphasized with a significant cooling between 2 and 1.5 ka that reflects the aridity evident in other plateau records. There is a paucity of highresolution temperature reconstructions from the Tibetan Plateau making it difficult to assess evaporation rates especially during the winter months. The Lake Zigetang pollen record corresponds to summer climate and can’t provide information about how winter climate has varied throughout the late Holocene, with warmer winter temperatures decreasing ice cover that could increase evaporation in the lake. Synoptic variability in the ISM is indicated by leaf-wax n-alkane isotopic variability at Paru Co (Fig. 2.7G). The broad trend of long-chain n-alkane δ2H (C27 and C29) of Paru Co shows that synoptic monsoon response was weak between 2.3 and 1.2 ka and relatively strong during the MCA which coincides with the higher-resolution 37 δ2HC31 record at Nir’Pa Co. Synoptic record of ISM precipitation in the Dunde ice core in the north-central Tibetan Plateau, shows a more consistent strong monsoon during the MCA and LIA inferred by lower δ18O (Thompson et al., 2006). Comparing the synoptic and local hydroclimate records across the Tibetan Plateau there is general agreement between local and synoptic proxies with the exception of the stronger monsoon intensity during the MCA and LIA in the Dunde ice core. A possible explanation for this difference is that the Dunde ice core record is not influenced by any biosynthesis fractionation compared to the leaf-wax n-alkane records at Nir’Pa Co and Paru Co. 2.5.4 Forcing Mechanisms Evaluating the mechanisms that drove hydroclimate variability on the plateau require the consideration of paleoclimate records from beyond the Tibetan Plateau (Fig. 2.8). The Dongge speleothem record in southeastern China is influenced mainly by the East Asian Monsoon, but has also been theorized to be affected by the ISM due to its location on the margins between the two systems (Fig. 2.8C; Dykoski et al., 2005). Noticeably, Dongge Cave shows a much drier late Holocene with wetter conditions during the modern with less variability than at Nir’Pa Co. Qunf Cave in Southern Oman is an ISM record that is located at the furthest western extent of the monsoon and the northern point of the ITCZ (Fig. 2.8D; Fleitmann et al., 2003; Fleitmann et al., 2007). The isotopic record of precipitation is less variable and drier than at Nir’Pa Co in the early part of the late Holocene with a steady decline in precipitation across the Holocene which is inferred as the southward migration of the ITCZ. Precipitation increases around the MCA and LIA before declining again. The long hiatus at Qunf Cave between 2.7 and 1.4 ka is attributed to a significant decline in the monsoon that halted deposition and agrees with reduced ISM precipitation on the plateau. A Globigerina bulloides foraminifera record (Fig. 2.8E) from the Arabian Sea suggest increased (decreased) upwelling in conjunction with higher (Battarbee et al., 2001) monsoon precipitation on land (Gupta et al., 2003). Upwelling is inferred in that record as an increase in wind strength from the monsoon, with upwelling remaining low for most of the late Holocene, decreasing and remaining stagnant between 2.2 to 1 ka before increasing during the MCA. 38 Marine and lake sediment records from the Pacific and Indian Oceans inferred to represent El Nino-Southern Oscillation variability provide a possible explanation of how sea surface temperatures and wind patterns drive monsoon rainfall across the plateau. The sand record at El Junco Crater Lake, in the Galapagos Islands, has been argued to indicate higher frequency of El Niño events ( Fig. 2.8F; Conroy et al., 2008). Deeper lake level at El Junco defined by high sand influxes and lower C to N ratios occurred from 2 to 1.5 ka when the Asian monsoon was at its weakest points. A transition to El Niño conditions during the late Holocene also coincided with a southward migration of the ITCZ as evidenced in Qunf Cave (Fleitmann et al., 2003) and the Cariaco Basin (Haug et al., 2001). Laguna Pallcacocha sedimentology record from the Ecuadorian Andes exhibits higher frequency of El Niño conditions during the mid-late Holocene, but does not show the same extreme response or temporal duration of these events as El Junco likely influenced by its inland and higher elevation site ( Fig. 2.8G; Moy et al., 2002). Eastern Pacific SSTs were estimated from the ratio of Mg to Ca from Globigerina bulloides foraminifera collected in a sediment core near the Baja Peninsula of Mexico ( Fig. 2.8H; Marchitto et al., 2010). Warmer temperatures in the eastern Pacific are indicative of an El Niño state while cooler temperatures indicate La Niña conditions, resulting in higher and lower rainfall respectively on the western coast of North and South America. The sparse record does suggest warmer conditions between 1.5 to 1 ka, when the Asian monsoon was weaker. SSTs in the tropical western Pacific are interpreted as cooler (warmer) temperatures indicate El Niño (La Niña) conditions ( Fig. 2.8I; Stott et al., 2004). Surface waters were cooler for most of the late Holocene, with warmer temperatures during the MCA suggesting La Niña conditions during this period. Indian Ocean SSTs also indicate warmer temperatures between 2 and 1.2 ka and cooler temperatures during the MCA and LIA indicating La Niña and El Niño conditions respectively ( Fig. 2.8J; Tiwari et al., 2006). The increased prevalence of El Niño conditions during the late Holocene has been attributed to declining solar insolation and warmer ocean upwelling resulting in decreased ISM precipitation intensity (Marchitto et al., 2010). 39 2.6 Conclusions The leaf wax record at Nir’Pa Co demonstrates that there has been high variability in the ISM throughout the late Holocene with a pronounced weakening of the monsoon between 2.4 to 1.3 ka and a minimal hydroclimate response to the LIA. The modern monsoon is at its weakest point in the Holocene evidenced by high terrestrial vegetation inputs, enriched δ2H, and greater evaporation at Nir’Pa Co. Comparisons between the isotopic record and grain size records at Nir’Pa Co show that the lake level response to the ISM is more abrupt, suggesting a threshold for lake level changes. Weaker monsoon intensity at Nir’Pa Co corresponds with an El Niño-state in the Pacific and Indian Oceans as well as warmer temperatures on the plateau while stronger monsoon conditions reflect a La Niña-state and cooler temperatures on the plateau. Comparisons with paleoclimate records within the ISM extent and broader teleconnections shows that the period between 2.4 to 1.3 ka with weaker monsoon intensity was influenced by El Niño conditions in the Pacific. 40 2.7 Tables Table 2.1: Average concentration of n-alkanes in Nir’Pa Co sediments TIME PERIOD NC23 NC25 NC27 249 TO -67 BP 1.09x108 1.39 x108 9.69E+07 1.09 x108 1.28 x108 675 TO 250 BP 7.42 x107 9.52 x107 5.67 x107 5.33 x107 5.75 x107 1000 TO 700 BP 1.18 x108 1.58 x108 1.01 x108 1.02 x108 1.12 x108 1250 TO 1000 BP 1.16 x108 1.52 x108 1.02 x108 1.07 x108 1.15 x108 2250 TO 1250 BP 1.10 x108 1.39 x108 9.28 x107 9.51 x107 9.94 x107 3400 TO 2250 BP 1.07 x108 1.28 x108 8.83 x107 8.61 x107 8.52 x107 41 NC29 NC31 2.8 Figures 42 Figure 2.1. The location of Nir’Pa Co (NPC; red circle) in reference to other regional climate records. Lake sediment archives including El Junico (EJ), Lake Zigetang (LZ), Pallcacocha (PA), Paru Co (PC), and Selin Co (SC) are represented with circles. Cave records from Dongge Cave (DC) and Qunf Cave (QC) are represented with squares. The Dunde ice core (DU) is represented with a triangle. Marine sediment cores from the Arabian Sea (AS), Eastern Pacific (EP), and the Western Pacific (WP) are represented with stars. The Lhasa weather station (LH) is marked with an open circle. Figure 2.2. The Nir’Pa Co watershed and surrounding area with the lake at the end of a 5 km long glacially carved valley. 43 Figure 2.3. Bathymetric map of Nir’Pa Co with 2 m contour intervals. The respective core sites for A-11, A-15, and B-15 are designated with red circles. Location of the inlet and outlet to the lake are marked with the location of the moraine that terminates the watershed. 44 45 Figure 2.4. Monthly total precipitation (mm ± s.d.) and average temperature (°C ± s.d.) at the Lhasa weather station. The monsoon season (May-September) is marked with a shaded gray background. 46 Figure 2.5. Total concentration of extracted long-chain C23 – C31 n-alkanes from sediment samples (ng/100 μL; A- E). Terrestrial lipid distribution as indicated with the Carbon Preference Index (CPI; F), Average Chain Length (ACL; G), and the aquatic vegetation index (Paq, H). Vertical black lines indicate the average value. The LIA and MCA time periods are marked with light blue and dark blue backgrounds (indicating wetter conditions) while 2250-1250 BP is marked with red background (indicating drier conditions). 47 Figure 2.6. Leaf wax δ2H (‰ VSMOW) ±1 σ s.e.m. for C23 (A), C25 (B), C27 (C), C29 (D), and C31 I n-alkanes. ΔδC23-C31 shows the variation between isotopic values between nC23 and nC31 (F). A more positive Δδ value indicates higher evaporation while a more negative Δδ indicates lower evaporation. Vertical black lines indicate average values. The LIA and MCA time periods are marked with light blue and dark blue backgrounds (indicating wetter conditions) while 2250-1250 BP is marked with red background (indicating drier conditions). 48 Figure 2.7. Nir’Pa Co δ2H nC23 (‰; A), δ2H nC31 (‰; B), ΔδC23-C31 (‰; C), Paq (D), and sand grain size (%, E). Compared with local climate records from Paru Co sand (%; F), principal components (G), δ2H for nC27 and nC29 (‰; H), Seling Co δ18O (‰; I), Lake Zigetang pollen index (J), and Dunde ice core δ18O (‰; K). Vertical black lines indicate the average value for each proxy. The LIA and MCA time periods are marked with light blue and dark blue backgrounds (indicating wetter conditions) while 2250-1250 BP is marked with red background (indicating drier conditions). 49 Figure 2.8. Comparison of Nir’Pa Co δ2H nC31 (‰; A) and ΔδC23-C31 (B) data with regional monsoon records and global forcing. Regional monsoon records include Dongge Cave δ18O (‰; C), Qunf Cave δ18O (‰; D), and Arabian Sea marine core δ18O (‰; E). Pacific records include El Junico sand grain size (%, F), Pallcacocha red sediment color intensity (G), Eastern (H) and Western Pacific (I) and Indian Ocean (J) SSTs (Sea Surface Temperatures °C). Vertical black lines indicate the average value for each proxy. The LIA and MCA time periods are marked with light blue and dark blue backgrounds (indicating wetter conditions) while 2250-1250 BP is marked with red background (indicating drier conditions). 2.9 References Appleby, P. and Oldfield, F. 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. CATENA 5(1), 18. Battarbee, R., Jones, V., Flower, R., Cameron, N., Bennion, H., Carbalho, L. and Juggins, S. (2001) Tracking environmental change using sediments. Smol, J., Birk, H. and Last, W. (eds), Kluwer Academic Publishers, Dordrecht. Berkelhammer, M., Sinha, A., Stott, L., Cheng, H., Pausata, F. and Yoshimura, K. (2012) Climates, Landscapes, and Civilizations, pp. 75-87, Geophysical Monograms AGU, Washington D.C. Bird, B., Lei, Y., Perello, M., Polissar, P., Yao, T., Finney, B., Bain, D., Pompeani, D. and Thompson, L. 2017. Late Holocene Indian summer monsoon variability revealed from a 3,300-year-long lake sediment record from Nir’pa Co, southeastern Tibet. The Holocene 27(4), 541-552. Bird, B., Polissar, P., Lei, Y., Thompson, L., Yao, T., Finney, B., Bain, D., Pompeani, D. and Steinman, B. 2014. A Tibetan lake sediment record of Holocene Indian summer monsoon variability. Earth and Planetary Science Letters 399, 92-102. Conroy, J.L., Overpeck, J.T., Cole, J.E., Shanahan, T.M. and Steinitz-Kannan, M. 2008. Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record. Quaternary Science Reviews 27, 1166– 1180. Diefendorf, A.F., Leslie, A.B. and Wing, S.L. 2015. Leaf wax composition and carbon isotopes vary among major conifer groups. Geochimica et Cosmochimica Acta 170(1), 145-156. Dykoski, C., Edwards, R., Cheng, H., Yaun, D., Cai, Y., Zhang, M., Lin, Y., Qing, J., An, Z. and Revenaugh, J. 2005. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters 233, 71-86. Ficken, K., Li, B., Swain, D. and Eglinton, G. 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry 31(7-8), 745-749. 50 Fleitmann, D., Burns, S., Mudelsee, M., Neff, U., Kramers, J., Mangini, A. and Matter, A. 2003. Holocene forcing of the Indian Monsoon recorded from a stalagmite from Southern Oman. Science 300, 1737-1739. Fleitmann, D., Burns, S.J., Mangini, A., Mudelsee, M., Kramers, J., Villa, I., Neff, U., Al-Subbary, A.A., Buettner, A., Hippler, D. and Matter, A. 2007. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quaternary Science Reviews 26, 170-188. Gasse, F., Fontes, J.C., Campo, E.V. and Wei, K. 1996. Holocene environmental changes in Bangong Co basin (Western Tibet). Part 4: Discussion and conclusions. Palaeogeography, Palaeoclimatology, Palaeoecology 120, 79-92. González-Rouco, F.J., Fernández-Donado, L., Raible, C.C., Barriopedro, D., Luterbacher, J., Jungclaus, J.H., Swingedouw, D., Servonnat, J., Zorita, E., Wagner, S. and Ammann, C.M. 2011. Medieval Climate Anomaly to Little Ice Age transition as simulated by current climate models. PAGES news 19(1), 7-8. Gu, Z., Liu, J., Yuan, B., Liu, D., Liu, R., Liu, Y. and Zhang, G. 1993. Monsoon variation on the Tibetan Plateau since the past 12 000 years: geochemistry evidence from lake sediments in Selin Co. Chinese Science Bulletin 38, 61-64. Guenther, F., Aichner, B., Siegwolf, R., Xu, B., Yao, T. and Gleixner, G. 2013. A synthesis of hydrogen isotope variability and its hydrological significance at the Qinghai-Tibetan Plateau. Quaternary International 313-314, 3-16. Gupta, A., Anderson, D. and Overpeck, J. 2003. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421, 354-357. Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C. and Ro, U. 2001. Southward Migration of the Intertropical Convergence Zone Through the Holocene. Science 293, 1304-1308. Herzschuh, U., Winter, K., Wunnemann, B. and Li, S. 2006. A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra. Quaternary International 154-155, 113-121. 51 Li, B., Li, J. and Cui, Z. 1991. Quaternary glacial distribution map of Qinghai-Xizang (Tibet) Plateau 1:3,000,000. Shi, Y. (ed), Quaternary Glacier and Environment Research Center, Lanzhou University. Mann, M., Zhang, Z., Rutherford, S., Bradley, R., Hughes, M., Shindell, D., Ammann, C., Faluvegi, G. and Ni, F. 2009. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326, 1256-1260. Marchitto, T.M., Muscheler, R., Ortiz, J.D., Carriquiry, J.D. and Geen, A.v. 2010. Dynamical Response of the Tropical Pacific Ocean to Solar Forcing During the Early Holocene. Science 330, 1378-1381. Marzi, R., Torkelson, B. and Olson, R. 1993. A revised carbon preference index. Organic Geochemistry 20(8), 1303-1306. Meyers, P.A. 2003. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Organic Geochemistry 34(2), 261-289. Miller, G.H., Geirsdóttir, Á., Zhong, Y., Larsen, D.J., Otto‐Bliesner, B.L., Holland, M.M., Bailey, D.A., Refsnider, K.A., Lehman, S.J., Southon, J.R., Anderson, C., Björnsson, H. and Thordarson, T. 2012. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea‐ice/ocean feedbacks. Geophysical Research Letters 39(2), L02708. Moy, C.M., Seltzer, G.O., Rodbell, D.T. and Anderson, D.M. 2002. Variability of El Nino/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162-165. Mügler, I., Sasche, D., Werner, M., Xu, B., Wu, G., Yao, T. and Gleixner, G. 2008. Effect of lake evaporation on δD values of lacustrine n-alkanes: A comparison of Nam Co (Tibetan Plateau) and Holzmaar (Germany). Organic Geochemistry 39, 711-729. Olsson, I. (1986) Handbook of Holocene palaeoecology and paleohydrology Berglund, B. (ed), John Wiley & Sons, Chichester. Polissar, P. and D'Andrea, W. 2014. Uncertainty in Paleohydrologic Reconstructions from Molecular dD values. Geochimica et Cosmochimica Acta 129, 146-156. 52 Polissar, P.J., Abbott, M.B., Wolfe, A.P., Bezada, M., Rull, V. and Bradley, R.S. 2006. Solar modulation of Little Ice Age climate in the tropical Andes. PNAS 103(24), 8937–8942. Qui, J. 2008. China: The Third Pole Environment. Nature 454(7203), 393-396. Seki, O., Meyers, P.A., Kawamura, K., Zheng, Y. and Zhou, W. 2009. Hydrogen isotopic ratios of plant wax n-alkanes in a peat bog deposited in northeast China during the last 16 kyr. Organic Geochemistry 40(6), 671-677. Stott, L., Cannariato, K., Thunell, R., Haug, G.H., Koutavas, A. and Lund, S. 2004. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch. Nature 431, 56-59. Stuiver, M. and Reimer, P.J. 1993. Extended 14C Data Base and Revised CALIB 3.0 14C Age Calibration Program. Radiocarbon 35(1), 215-230. Thompson, L.G., Mosley-Thompson, E., Brecher, H., Davis, M., León, B., Les, D., Lin, P.-N., Mashiotta, T. and Mountain, K. 2006. Abrupt tropical climate change: Past and present. PNAS 103(28), 10536 –10543. Tiwari, M., Ramesh, R., B.L.K.S., Jull, A.J.T. and Burr, G.S. 2006. Paleomonsoon precipitation deduced from a sediment core from the equatorial Indian Ocean. Geo-Marine Letters 26, 23-30. Xia, Z.-H., Xu, B.-Q., Mügler, I., Wu, G.-J., Gleixner, G., Sachse, D. and Zhu, L.-P. 2008. Hydrogen isotope ratios of terrigenous n-alkanes in lacustrine surface sediment of the Tibetan Plateau record the precipitation signal. Geochemical Journal 42, 331-338. 53 3. HOLOCENE INDIAN SUMMER MONSOON INTENSITY OVER THE SOUTHCENTRAL TIBETAN PLATEAU INFERRED FROM SEDIMENTOLOGY AND LEAF-WAX n-ALKANE HYDROGEN ISOTOPES 3.1 Introduction The Indian summer monsoon (ISM) is the primary climatic system that delivers moisture to the Tibetan Plateau, accounting for more than 90% of annual precipitation for eastern and central Tibet (Tian et al., 2007). Assessing long-term and abrupt ISM variability on the Tibetan Plateau is critical because of this region’s role as a water tower for much of South Asia; several of the largest rivers in South Asia have headwaters on the plateau that are reliant on stored monsoonal precipitation in the form of groundwater and glacial melt for baseflow. Model simulations suggest that these water resources are threatened by climate change (Kumar et al., 2006; Li et al., 2017; Sharmila et al., 2015), with projections of warmer air and sea surface temperatures, decreasing land-sea temperature gradients, a driving mechanism behind ocean-atmosphere circulation and the ISM. Understanding how these ocean-atmosphere circulation changes will impact the ISM is crucial, as the reliance on seasonal monsoon precipitation will increase as glaciers disappear from the landscape (Qui, 2008). Because instrumental records for the region are short (1930s to present) and spatially underrepresented at high elevations and remote regions of the Third Pole (Tian et al., 2007), paleoclimate records are essential for determining the long-term relationships between hydrologic variability and local and global climate drivers. Given its importance, there has been considerable effort expended to reconstruct Holocene ISM variability in recent decades. The majority of research indicates that ISM precipitation reached a maximum during the early Holocene from 11.7 – 7 ka before a decline in intensity between 7.5 and 5 ka, with evidence of an earlier decline in local monsoon precipitation and intensity (e.g. lake levels and erosion indicators) before synoptic scale changes reflected by isotopic records in some records (Berkelhammer et al., 2012; Bird et al., 2014; Dykoski et al., 2005; Fleitmann et al., 2003; Gupta et al., 2003). The expression of the weakened monsoon varies both spatially and temporally, with evidence that the monsoon expanded in the early Holocene reaching as far as 54 northern Iran to the west (Djamali et al., 2010) and southeastern China to the east, contracting during the middle Holocene as a result of weakened monsoon winds and precipitation (Gupta et al., 2003; Magny and Haas, 2004). The middle Holocene weakening of the ISM was driven by declining boreal summer insolation in the Northern Hemisphere (NH), which peaked around 11 ka and began to gradual decline after 8 ka (Berger and Loutre, 1991; Fleitmann et al., 2003; Wu et al., 2018). Reduction in solar insolation resulted in a southerly shift in the Intertropical Convergence Zone (Fleitmann et al., 2003; Haug et al., 2001), weakened ISM winds near the Arabian Peninsula (Gupta et al., 2003), cooler temperatures in the NH (Marcott et al., 2013) and the Tibetan Plateau (Herzschuh et al., 2009; Herzschuh et al., 2006), and a shift to El Niño-like conditions in the Pacific (Conroy et al., 2008; Marchitto et al., 2010; Moy et al., 2002). High frequency paleoclimate records from the Tibetan Plateau indicate that superimposed on these millennial scale changes in ISM are more frequent shifts between wet and drought conditions during the early Holocene (Bird et al., 2014). This study seeks to identify how high-frequency Holocene ISM variability was expressed in the south-central Tibetan Plateau, near the westernmost extent of monsoon precipitation on the Plateau, and investigate how relative precipitation and lake level proxies respond to local and global climate drivers. To this end, a high-resolution, multi-proxy lacustrine paleoclimate record from Cuobu, a small alpine lake located in the Gangdise Mountains on the southern Tibetan Plateau (Fig. 1). Local-scale hydroclimate at the lake and watershed level was investigated/reconstructed using sedimentology, sediment geochemistry including δ13C and δ15N isotopes and x-ray fluorescence (XRF), total organic matter and carbonate, and short-chain n-alkane hydrogen (δ2H) isotopes. Synoptic-scale ISM intensity was investigated using long-chain n-alkane δ2H. Isotopic difference between long-chain and short-chain n-alkane δ2H were additionally used to estimate the ratio of local precipitation:evaporation (P:E) as an indicator of local effective moisture. The Cuobu record in conjunction with other sites on the Tibetan Plateau and from the broader ISM region is used to assess: 1) Holocene ISM variability near the westernmost extent of the ISM on the Tibetan Plateau, 2) distinguish the timing and differences between how local and synoptic hydroclimate proxies respond to changes in monsoon intensity, especially 55 during the middle Holocene, and 3) how high-frequency hydroclimate variability responds to local and global drivers of the ISM. 3.2 Study Area: Cuobu Cuobu is a small (1.1 km2) high elevation (4734 m a.s.l) alpine lake located on the southern Tibetan Plateau in the Gangdise Mountains (Fig. 3.1; 29.55813° N, 87.02519° E). The bathymetry of the lake is largely shallow with a deep northern basin that reaches a maximum water depth of 5.1 m. The lake’s littoral zone is heavily vegetated with submerged and emergent macrophytes and algae. The watershed is sparsely vegetated with a few species of ferns, flowers, and mosses. The water chemistry of the lake was slightly basic (pH=8.54) with moderate conductivity (137 mS/m) and alkalinity (36 mEq/L). The regional geology consists of Pleistocene andesite bedrock (Choubert et al., 1983) with fluvial and glacial features. The watershed for Cuobo (8.4 km2) has been dominated by past glacial activity with the lake and its watershed resulting from the intersection of two valley glaciers (Fig. 3.2A). The watershed is flanked by steep mountain ranges to the north and southwest that reach maximum elevations of 5110 m a.s.l, while the eastern and southeastern edge of the watershed is flanked by a moraine (4750 m a.s.l), which separates the lake from a river channel, referred to here as the Cuobu River (Fig. 3.2B). The lake is situated at the eastern edge of the watershed within a wide and long (2.5 km by 3.3 km) valley and is dammed by a long terminal moraine (2.2 km). Cuobu’s main tributary is an ephemeral stream that enters the lake on its northwestern corner (Fig. 3.1). Two secondary tributaries include a small stream positioned on the western edge of the lake and an ephemeral stream on Cuobu’s eastern shore. This ephemeral secondary tributary is an overflow point of Cuobu River to the east of Cuobu’s watershed, which is situated approximately 20 m higher in elevation than modern lake level, separated by a medial moraine (Fig. 3.2C). The geomorphic features associated with the overflow tributary (e.g., vegetation growing within the channel, limited incision) suggest that overflow events are infrequent under current climatic conditions, but may have been more frequent at times in the past when ISM precipitation 56 was greater and river height increased sufficiently to reactive the channel. The wider channel that surrounds the modern channel incision suggests that this river sustained greater waterflow than the current channel can support. Outflow from Cuobu occurs via an outlet on the southern edge of the lake, however, there is little surface geomorphic evidence for sustained surface flow from the outlet. Instead, it appears that today groundwater seepage reaches the surface approximately 200 m downslope from the outlet, at which point it forms a permanent surface stream that eventually flows into the Dogxung Zangbo (River), a tributary to the Yarlung Tsangpo River, which has carved a steep valley through the area. Data from the Xigaze weather station, (located ~180 km south the lake at 3837 m a.s.l.; 29.25° N, 88.883° E) indicates that the regional climate is relatively dry, with an annual total of 367 mm of precipitation (1988-2018; Fig. 3.3), compared with the northeastern (i.e., Mischke, 2008) and southeastern Tibetan Plateau (Bird et al., 2017; Bird et al., 2014). Approximately 99% of this annual precipitation occurs during the monsoon season (June-September: 363 mm), with peak precipitation in July and August. This is later in the season than eastern sites along the plateau, indicating that it takes longer for monsoon precipitation to reach the southcentral region as the monsoon system originates in the southeast of the plateau near the Nyainqêntanglha Mountains. Water isotopes indicate that precipitation is greater than evaporation (mean δ18O = -16.6 ‰; mean δ2H = -138.0 ‰). Mean temperatures are cool (mean annual temperature = 7.1°C, mean monthly temperatures = -2.5 – 15.4 °C), with ice cover during boreal winter months preventing evaporation during this time (Dec-Feb: mean temperature = -1.73°C, total precipitation: 0.2 mm). 3.3 Methods 3.3.1 Sample Collection Sediment cores, surface sediments, water, and vegetation samples were retrieved from Cuobu and its watershed in June 2017 (Fig. 1). Two surface cores, A-17 (core length = 69 cm, water depth = 5.05 m) and B-17 (core length = 85 cm, water depth = 4.3 m), were retrieved using a modified piston corer. Three longer sediment cores were 57 collected using a modified Livingstone piston corer (Livingstone, 1955; Wright, 1967). Each 1-meter-long drive was overlapped by 30 to 50 cm to ensure complete stratigraphic recovery. The C-17 core consisted of 9 drives (water depth = 4.3 m; 728 cm total recovery). The D-17 core was collected at a water depth of 4.4 m and consisted of 5 drives for a total recovery of 371 cm. A third core collected nearby E-17 consisted of 7 drives for a total recovery of 357 cm (water depth = 4.6 m). A composite of the B-17 surface and D-17 Livingstone cores was made based on magnetic susceptibility with a total core length of 431 cm. A transect of 14 surface sediment samples was collected across the northern side of the lake using an Ekman grab sampler to characterize the modern distribution of sediment characteristics, including all of the down-core sediment proxies, across the lake basin and their relationship with water depth and proximity to shore. Two soil samples were collected from southeast shore of the lake. Samples of aquatic and terrestrial vegetation within and surrounding the lake were additionally collected. A water sample was collected for isotopic analysis. Water chemistry, including temperature, pH, alkalinity, and conductivity was measured on site at 1-meter depth intervals using a Hydrolab MS5. Sediment, vegetation, and water samples were subsequently stored and analyzed at the Paleoclimatology and Sedimentology Laboratory at Indiana UniversityPurdue University Indianapolis (IUPUI). 3.3.2 Sediment Dating Sediment 210Pb, 214Pb, and 137Cs was measured by direct gamma counting of 21 dry, homogenized samples from the upper 41 cm of the B-15 surface core at the University of Pittsburgh. The 210Pb age model was produced using the constant rate of supply (CRS) model (Appleby and Oldfield, 1978). Radiocarbon (14C) dates of bulk sediment samples from the F-17 core (n=10) were measured with accelerator mass spectrometry at the Keck AMS Facility, University of California Irvine. Bulk sediment samples were dried and treated with 1 N HCl (KCCAMS, 2011; Olsson, 1986). An age model combining radiocarbon, 210Pb, 214Pb, and 137Cs dates was established using the program Bacon (Blaauw and Christen, 2011). Dates used in this age model are reported in calendar years before present (0 ka; 0 ka = 1950 of the common era). 58 3.3.3 Initial Core Description Surface and Livingstone cores were split, described, and imaged using a GeoTex Multi-Sensor Core Logger at IUPUI’s (Indiana University-Purdue University, Indianapolis) Paleoclimatology and Sedimentology Laboratory. Volumetric samples (1 cm3) were taken at 1 cm intervals for each core and drive respectively for bulk density and loss-on-ignition analysis. Wet samples were weighed, dried for 24 hours at 60 °C and reweighed to calculate dry bulk density (ρdry; g/cm-3) and water content (%). Each sample was combusted 550 °C and 1000 °C for four hours and two hours, respectively, and weighed after each combustion to measure percent total organic matter (%TOM) and total carbonate (%TC; Heiri et al., 2001). Surface and Livingstone cores were subsampled at 1 cm and 0.5 cm resolutions respectively for further analysis. Magnetic susceptibility is a measure of magnetic minerals in sediments, and is used to understand the deposition of lithics in lake sediments, with increased MS associated with higher influxes of terrestrial material to the lake during either wetter or drier conditions (Dearing, 1994; Thompson et al., 1975). Under wetter conditions the increase in MS is attributed to a greater volume of eroded terrestrial materials contributed to the lake; while drier conditions result in the concentration of terrestrial materials with lower lake levels winnowing these materials to the center of the lake. Conflicting scenarios for MS require an interpretation in conjunction with other proxies. MS was measured down-core at 0.5 cm intervals on the GeoTex Multi-Sensor Core Logger at IUPUI’s Paleoclimatology and Sedimentology Laboratory. 3.3.4 Lithics & Grain Size Distributions of sediment grain sizes were measured at 1 cm intervals across the B-17 and D-17 composite core. Grain size distributions of the surface sediments and soil samples were also measured. A portion of wet sediment (~1 g) was dried and weighed before soaking in 30% hydrogen peroxide (H2O2) for 24 hours. The sample was then treated with 5 aliquots of 20 mL of H2O2 at 70 °C to remove organic matter. Biogenic silica was removed by treating samples for 6 hours at 60 °C with 20 mL of 1 N sodium hydroxide (NaOH). Carbonates were removed from samples with greater than 3% TC as determined by LOI by treating samples with aliquots of 10 ml of hydrochloric acid (HCl) 59 for at least 1 hr or until there was no visible reaction. Samples were rinsed with DI water, freeze dried, and weighed to estimate %lithics. Sample preparation methods were modified from (Gray et al., 2010). Each sample was then treated with 2.5% sodium metaphosphate and sonicated. Each sample was run on a Malvern Mastersizer 2000 at IUPUI with final values the average of three measurements. Results were binned into 49 diameter size fractions between 0.2 and 2000 μm. Grain size analysis is used to understand the influxes of sediments to the core site, but like MS, their interpretation needs to be considered within the context of other proxies. For instance, increases in grain size can indicate either lower lake levels, with the winnowing of coarse grains toward the deeper portions of the lake during low stands (Bird et al., 2017; Conroy et al., 2008; Dearing, 1997; Digerfeldt, 1986; Shuman et al., 2001; Shuman et al., 2009) or an increase in high-energy runoff and delivery of coarse terrestrial sediment to the lake during wet climatic conditions (e.g., Conroy et al., 2008). In contrast, finer sediments can indicate either deeper lake levels during wetter climatic conditions (i.e., increased distance between the core site and the sediment source) or a reduction in the energy of terrestrial runoff during drier conditions. 3.3.5 X-ray Florescence (XRF) Geochemistry Scanning XRF geochemistry was measured at 0.5 cm resolution down the length of the B-17 surface core and D-17 Livingstone core drives. Measurements were made using an ITRAX XRF Core Scanner at the Large Lakes Observatory, University of Minnesota Duluth (Croudace et al., 2006) for select elements (Al – Ur) and are reported in counts per second (cps). A Cr source tube (30 kV, 55 mA) was used with a 15 second dwell time and 10 mm resolution. Peak optimization was made using Qspec 8.6.0 software. 3.3.6 Elemental Abundances & Isotopic Composition of Organic Carbon & Total Nitrogen Measurements of total organic carbon (TOC), total nitrogen (TN), δ13C, and δ15N were made at the Large Lakes Observatory, University of Minnesota Duluth. Sediment samples were measured at a 2 cm resolution for the composite B-17 and D-17 core. 60 Samples with less than 5% total carbonate as determined by LOI were homogenized and weighed (~4 mg) into tin capsules. Samples with greater than 5% total carbonate were homogenized and weighed (~12 mg) into silver capsules. The samples were injected with 50 µl DI water and placed in a desiccator with an open beaker of 12M HCl. Samples were acidified overnight and air-dried to remove HCl before being placed in tin capsules. Measurements were made with a Thermo Finnigan Delta Plus XP isotope ratio mass spectrometer (IRMS) fitted with a Conflo III device and a Costech 4010 elemental combustion system at the Large Lakes Observatory, University of Minnesota Duluth. Samples were run against a series of standards including acetanilide, B-2153, B-2159, USGS41, and caffeine (standards from the National Institute of Standards and Technology). Values are reported in delta notation as the per mil (‰) deviation from Vienna Peedee Belemnite (VPDB) for 13C and air for 15N.The coefficient of variation standards ranged between 1.4-3.8% for N and 0.5-2.5% for C while isotopic precision was 0.04-0.13‰ and 0.06-0.2‰ for 13C and 15N. The ratio of total organic carbon to total nitrogen (C:N) reflects shifts in organic matter sources in lacustrine systems, with values under 10 indicating aquatic derived organic matter and values above 15 indicating terrestrial organic matter (Meyers, 1999). The isotopic composition of organic carbon (13Corg) is affected by photosynthetic pathways, with C3 land plants and algae being isotopically similar (range: - 30 to -25‰), depending on lake water CO2, while C4 plants are more enriched (range: -14 to -10‰; Meyers, 1999). The isotopic composition of total nitrogen (δ15N) is also affected by productivity source, but must be considered in conjunction with other productivity proxies due to its complex nature as it also impacted by other processes, such as nitrogen cycling within the water column (Meyers and Lallier-Vergès, 1999). Higher δ15N is often correlated with terrestrial productivity and a higher C:N ratio (Thornton and McManus, 1994). 3.3.7 Lipid Extractions & δ2H Isotopes Thirty-four samples were collected from the composite core for long-chain nalkane extraction and hydrogen isotopic measurements (2H) at the Lamont-Doherty Earth Observatory, Columbia University. Lipids were extracted from homogenized 61 sediments with a 9:1 dichloromethane and methanol solvent on a Dionex Accelerated Solvent Extractor (ASE–350). The aliphatic fraction was isolated using hexane solvent across a silica gel column (70-230 mesh, 60A). Ketone and polar fractions were isolated subsequently using dichloromethane and methanol. The n-alkanes were purified with a second separation across a silver nitrate column (10% AgNO3) with hexane solvent. Nalkane distribution and concentration was determined using an Agilent Technologies 7890A gas chromatography mass spectrometer (GCMS). Leaf wax 2H isotopic measurements were made on the extracted n-alkanes using a combined GCMS-IRMS (Thermo Scientific Trace GC Ultra GCMS and Delta V Plus IRMS; GC column: 30m, 0.25mm, 14.2psi, 60°C). A mixture of long-chain n-alkanes (Mix A7) and a reference sample were both used as standards. Values are reported in delta notation as the per mil (‰) deviation from VSMOW (Vienna Standard Mean Ocean Water). Sample isotopic values were corrected using MATLAB with uncertainties ranging between 3.2% and 4.2% (1 σ s.e.m.; (Polissar and D'Andrea, 2014). Average chain length (ACL) quantifies whether short or long-chain n-alkanes are more abundant (Diefendorf et al., 2015; Mügler et al., 2008), while the carbon preference index (CPI) represents the ratio of odd to even carbon atoms in n-alkanes (Marzi et al., 1993). Higher values for both the ACL and CPI are indicative of more terrestrial organic matter in the lake, which suggests either increased productivity in the watershed and/or increased delivery of terrestrial organic matter to the lake. 25 𝐶25 ACL 𝐶𝑃𝐼 𝐶25 𝐶23 𝐶25 2 𝑋 C24 27 𝐶27 𝐶27 𝐶25 𝐶27 C26 29 𝐶29 31 𝐶31 33 𝐶33 37 𝐶37 𝐶33 𝐶35 𝐶29 𝐶31 35 𝐶35 𝐶37 𝐶27 𝐶29 𝐶31 𝐶33 𝐶35 𝐶29 𝐶31 𝐶33 𝐶35 𝐶37 C28 C30 C32 C34 C36 In contrast to the ACL and CPI, the aquatic vegetation index (Paq) quantifies the abundance of short-chain n-alkanes in the sediments, with higher values indicating increased aquatic vegetation productivity (Ficken et al., 2000; Seki et al., 2009). 62 𝑃𝑎𝑞 𝐶23 𝐶23 𝐶25 𝐶25 𝐶29 𝐶31 3.3.8 Effective Moisture Estimation Because the δ2H of n-alkanes produced by aquatic vegetation (e.g., δ2HC23) reflect the δ2H of lake water, it integrates isotopic variability related to both changes in ISM precipitation and lake volume changes as a result of evaporation. The later isotopic effects can be isolated by subtracting precipitation isotopic variability, captured by longchain n-alkanes (δ2HC31), from aquatic isotopic variability (δ2HC23). The resulting socalled delta-delta index (Δδ2HC23-C31) provides a semi-quantitative estimate of the ratio of precipitation to evaporation (P:E) where higher Δδ2HC23-C31 values indicate a reduction in lake volume from greater evaporation relative to precipitation (i.e., lower effective moisture) whereas lower Δδ2HC23-C31 values reflect an increase in effective moisture and lakes volumes as a result of reduced evaporation relative to precipitation (Aichner et al., 2010; Mügler et al., 2008; Seki et al., 2009). 3.4 Results 3.4.1 Core Description The lithology of the composite core was characterized by massive units of light brown, fine grained sediments with small fragments of aquatic grasses throughout the core. 3.4.2 Age Model Excess 210Pb was highest in the top 2.5 cm (0.19-0.20 Bq/g) of the B-17 core and reached background levels at 22.5 cm (Table 3.1; Fig. 3.4). Only three samples had measurable 137Cs at 2.5, 16.5, and 18.5 cm. Ten radiocarbon dates from bulk sediments were measured from the E-17 and D-17 core. Dates were calibrated using IntCal 13.0 (Reimer et al., 2013). The oldest radiocarbon date was 7910 ± 20 cal yr BP. Comparison between the 210Pb and 14C dates from the same depths at the top of the E-17 surface core 63 showed a carbon reservoir effect of 930 years, which was subtracted from all radiocarbon dates in the age model. The age model shows continuous deposition at the lake, with no hiatuses, and spans the past 8.34 ka (Fig. 3.5). Full age results for Cuobu are in Appendix 1, Table A 2.1. 3.4.3 Elemental Abundances & Isotopic Composition of Organic Carbon & Total Nitrogen Total organic matter (%TOM) was lowest in the early Holocene from 8.3 – 5 ka, averaging 42.2% (Fig. 3.6A). %TOM gradually increased from 5 – 2 ka by 8.5%, then subsequently decreased from 2 ka to present (35.9%; Fig. 3.6A). Total carbonate (%TC) was low for most of the record with a mean of 5.6% (range: >0.01 – 41.2%), with elevated TC from 2.9 – 33.3% from 2.6 – 2.1 ka (Fig. 3.6B). The ratio of total organic carbon to total nitrogen (C:N) averaged 9.3 across the Cuobu record (range: 6.1 – 12.2), with high C:N from 7.3 to 2.3 ka (range: 9.5-12.2) and lower C:N for the late Holocene (range: 6.1 – 9.2; Fig. 3.6E). At Cuobu, δ13Corg was lowest at the beginning of the record, averaging -16.2 ‰, gradually increasing by 2.4 ‰ by 5 ka when δ13Corg plateaued (Fig. 3.6C). δ13Corg varied significantly over the last 3 ka, with an increase of 6.1 ‰ over the early Holocene from 0.9 to 0.5 ka. The trend for δ15N follows a similar pattern as δ13Corg, with lower δ15N in the earliest part of the record, averaging 2.4 ‰ around 8.3 ka, gradually increasing by 0.6 ‰ until 5 ka (Fig. 3.6D). δ15N values at Cuobu peak at 4.5 ‰ in the last 1 ka and remain elevated. 3.4.4 Lipid Biomarkers Sedimentary n-alkanes are valuable biomarkers, providing a record of past vegetation and the isotopic composition of regional precipitation and lake water. Shortchain C23 n-alkanes are derived from aquatic vegetation (Ficken et al., 2000; Seki et al., 2009) and were the most abundant throughout the record, with concentrations ranging from 510 to 98,208 ng/g (mean: 26,691 ng/g), but decreased sharply after 2 ka (Fig. 3.7A). C25 and C27 n-alkanes are a mixture of aquatic and terrestrial vegetation and averaged 19,395 ng/g and 18,036 ng/g respectively (Fig. 3.7B and 3.7C). Long-chain C29 and C31 n-alkanes are synthesized by terrestrial vegetation (Mügler et al., 2008; Seki et 64 al., 2009). Both C29 (range: 749-28920 ng/g) and C31 (range: 1051-32,072 ng/g) were less abundant than short-chain n-alkanes in the record, with averages of 14,717 and 12,672 ng/g respectively (Fig. 3.7D and 3.7E), with C31 increasing over the past 2 ka. ACL values ranged from 27.2 – 28.6 throughout the early and middle Holocene (8.3 to 2 ka, mean: 27.6), increasing sharply after 2 ka, with a range of 28.8 – 29.6 (mean: 29.1; Fig. 3.7F). The ACL suggests that aquatic vegetation remained high until 2 ka, when the plant community shifted to a terrestrial dominated vegetation community. CPI showed a similar pattern, with low values, ranging from 3.7 – 6.9, from 8.3 – 2 ka (mean: 4.4; Fig. 3.7G). After 2 ka, CPI increased, ranging from 6.1 – 8.3 (mean: 6.5), suggesting a shift from aquatic to terrestrial vegetation dominated contributions to the lake. At Cuobu, Paq was highest from 8.3 to 2 ka, averaging 0.68 (range: 0.57 – 0.76), and decreased by 0.32 over the last 2 ka (Fig. 3.8H). Paq concurs with the ACL and CPI indices that aquatic vegetation remained high until 2 ka when terrestrial vegetation inputs increased. 3.4.5 Hydrogen Isotopes Leaf wax n-alkane hydrogen (δ2H) isotopes provide information about precipitation and lake water isotope signatures. Short-chain n-alkanes δ2H (i.e., C23) are produced by aquatic vegetation that incorporate hydrogen directly from lake water, which integrates variations in the isotopic composition of lake water (in part due to evaporation and lake volume changes) as well as variations in precipitation (Liu and Liu, 2016; Mügler et al., 2008; Seki et al., 2009). Short-chain C23 n-alkane δ2H (δ2HC23) averaged 248.2 ‰ and ranged between -263.0 to -235.2 ‰ over the record (Fig. 3.8A). δ2HC23 was low from 8.3 to 5 ka, averaging -253.1 ‰, before increasing by ~15 ‰ to -268 ‰ from 5 to 2.5 ka. From 2.5 ka to present, δ2HC23 showed high isotopic variability, with a shift towards wetter conditions around 2 ka, with the largest decrease around 1 ka to an average of -260.2 ‰. Terrestrial vegetation utilizes soil water during its photosynthetic processes, which is isotopically similar to precipitation and is incorporated in long-chain n-alkane δ2H (Xia et al., 2008). With more than 90% of precipitation at Cuobu derived from the ISM, variations in long-chain n-alkane δ2H (i.e., C29, C31) are inferred to reflect changes 65 in the monsoon (e.g., Bird et al., 2014). Long-chain n-alkanes δ2HC29 and δ2HC31 exhibited similar trends as the short-chain n-alkanes (Fig. 3.8D-E). δ2HC29 was lower from 8.3 to 6 ka, averaging -253.1‰, before gradually increasing to a mean of -245.3 ‰ at 2.5 ka. After 2.5 ka, δ2HC29 decreased, remaining low until 1 ka (-258.6 ‰), after which δ2HC29 subsequently increased and remained high until the present (mean: -244.9 ‰). δ2HC31 was low from 8.3 to 5 ka (mean: -261.1 ‰), but subsequently increased after 2 ka, with an isotopic range between -267.5 to -237.0 ‰. Mid-chain length δ2HC25 and δ2HC27, showed similar patterns to short-chain nalkanes on millennial and centennial time scales, with lower values during the early Holocene (8.3 – 6 ka), with an isotopic range between -246.1 to -251.9 ‰ for δ2HC25 and 247.2 to -250.7 ‰ for δ2HC27 (mean: -250.0 ‰, mean δ2HC27: -249.1 ‰; Fig. 3.8B). δ2HC25 increased by 9.9 ‰ between 6 to 2.5 ka (mean: -239.6 ‰); while δ2HC27 increased by 9.6 ‰ (mean: -239.5 ‰). 3.4.6 Effective Moisture The delta-delta index (δ2HC23-C31) estimates the ratio of precipitation:evaporation (P:E) Δδ2HC23-C31 in Cuobu was variable, but generally low during the early Holocene from 8.3 to 5 ka, averaging -6.7, suggesting precipitation exceeded evaporation (high P:E; Fig. 3.8F). Higher frequency variability indicates that superimposed on this trend of a wetter (high P:E) early Holocene, there were two periods of higher P:E interspersed with lower P:E conditions. At 5 ka, Δδ2HC23-C31 increased and remained elevated until 1 ka, averaging -1.6. From 1 to 0.5 ka, Δδ2HC23-C31 decreased again, averaging -6.1, and then increased from 0.5 ka to modern, averaging -12.4. 3.4.7 Sedimentology Several sedimentological proxies are used to assess changes in the input of clastic materials eroded from the watershed into the lake. Bulk density is a measurement of the mass of sediment per a given volume and has an inverse relationship with organic matter and water content (Brady, 1984). In the Cuobu core, bulk density was highly variable, ranging 0.01 – 3.5 g x cm-3 throughout the record (mean: 0.14 g x cm-3; Fig. 3.9A). Bulk 66 density was highest during the early Holocene from 8.3 to 6.5 ka, averaging 0.12 g x cm-3 and sharply declines around 6 ka and again from 4.5 to 3 ka. Magnetic susceptibility (MS) ranged from -1.5 to 0 SI x 10-5 and averaged -0.78 SI x 10-5 for the record (Fig. 3.9B). MS was higher from 8.3 to 5 ka (mean: -0.62 SI x 105 ) before decreasing from 5 ka to present (mean: -0.9 SI x 10-5), with a sharp increase around 1 ka. High frequency variability of MS follows bulk density, indicating a stronger relationship between these proxies. Both %clay and %silt was lower from 8.3 to 5 ka, with %clay ranging from 0.43 % to 20.8 % and %silt ranging from 5.7 % to 82.1% (mean: clay: 6.7 %; silt: 45.7 %; Fig. 3.9C and 3.9D). From 5 ka to present, %clay and %silt increased by 3.7 % and 12.6 % respectively (5 ka – present; mean %clay: 10.4 %; %silt: 59.8 %). Percent sand, showed the opposite trend of %clay and %silt, ranging 1.4 % to 93.6 % from 8.3 to 5 ka (mean: 47.6 %) and decreased from 5 ka to present by 17.5 % (mean: 29.7 %; Fig. 3.9E). A histogram of the grain size diameters shows that the Cuobu record had higher abundances of coarse sediments from 8.3 to 4.5 ka when the distribution abruptly shifts to favor finer sediments (Fig. 3.9F). Finer sediments were more abundant until 1 ka with short periods of coarser sediment influxes. 3.4.8 X-ray Fluorescence (XRF) Geochemistry Of the forty-nine elements measured using XRF, I focus here on titanium (Ti), and zirconium (Zr). Ti and Zr are both conservative elements that are associated with lithic materials, with increased concentration of any of these elements being associated with greater terrestrial sediment inputs into the lake environment (Chassiot et al., 2018; Croudace et al., 2006; Cuven et al., 2010; Löwemark et al., 2011; Nesbitt and Markovics, 1997; Roberts et al., 2019). In the Cuobu record, Ti shows a pattern of higher concentrations during the early Holocene, ranging from 9348 – 18,577 cps (mean: 14,436 cps), than gradually decreased from 6 to 2.5 ka by 6270 (mean: 8165 cps; Fig. 3.9G). Ti concentrations increased again by 1929 in the late Holocene around 2.5 ka and remained high until present (mean: 10,121 cps). Zr showed a similar pattern as Ti, with higher concentrations in the early Holocene (8.3 – 6 ka) ranging from 430 to 1573 cps (mean: 927 cps; Fig. 3.9H). Average Zr gradually decreased by 353 from 6 to 3 ka when average 67 Zr increased again by 88.3 from 3 ka to present (mean: 661 cps). The full XRF dataset are in Appendix 2 Tables A 2.1 – 2.6. 3.4.9 Statistical Analysis A Principal Components Analysis (PCA) was performed on select data from Cuobu including lithics, TOM and TC, n-alkane concentrations and their metrics (ACL, CPI, Paq), Δδ2HC23-C31, C:N ratios, and δ13C and δ15N isotopes. All data were normalized using a z-score with the mean subtracted from each value and divided by the standard deviation. The distribution of proxies as evidenced in a biplot of the PCA, shows the grouping of proxies and their relation to each other as they are correlated with the two principal components (Fig. 3.10). Principal Component 1 (PC1) accounts for 40.6% of the variability in the dataset, while Principal Component 2 (PC2) accounts for an additional 16.1% of the dataset variability. The PCA biplot shows that fine sediments (%clay and %silt), n-alkane concentrations (nC23 – nC29) and TC are all positively correlated with PC1 and PC2 (top right quadrant). Paq, BD, and TOM are positively correlated with PC1 and negatively correlated with PC2 (bottom right quadrant). C:N, δ13C, δ15N, %lithics, ACL, CPI, δ2HC23, and Ti are all positively associated with PC1 and negatively associated with PC2 (top left quadrant). %sand, MS, Zr, mid-chain and longchain n-alkane hydrogen isotopes (δ2HC25 – δ2HC25) are all negatively associated with PC1 and PC2 (bottom left quadrant). A second PCA was conducted only on grain size proxies, %clay, %silt, and %sand, and the time series of PC1, which accounts for % of the dataset variability, closely follows the same trends as %sand. 3.5 Discussion 3.5.1 Inferred ISM Precipitation & Evaporation on the South-Central Tibetan Plateau Leaf-wax n-alkane 2H show pronounced shifts in ISM strength and P:E balance at Cuobu during the last 8 ka. δ2H isotopic composition is controlled by the amount of precipitation and the moisture source (Sachse, 2012), with lower δ2H values inferred as greater precipitation. With terrestrial plants incorporating ISM precipitation during the growing season, I interpret δ2HC31 as a signal of monsoon intensity over the region. At 68 Cuobu, low δ2HC31 values suggest a strengthened ISM from 8.3 to ~5 ka, after which high δ2HC31 indicates a weakened ISM from 5 to 1 ka. From 1 ka to the present, lower δ2HC31 suggests a slight strengthening of the ISM. The interpretation of short-chain n-alkanes δ2HC23 is more complex, with lake water incorporating the isotopic signals of evaporation and the ISM. Lake water isotopes (δ2HC23) at Cuobu showed similar long-term trends as δ2HC31, indicating that the isotopic composition of lake water largely tracked that of precipitation during the Holocene. Supporting wet local conditions between 8 and 5 ka, the Dδ2HC23-C31 record shows low values, indicating a positive P:E balance at Cuobu at the same time that the ISM was strengthened (low δ2HC31). While most of this period had higher effective moisture, there was a noted increase in the P:E balance between 6.2 to 6 ka, which corresponds to a drop in the C:N ratio, that indicates drought conditions locally. Following early Holocene pluvial conditions, Dδ2HC23-C31 shows a sharp increase between 5.5 and 4.5 ka, indicating a decrease in the local P:E balance that occurred when ISM intensity was also diminished (high δ2HC31). A decrease in the Δδ2HC23-C31 record after 1 ka additionally supports wetter conditions locally from ~1 ka to the present that coincides with a suggested strengthening of the ISM during this time in the δ2HC31 timeseries. The interpretation of local hydroclimate is supported by the aquatic and terrestrial vegetation proxies. The δ13Corg record suggests a high contribution of aquatic and/or C3 land plants from 8.3 to 5 ka, after 5 ka there was a higher influx of C4 plant terrestrial vegetation productivity inputs to the lake, with terrestrial vegetation dominating over the last 1 ka. This corresponds to a shift from higher C:N ratio from 8.3 to 2 ka to lower C:N 2 ka to present, suggesting a shift from larger aquatic plants to planktonic aquatic productivity. The δ15N record productivity interpretation, like the δ13Corg record, indicates high aquatic productivity between 8.3 and 5 ka, with terrestrial vegetation inputs increasing throughout the middle and late Holocene with highest terrestrial productivity over the last 1 ka. Wet conditions at Cuobu in the early Holocene correspond to high aquatic productivity from 8.3 to 5 ka indicated by high concentrations of short-chain n-alkanes (C23) and lower δ13C and δ15N. Productivity shifted to terrestrial dominated vegetation inputs in Cuobu during the middle and late Holocene, with a mixed aquatic and terrestrial 69 vegetation signal indicated by δ13C and δ15N from 5 to 1 ka, while the n-alkanes concentrations shifted abruptly to higher long-chain concentrations between 2.5 and 2 ka. The decline in n-alkane derived aquatic productivity around 2.5 ka occurred much later than the shift to drier conditions indicated by δ2HC31 and Δδ2HC23-C31 or the mixedvegetation signal suggested by the δ13C and δ15N isotope data. The difference in the timing between these vegetation proxies suggest that after ISM precipitation and effective moisture declined around 5 ka lake levels began to decline, but remained high enough to support a shift in vegetation communities from more aquatic planktonic species to a mixture of emergent and submerged macrophytes with terrestrial vegetation. 3.5.2 Monsoon-induced Cuobu River Overflow Grain size variations are typically interpreted as reflecting either lake level change (Bird et al., 2017; Bird et al., 2014; Dearing, 1997; Digerfeldt, 1986; Shuman et al., 2001; Shuman et al., 2009) or the energy and amount of runoff entering a lake (Conroy et al., 2008). While, other lake-based paleoclimate studies from the Tibetan Plateau (TP) have interpreted grain size proxies, %sand in particular, as lake level indicators (Bird et al., 2017; Bird et al., 2014), this does not appear to be the case at Cuobu. If interpreted in terms of lake level, the Cuobu sand record would suggest low lake levels between 8.3 and 4.5 ka and after 1 ka and high lake levels from 4.5 to ~1 ka. This pattern of Holocene hydroclimate variability stands in stark contrast to the multitude of other ISM reconstructions from the TP that indicate a strengthened monsoon, in agreement with the δ2HC31 record at Cuobu, and high lake levels during this time (Bird et al., 2017; Bird et al., 2014; Herzschuh et al., 2009; Zhu et al., 2008). Instead, I contend that the Cuobu sand records reflect changes in monsoon-derived runoff entering the lake whereby increased monsoonal runoff delivered greater quantities of sand and vice versa. This interpretation is consistent with lower δ2HC31 and Δδ2HC23-C31 between 8.3 and 4.5 ka, which respectively indicate intensified monsoonal precipitation and greater effective moisture at Cuobu when sand abundances were high. High frequency variability in %sand between 8.3 and 4.5 would indicate that runoff was highly variable during the early Holocene through the early half of the middle Holocene, with high runoff from 8.3 to 6.2 ka and 6 ka to 4.5 ka while runoff declined from 6.2 to 6 ka. Conversely, decreased sand 70 abundances between 4.5 and 1 ka occurred when δ2HC31 and Δδ2HC23-C31 increased, indicating a reduction in sand when monsoonal intensity weakened and effective moisture decreased. The Ti and Zr records further support interpreting sand abundances in terms of terrestrial eroded sediments and surface runoff to the lake. Higher titanium and zirconium concentrations from 8.3 to 5 ka corresponded with high %sand, with the influx of sand and terrestrial sediments co-occurring with wetter conditions at Cuobu as indicated by the Δδ2HC23-C31 record. Determining the mechanism responsible for Holocene sedimentology at Cuobu, with coarser sediments inferred as runoff, requires an understanding of the physical environment. The geomorphology of the site shows that Cuobu formed behind glacial moraines that both dammed the valley and separated the lake from the Cuobu River. One of the ephemeral tributaries to the lake is a dry stream channel that cuts across the moraine and forms a delta into the lake; connecting Cuobu with the Cuobu River. I suggest that the geomorphological setting of Cuobu is the primary driver of the grain size signal. Increased sand at Cuobu during a period of stronger monsoon intensity can be attributed to an influx of sediment from the Cuobu River. During the early Holocene ISM maximum, this stream could have been an important source of sediments to the lake and is closer to the core sites than the other tributaries, which supports coarser sediments influxes coming from this stream channel. Cuobu River is situated at a higher elevation than the lake, but at a lower base elevation than the moraine crest, requiring high river discharge to breach the moraine, contributing a flow of water and coarser sediments directly into the lake through the ephemeral stream channel. Modern observations of the site show that the overflow channel could have accommodated large water volumes and is perfectly situated at the lowest point of the moraine at the junction between the moraine and the mountain spur where the braided channel formed. In the early Holocene, increased ISM precipitation may have increased fluvial discharges and contributed to overland flooding. River height would need to be 5 m higher than modern water levels for overbank flooding to breach the moraine and connect the overflow tributary to the lake. When monsoon intensity declined during the middle Holocene, water levels fell at both Cuobu and Cuobu River disconnecting the flow of water and coarse sediments from river to the lake. 71 3.5.3 Synoptic vs. Local Hydroclimate at Cuobu Cuobu shows a strong agreement between synoptic and local hydroclimate proxies, with millennial scale trends in ISM variability indicating pluvial (wet) conditions from 8.3 to 5 ka and 1 ka to present and drought conditions from 5 to 1 ka. Higher frequency variability during the early Holocene shows pluvials from 8.3 to 6.2 ka and again from 6 to 5 ka with drought conditions from 6.2 to 6 ka. Pluvials at Cuobu are indicated by high %sand, low Δδ2HC31, high P:E balance (low Δδ2HC23-C31), and increased aquatic productivity. Drought conditions are indicated by low %sand, high Δδ2HC31, low P:E balance, and higher terrestrial vegetation inputs. PCA of the Cuobu synoptic and local hydroclimate proxies supports the association of fine sediments with TOM and nalkane concentrations (C23 – C29) and coarse sediments are associated with mid-chain and long-chain n-alkane hydrogen isotopes (δ2HC25 – δ2HC31). P:E balance (Δδ2HC23-C31) is associated with short-chain n-alkane Δδ2HC23, long-chain n-alkane concentrations (C31), δ13C, δ15N, ACL and CPI. A PCA of the grain size measurements was used to assess the time series of the sedimentology at Cuobu, with the PC1 time series strongly reflecting the %sand record (Fig. 3.11B). The strong relationship between synoptic and local hydroclimate proxies, with changes in large-scale monsoon drivers having an immediate impact on local monsoon expression, has also been observed in other hydroclimate records from the Tibetan Plateau (Bird et al., 2014). To better understand spatiotemporal ISM variability on the Tibetan Plateau, I compare the Cuobu record with high-resolution paleoclimate records from Paru Co (Bird et al., 2014). A high elevation lake from the southeastern plateau, Paru Co (29.796°N, 92.352°E, elevation 4845 m a.s.l.; 520 km east of Cuobu) is a precipitation and lake level record for the last 11 ka in southeastern Tibet (Bird et al., 2014). Similar to Cuobu, longchain n-alkane δ2HC27 and δ2HC29 indicate strengthened ISM precipitation at Paru Co until 5 ka when ISM intensity declined. Lake levels at Paru Co, as interpreted from %sand, and runoff intensity, interpreted from %lithics, also show similar trends with the Cuobu record. Specifically, runoff was high during the early and the late Holocene at Paru Co (8.3 – 7 and 1.5 – 0.5 ka), while lake levels remained high throughout the early and middle Holocene (8.3 – 5 ka). The centennial scale variability at Paru Co also shows agreement with Cuobu, with deeper lake levels and increased runoff at Paru Co 72 coinciding with higher %sand and greater effective moisture (low P:E) from 8.3 to 6.2 ka, after which lake levels and runoff at Paru Co decreased in conjunction with lower runoff and effective moisture at Cuobu. Runoff at Paru Co increased from 1.5 and 0.5 ka indicating an increase in monsoon intensity, which corresponds with higher effective moisture and increased %sand at Cuobu. A late Holocene increase in ISM intensity was also observed at another eastern TP lake, Nir’Pa Co, with increased %lithics and %sand over the last 1 ka indicating a stronger monsoon (Bird et al., 2017). These trends in local hydroclimate were driven, not only by synoptic ISM dynamics, but also local climate conditions including temperature. 3.5.4 Millennial & Orbital Scale Drivers of ISM Variability Holocene ISM variability has been attributed to multiple drivers, including solar insolation, the migration of the ITCZ, and the ocean-atmosphere system. Northern Hemisphere (NH) solar insolation was highest during the early Holocene and began to decline around 8 ka (Berger and Loutre, 1991), which drove the southward migration of the ITCZ (Fleitmann et al., 2003; Haug et al., 2001) and cooler temperatures on the plateau (Herzschuh et al., 2009; Herzschuh et al., 2006). ITCZ record at Qunf Cave in Oman (17º10’N 54º18’N), shows that the ITCZ slowly migrated south from 8.3 ka until 5 ka (Fleitmann et al., 2003). The southward latitudinal displacement of the ITCZ stabilized from 5 to 3 ka, coinciding with the decline in effective moisture at Cuobu. In addition to isolation-forced ITCZ variability, changes in the ocean-atmosphere system play a leading role in millennial and higher-frequency ISM variability. A strong sea surface temperature (SST) gradient in the equatorial Pacific (La Niña-like state: cool eastern and warm western equatorial Pacific) during the Holocene between 11 and 4 ka, for example, corresponded with enhanced ISM intensity, greater effective moisture, and high lake levels across much of the Tibetan Plateau (Conroy et al., 2008; Koutavas and Sachs, 2008; Marchitto et al., 2010; Moy et al., 2002). After 4 ka, the SST gradient reversed (El Niño-like state: warm eastern and cool western equatorial Pacific), which corresponded to reduced ISM intensity, lower effective moisture and lake levels across the Tibetan Plateau, and weaker ISM winds that reduced upwelling in the Arabian Sea (Gupta et al., 2003). The co-occurrence of pluvial conditions on the TP during La Niña- 73 like conditions is consistent with modern climatic relationships between the Tropical Pacific and ISM with weak annual monsoons linked to El Niño events and strong annual monsoons corresponding with La Niña events (Chowdary et al., 2016; Samanta et al., 2020; Surendran et al., 2015). These orbital drivers of ISM variability are reflected in the millennial scale trends of synoptic and local hydroclimate at Cuobu. Wet conditions at Cuobu during the early Holocene ISM maximum were driven by high insolation and the northerly ITCZ, while the middle Holocene transition to dry conditions around 5 ka corresponds with drier conditions at other sites on the Tibetan Plateau and evidence of weakening ISM precipitation and winds throughout the region (Bird et al., 2014; Cai et al., 2012; Fleitmann et al., 2003; Fleitmann et al., 2007; Herzschuh et al., 2009). The timing of the middle Holocene transition at Cuobu shows that runoff (%sand) and P:E balance abruptly shifted in response to reduced solar insolation, the southward migration of the ITCZ, and the shift to El Niño-like conditions in the Pacific. Lake levels at Paru Co also decreased at this time, indicating that local hydroclimate on the southeastern TP was consistent at these sites that are over 500 km apart. While there is strong agreement with these orbital drivers on ISM expression at Cuobu on longer time scales, these drivers do not account for the higher-frequency variability seen in the Cuobu record, particularly during the early and late Holocene. 3.5.5 Drivers of Decadal & Centennial ISM Variability Higher frequency variability at Cuobu is superimposed on the millennial trends of a wet early and late Holocene and a dry middle Holocene, which is driven by centennial and decadal scale variability in local climate and SSTs. Local hydroclimate is reflective of local and regional precipitation, temperature, and evaporation patterns. Temperature and effective moisture records from the Tibetan Plateau help explain how local climate can drive regional monsoon expression. One temperature record from the Tibetan Plateau at Lake Zigetang (90.9ºE 32.0ºN, 463 km northeast of Cuobu), shows that the early Holocene was a warm, humid environment as inferred by dominant temperate steppe vegetation (Herzschuh et al., 2006). After 5 ka, the eastern Tibetan Plateau transitioned to a drier, cooler environment; while there was a modest warming over the last 1 ka. This 74 warming over the last 1 ka corresponds to the decline in effective moisture seen at Cuobu, suggesting that higher evaporation reduced effective moisture even as monsoon intensity increased. The Koucha Lake temperature and effective moisture pollen record (97.2 ºE 34.0ºN, 1,090 km northeast of Cuobu) also showed warmer, wetter conditions in the early Holocene until 7 ka, when effective moisture began to gradually decline (Herzschuh et al., 2009). Koucha Lake also supports a drier, arid hydroclimate in the eastern Tibetan Plateau during the middle and late Holocene (5 ka to modern), as evident in the Cuobu Δδ2HC23-C31 record from 5 to 1 ka. A persistently drier, more evaporative middle and late Holocene is also evident in the ISM record at Tianmen Cave (90º4’E, 30º55’N; Fig. 3.12C) at the easternmost edge of the Tibetan Plateau (Cai et al., 2012). ISM intensity at Tianmen Cave gradually declined after ~ 7 ka with a hiatus in the record between 3.5 and 1 ka; indicating a drier climate in eastern Tibet from 7 to 1 ka. Calcite precipitation restarted temporarily around 1 ka, simultaneous with the higher effective moisture at Cuobu, increased runoff at Cuobu and Paru Co, and deeper lake levels exhibited at Nir’Pa Co (Bird et al., 2017). Centennial monsoon variability at Cuobu during the early and late Holocene can be attributed to both local temperature records as well as SSTs. Early Holocene pluvials from 8.3 to 6.2 ka and 6 to 5 ka coincide with warmer temperatures and La Niña-state in the equatorial Pacific, while drought conditions from 6.2 to 6 ka correspond with colder temperatures on the TP and an El Niño-like state. Late Holocene increases in effective moisture and runoff at Cuobu from 1 ka to present are reflective of relatively warmer temperatures on the plateau with highly variable shifts between La Niña and El Niño-like states. Coherent patterns in centennial scale local hydroclimate between Tibetan Plateau records at Cuobu and Paru Co indicate that monsoon expression in the southeasternsouthcentral Tibetan Plateau is strongly impacted by the land-sea thermal gradient. Warmer temperatures on the Tibetan Plateau and the Pacific Ocean are projected to continue and increase with climate change, threatening to suppress the land-sea thermal gradient that is a mechanical driver of the ISM (Kumar et al., 2006; Li et al., 2017; Sharmila et al., 2015). The Cuobu record shows that the land-sea gradient is an important driver of short-term scale variability in the ISM, with the suppression of this gradient 75 potentially driving a weaker monsoon expression and drier local hydroclimate conditions on the Tibetan Plateau in the future. 3.6 Conclusions The multi-proxy Cuobu paleoclimate record indicates that the lake has experienced significant hydroclimate variations over the last 8.3 ka. Sedimentological indicators show that Cuobu had increased runoff in the early Holocene that abruptly decreased around 4.5 ka as indicated by a shift from coarser to finer dominated sediments. This runoff is attributed to increased discharge in the Cuobu River, which runs parallel to the lake, under a stronger ISM that breached the moraine that separates the river from the lake. The river contributed coarse sediments to the lake until monsoon intensity and water levels dropped around 4.5 ka, isolating the river from the lake and decreasing the discharge of coarse sediments and stream flow into the lake. Leaf-wax nalkane isotopes support the interpretation of strong monsoon intensity in the early and late Holocene and weak monsoon intensity in the middle Holocene. Δδ2HC23-C31, a proxy for effective moisture and the ratio of precipitation to evaporation, shows more effective moisture between 8.3 and 4.5 ka and 1 ka to present. Effective moisture was lower from 4.5 to 1 ka corresponding to a decline in ISM intensity observed in records across the Tibetan Plateau. The timing of the synoptic and local hydroclimate response to changes in the monsoon intensity are in-sync, suggesting a simultaneous response to large-scale orbital changes in the ISM. Both monsoon intensity and effective moisture increased after 1 ka, however, this increase was insufficient to reconnect the two water bodies. The timing of this decline in monsoon intensity corresponds to records across the Tibetan Plateau that show a decline in effective moisture around 5 ka and a shift to a cooler, drier hydroclimate that persisted until the monsoon intensity increased around 1 ka. The synchronous decline in ISM intensity around 5 ka in the southern central and eastern Tibetan Plateau occurs at the same time as the migration of the ITCZ in response to the reduction of solar insolation and warming conditions in the Pacific similar to an El Niñolike state. 76 3.7 Tables Table 3.1: 210Pb dates from Cuobu B-17 surface core MEAN 210 DEPTH ACTIVITY PB ± (CM) SUPPORTED ± EXCESS 210PB OR 214PB 210 ACTIVITY (BQ/G) ACTIVITY PB ± 137CS ± ACTIVITY CAL. YR BP (BQ/G) 77 2.50 0.243 1.240 0.0544 0.045 0.18860 1.19490 0.0101 0.00517 -65 4.50 0.276 0.115 0.0739 0.056 0.20210 0.05900 N/A N/A -62 6.50 0.208 0.079 0.0444 0.019 0.16360 0.05940 N/A N/A -60 8.50 0.241 0.084 0.0601 0.028 0.18090 0.05660 N/A N/A -57 10.50 0.299 0.082 0.0374 0.017 0.26160 0.06510 N/A N/A -52 12.50 0.28 0.085 0.033 0.018 0.24700 0.06750 N/A N/A -40 16.50 0.249 0.067 0.0381 0.014 0.21090 0.05260 0.0201 0.019 -33 18.50 0.246 0.085 0.0359 0.033 0.21010 0.05260 0.0356 0.0321 -28 20.00 0.246 0.080 0.0304 0.027 0.21560 0.05280 N/A N/A 136 22.25 0.185 0.094 0.0795 0.028 0.10550 0.06690 N/A N/A N/A Table 3.2: Radiocarbon dates from Cuobu B-17 and D-17 composite core CORE MEAN 14 C YR ± CAL YR ± DEPTH (CM) B17 1.5 940 15 172.5 15 B17 5.5 910 15 156.5 15 B17 46 1740 15 730.5 15 D17 93 1915 15 935.5 15 D17 145 2460 20 1666.5 20 D17 200 3100 15 2378.5 15 D17 280 4415 15 4073.5 15 D17 313 5255 15 5066.5 15 D17 374 6210 20 7165.5 20 D17 414 7950 20 7910.5 20 78 Figures 3.8 Figure 3.1. Bathymetric map of Cuobu with core sites marked (red colored dots with core names). Bathymetry mapped with 0.5 m contour intervals. Inlets and outlets to the lake are marked with blue dashed lines and arrows. Cuobu River is marked with a blue dashed line. Grey background and black dashed line designate the extent of a moraine between Cuobu and Cuobu River. A delta feature on the moraine is present where an ephemeral stream bed cuts across the moraine. 79 Figure 3.2. Topographic map of the area surrounding Cuobu, inset with the lake bathymetry (A). Cuobu watershed is designated with an orange dashed line. Topographic contours are at 50 m intervals while bathymetric contours are at 0.5 m intervals. An ephemeral stream (ii) and its delta (iii) that cut across the moraine are identified with a black box and shown in greater detail (B). The Cuobu River (i) is to the east of a moraine that forms the southeastern edge of Cuobu (iv). A transect (red dashed line) across the moraine is used to show the elevational profile (C) of the lake-moraine-river environment (B). The elevational profile is marked with red lines show the elevational difference between features. 80 Figure 3.3. Average monthly temperature (°C ± s.d.) and total precipitation (mm ± s.d.) at Xigaze weather station from 1988-2018. Gray background indicates the annual monsoon season. 81 Figure 3.4. Excess and supported 210Pb activity with 137Cs activity in the top 22 cm of Cuobu sediment core. Figure 3.5. Age model for Cuobu produced by Bacon program using both 210Pb and 14C dates. 82 83 Figure 3.6. Cuobu B-17 and D-17 total organic matter (TOM %; A), total carbonates (TC %; B), δ13C (‰; C), δ15N (‰; D), and the ratio of C:N I. Black vertical line represents average values. The grey background indicates the period with highest C:N. Blue and red backgrounds indicate inferred wet and dry conditions at the lake. 84 Figure 3.7. Concentration of leaf wax n-alkanes extracted from Cuobu B-17 and D-17 sediments (ng/g) for C23 (A), C25 (B), C27 (C), C29 (D), and C31 I. Indices to distinguish between terrestrial (long-chain) and aquatic (short-chain) n-alkanes include average chain length (ACL: F), carbon preference index (CPI: G), and aquatic vegetation index (Paq: H). Black vertical line represents average values. Blue and red backgrounds indicate inferred wet and dry conditions at the lake. 85 Figure 3.8. Coubo leaf wax n-alkane δ2H (‰) for C23 (A), C25 (B), C27 (C), C29 (D), and C31 I. Δδ2HC23-C31 is the balance of precipitation to evaporation (P:E; F). Black vertical line represents average values. Blue and red backgrounds indicate inferred wet and dry conditions respectively. 86 Figure 3.9. Cuobu 5 pt. moving average (MA) dry bulk density (BD g cm-3: A), magnetic susceptibility (MS, SI 10 x -5: B), 5 pt. MA percent clay I, 5 pt. MA percent silt (D), 5 pt. MA percent sand I, histogram of grain diameter size for each sample (F), Ti (G) and 5 pt. MA Zr (H). The full record is shaded behind each moving average. Black vertical line represents average values. Red and blue background indicate periods with dry and wet conditions respectively, based on grain size. Figure 3.10. Principal Components Analysis (PCA) results from the Cuobu sediment record, indicating the contributions of each proxy in the overall variance of the dataset. 87 88 Figure 3.11. Cuobu 5 pt. moving average (MA) %sand (A), 5 pt. MA Principal Component 1 (PC1; B) and Δδ2HC23-C31 (C) in comparison with Tibetan Plateau records from Paru Co n-alkane δ2HC27 and δ2HC29 (D) lithics I and primary component 1 (F), Lake Zigetang pollen index (G), and Koucha Lake effective moisture (H). The full record is shaded behind each moving average. Black vertical line represents average values. Blue and red backgrounds infer wet and dry conditions at Cuobu. 89 Figure 3.12. Cuobu Δδ2HC23-C31 (A) and δ2HC31 (B) records in conjunction with records from the ISM span and Pacific SSTs. Records are from Tianmen Cave (C), Qunf Cave (D), El Junco I, and Eastern Pacific SST (F). Black vertical line represents average values. Blue and red backgrounds infer wet and dry conditions at Cuobu. 3.9 References Aichner, B., Herzchuh, U., Wilkes, H., Vieth, A. and Böhner, J. 2010. δD values of nalkanes in Tibetan lake sediments and aquatic macrophytes – A surface sediment study and application to a 16-ka record from Lake Koucha. Organic Geochemistry 41, 779-790. Appleby, P. and Oldfield, F. 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. CATENA 5(1), 18. Berger, A. and Loutre, M. 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297-317. Berkelhammer, M., Sinha, A., Stott, L., Cheng, H., Pausata, F. and Yoshimura, K. (2012) Climates, Landscapes, and Civilizations, pp. 75-87, Geophysical Monograms AGU, Washington D.C. Bird, B., Lei, Y., Perello, M., Polissar, P., Yao, T., Finney, B., Bain, D., Pompeani, D. and Thompson, L. 2017. Late Holocene Indian summer monsoon variability revealed from a 3,300-year-long lake sediment record from Nir’pa Co, southeastern Tibet. The Holocene 27(4), 541-552. Bird, B., Polissar, P., Lei, Y., Thompson, L., Yao, T., Finney, B., Bain, D., Pompeani, D. and Steinman, B. 2014. A Tibetan lake sediment record of Holocene Indian summer monsoon variability. Earth and Planetary Science Letters 399, 92-102. Blaauw, M. and Christen, J.A. 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6(3), 457-474. Brady, N. (1984), p. 750, Macmillan Publishing Co, New York. Cai, Y., Zhang, H., Cheng, H., An, Z., Edwards, R., Wang, X., Tan, L., Liang, F., Wang, J. and Kelly, M. 2012. The Holocene Indian monsoon variability over the southern Tibetan Plateau and its teleconnections. Earth Planetary Science Letters 335-336, 135-144. Chassiot, L., Miras, Y., Chapron, E., Develle, A.-L., Arnaud, F., Motelica-Heino, M. and Giovanni, C.D. 2018. A 7000-year environmental history and soil erosion record inferred from the deep sediments of Lake Pavin (Massif Central, France). Paleogeography, Paleoclimatology, and Palaeoecology 497, 218-233. 90 Choubert, G., Faure-Muret, A. and Chanteux, P. 1983. Atlas geologique du monde, Paris: UNESCO. Chowdary, J.S., Harsha, H., Gnanaseelan, C., Srinivas, G., Parekh, A., Pillai, P. and Naidu, C. 2016. Indian summer monsoon rainfall variability in response to differences in the decay phase of El Niño. Climate Dynamics 48, 2707-2727. Conroy, J.L., Overpeck, J.T., Cole, J.E., Shanahan, T.M. and Steinitz-Kannan, M. 2008. Holocene changes in eastern tropical Pacific climate inferred from a Gala´pagos lake sediment record. Quaternary Science Reviews 27, 1166– 1180. Croudace, I., Rindby, A. and Rothwell, R. 2006. ITRAX: description and evaluation of a new multi-function X-ray core scanner. Geological Society, London, Special Publications 267(1), 51-63. Cuven, S.p., Francus, P. and Lamoureux, S.F. 2010. Estimation of grain size variability with micro X-ray fluorescence in laminated lacustrine sediments, Cape Bounty, Canadian High Arctic. Journal of Paleolimnology 44(3), 803-817. Dearing, J. (1994) Environmental Magnetic Susceptibility, Chi Publishing, Kenilworth. Dearing, J. 1997. Sedimentary indicators of lake-level changes in the humid temperate zone: a critical review. Journal of Paleolimnology 18, 1-14. Diefendorf, A.F., Leslie, A.B. and Wing, S.L. 2015. Leaf wax composition and carbon isotopes vary among major conifer groups. Geochimica et Cosmochimica Acta 170(1), 145-156. Digerfeldt, G. (1986) Handbook of Holocene Paleoecology and Paleohydrology, pp. 127143, John Wiley & Sons, New York. Djamali, M., Akhani, H., Andrieu-Ponel, V., Braconnot, P., Brewer, S., Beaulieu, J.d., Fleitmann, D., Fluery, J., Gasse, F., Guibal, F., Jackson, S., Lézine, A., Médail, F., Ponel, P., Roberts, N. and Stevens, L. 2010. Indian summer monsoon variations could have affected the early-Holocene woodland expansion in the Near East. The Holocene 20, 813-820. Dykoski, C., Edwards, R., Cheng, H., Yaun, D., Cai, Y., Zhang, M., Lin, Y., Qing, J., An, Z. and Revenaugh, J. 2005. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters 233, 71-86. 91 Ficken, K., Li, B., Swain, D. and Eglinton, G. 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry 31(7-8), 745-749. Fleitmann, D., Burns, S., Mudelsee, M., Neff, U., Kramers, J., Mangini, A. and Matter, A. 2003. Holocene forcing of the Indian Monsoon recorded from a stalagmite from Southern Oman. Science 300, 1737-1739. Fleitmann, D., Burns, S.J., Mangini, A., Mudelsee, M., Kramers, J., Villa, I., Neff, U., Al-Subbary, A.A., Buettner, A., Hippler, D. and Matter, A. 2007. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quaternary Science Reviews 26, 170-188. Gray, A., Pasternack, G. and Watson, E. 2010. Hydrogen peroxide treatment effects on the particle size distribution of alluvial and marsh sediments. The Holocene 20(2), 293-301. Gupta, A., Anderson, D. and Overpeck, J. 2003. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421, 354-357. Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C. and Ro, U. 2001. Southward Migration of the Intertropical Convergence Zone Through the Holocene. Science 293, 1304-1308. Heiri, O., Lotter, A.F. and Lemcke, G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25(1), 101-110. Herzschuh, U., Kramer, A., Mischke, S. and Zhang, C. 2009. Quantitative climate and vegetation trends since the late glacial on the northeastern Tibetan Plateau deduced from Koucha Lake pollen spectra. Quaternary Research 71, 162-171. Herzschuh, U., Winter, K., Wunnemann, B. and Li, S. 2006. A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra. Quaternary International 154-155, 113-121. KCCAMS, U. 2011. Acid/Base/Acid (ABA) sample pre-treatment, University of California Irvine, W.M. Keck Carbon Cycle Accelerator Mass Spectrometer Facility. 92 Koutavas, A. and Sachs, J. 2008. Northern timing of deglaciation in the eastern equatorial Pacific from alkenone paleothermometry. Paleooceanography 23(PA4205). Kumar, K., Sahai, A., Kumar, K., Patwardhan, S., Mishra, P., Revadekar, J., Kamala, K. and Pant, G. 2006. High-resolution climate change scenarios for India for the 21st century. Current Science 90(3), 334-345. Li, G., Xie, S.-P., He, C. and Chen, Z. 2017. Western Pacific emergent constraint lowers projected increase in Indian summer monsoon rainfall. Nature Climate Change 7, 708-712. Liu, H. and Liu, W. 2016. N-Alkane distributions and concentrations in algae, submerged plants and terrestrial plants from the Qinghai-Tibetan Plateau. Organic Geochemistry 99, 10-22. Livingstone, D. 1955. A Lightweight Piston Sampler for Lake Deposits. Ecology 36(1), 137-139. Löwemark, L., Chen, H.-F., Yang, T.-N., Kylander, M., Yu, E.-F., Hsu, Y.-W., Lee, T.Q., Song, S.-R. and Jarvis, S. 2011. Normalizing XRF-scanner data: A cautionary note on the interpretation of high-resolution records from organic-rich lakes. Journal of Asian Earth Sciences 40, 1250-1256. Magny, M. and Haas, J.N. 2004. A major widespread climatic change around 5300 cal. Yr BP at the time of the Alpine Iceman. Journal of Quaternary Science 19.5, 423430. Marchitto, T.M., Muscheler, R., Ortiz, J.D., Carriquiry, J.D. and Geen, A.v. 2010. Dynamical Response of the Tropical Pacific Ocean to Solar Forcing During the Early Holocene. Science 330, 1378-1381. Marcott, S.A., Shakun, J.D., Clark, P.U. and Mix, A.C. 2013. A Reconstruction of Regional and Global Temperature for the Past 11,300 Years. Science 339, 11981201. Marzi, R., Torkelson, B. and Olson, R. 1993. A revised carbon preference index. Organic Geochemistry 20(8), 1303-1306. Meyers, P.A. and Lallier-Vergès, E. 1999. Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. Journal of Paleolimnology 21, 345-372. 93 Moy, C.M., Seltzer, G.O., Rodbell, D.T. and Anderson, D.M. 2002. Variability of El Nino/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162-165. Mügler, I., Sasche, D., Werner, M., Xu, B., Wu, G., Yao, T. and Gleixner, G. 2008. Effect of lake evaporation on δD values of lacustrine n-alkanes: A comparison of Nam Co (Tibetan Plateau) and Holzmaar (Germany). Organic Geochemistry 39, 711-729. Nesbitt, H. and Markovics, G. 1997. Weathering of grandioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments. Geochimica et Cosmochimica Acta 61(8), 1653-1670. Olsson, I. (1986) Handbook of Holocene palaeoecology and paleohydrology Berglund, B. (ed), John Wiley & Sons, Chichester. Polissar, P. and D’Andrea, W. 2014. Uncertainty in Paleohydrologic Reconstructions from Molecular dD values. Geochimica et Cosmochimica Acta 129, 146-156. Qui, J. 2008. China: The Third Pole Environment. Nature 454(7203), 393-396. Rashid, H., Flower, B., Poore, R. and Quinn, T. 2007. A ~25 ka Indian Ocean monsoon variability record from the Andaman Sea. Quaternary Science Reviews 26, 25862597. Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.S.M. and Plicht, J.v.d. 2013. INTCAL13 AND MARINE13 RADIOCARBON AGE CALIBRATION CURVES 0–50,000 YEARS CAL BP. RADIOCARBON 55(4), 1869-1887. Roberts, N., Allcock, S.L., Barnett, H., Mather, A., Eastwood, W.J., Jones, M., Primmer, N., Yiğitbașıoğlu, H. and Vannière, B. 2019. Cause-and-effect in Mediterranean erosion: The role of humans and climate upon Holocene sediment flux into a central Anatolian lake catchment. Geomorphology 331, 36-48. 94 Samanta, D., Rajagopalan, B., Karnauskas, K.B., Zhang, L. and Goodkin, N.F. 2020. La Niña’s Diminishing Fingerprint on the Central Indian Summer Monsoon. Geophysical Research Letters 47(2). Seki, O., Meyers, P.A., Kawamura, K., Zheng, Y. and Zhou, W. 2009. Hydrogen isotopic ratios of plant wax n-alkanes in a peat bog deposited in northeast China during the last 16 kyr. Organic Geochemistry 40(6), 671-677. Sharmila, S., Joseph, S., Sahai, A.K., Abhilash, S. and Chattopadhyay, R. 2015. Future projection of Indian summer monsoon variability under climate change scenario: An assessment from CMIP5 climate models. Global and Planetary Change 124, 62-78. Shuman, B., Bravo, J., Kaye, J., Lynch, J.A., Newby, P. and Webb, T. 2001. Late Quaternary Water-Level Variations and Vegetation History at Crooked Pond, Southeastern Massachusetts. Quaternary Research 53(3), 401-410. Shuman, B., Henderson, A.K., Colman, S.M., Stone, J.R., Fritz, S.C., Stevens, L.R., Power, M.J. and Whitlocke, C. 2009. Holocene lake-level trends in the Rocky Mountains, U.S.A. Quaternary Science Reviews 28(19-20), 1861-1879. Surendran, S., Gadgil, S., Francis, P. and Rajeevan, M. 2015. Prediction of Indian rainfall during the summer monsoon season on the basis of links with equatorial Pacific and Indian Ocean climate indices. Environmental Research Letters 10, 094004. Thompson, R., Battarbee, R., O’Sullivan, P. and Oldfield, F. 1975. Magnetic susceptibility of lake sediments. Limnology and Oceanography 20(5), 687-698. Thornton, S. and McManus, J. 1994. Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in estuarine systems: Evidence from the Tay Estuary, Scotland. Estuarine, Coastal, and Shelf Science 38, 219-233. Tian, L., Yao, T., MacClune, K., White, J., Schilla, A., Vaughn, B., Vachon, R. and Ichiyanagi, K. 2007. Stable isotopic variations in west China: A consideration of moisture sources. Journal of Geophysics Research 112, D10112. Wright, H. 1967. A square-rod piston sampler for lake sediments. Journal of Sedimentary Petrology 37(3), 975-976. 95 Wu, D., Chen, X., Lv, F., Brenner, M., Curtis, J., Zhou, A., Chen, J., Abbott, M., Yu, J. and Chen, F. 2018. Decoupled early Holocene summer temperature and monsoon precipitation in southwest China. Quaternary Science Reviews 193, 5467. Xia, Z.-H., Xu, B.-Q., Mügler, I., Wu, G.-J., Gleixner, G., Sachse, D. and Zhu, L.-P. 2008. Hydrogen isotope ratios of terrigenous n-alkanes in lacustrine surface sediment of the Tibetan Plateau record the precipitation signal. Geochemical Journal 42, 331-338. Zhu, L., Wu, Y., Wang, J., Lin, X., Ju, J., Xie, M., Li, M., Mäusbacher, R., Antje, S. and Daut, G. 2008. Environmental changes since 8.4 ka reflected in the lacustrine core sediments from Nam Co, central Tibetan Plateau. The Holocene 18, 831-839. 96 4. MULTI-PROXY EVIDENCE FOR AN EARLY HOLOCENE LOW LAKE STAND DURING A STRONG MONSOON: INVESTIGATING THE ELEVATION DEPENDENT EXPRESSION OF THE INDIAN SUMMER MONSOON ON THE TIBETAN PLATEAU 4.1 Introduction Understanding hydroclimate variability in the Third Pole Environment, which encompasses the Tibetan Plateau and the surrounding region (Qui, 2008), is important for establishing how climate change impacts water availability for over a third of the world’s population. The Indian Summer Monsoon (ISM) is the primary source of precipitation in the Third Pole region, with as much as 90% of annual precipitation falling during the boreal warm season between May and September (Tian et al., 2007). There is considerable evidence from paleoclimate archives that ISM intensity has varied throughout the Holocene and that there have been abrupt changes in its mean state from pluvials (wet phases) to droughts and vice versa. After an early Holocene maximum in precipitation from 11.7 to 7, ISM precipitation declined between 7 and 5 ka, with isotopic proxies indicating a gradual decline while sediment proxies indicating a more abrupt transition (Berkelhammer et al., 2012; Bird et al., 2017; Bird et al., 2014; Fleitmann et al., 2003; Fleitmann et al., 2007; Herzschuh et al., 2006). The middle Holocene transition to a weakened monsoon between 7 to 5 ka has been attributed to reduced solar insolation (Fleitmann et al., 2003) that resulted in a southward migration of the ITCZ (Haug et al., 2001) and increased El Niño-like conditions in the Pacific (Chen et al., 2016; Conroy et al., 2008; Emile-Geay and Tingley, 2016; Emile‐Geay et al., 2016; Moy et al., 2002). While many records agree that the ISM weakened during the middle Holocene (7 – 5 ka), questions remain about the elevation-dependent expression of this decline in monsoon intensity (Bird et al., 2014; Herzschuh et al., 2006). This is in part because there are few decadally-resolved records of ISM dynamics (Berkelhammer et al., 2012; Cai et al., 2012; Zhu et al., 2008) and even fewer decadal-resolved records found directly on the Tibetan Plateau, with most of these records in high-elevation regions (Bird et al., 2017; Bird et al., 2014). High-resolution records allow for the investigation of hydroclimate processes that occur on shorter time scales and capture variability missed by records 97 resolved on centennial and millennial time scales. Monsoon precipitation has also been shown to vary between synoptic and local hydroclimate proxies, with evidence to suggest that isotopic records (synoptic) show earlier decline than local, sedimentological proxies (Berkelhammer et al., 2012; Bird et al., 2017; Bird et al., 2014; Fleitmann et al., 2003; Herzschuh et al., 2009; Herzschuh et al., 2006), with evidence that the monsoon contracted during the middle Holocene transition with reduced precipitation and upwelling evident in the Arabian Sea and Arabian Peninsula (Fleitmann et al., 2003; Gupta et al., 2003). It is difficult to determine how this is reflected on the Tibetan Plateau since records are frequently from central and eastern Tibet, with limited records further east towards the Hengduan Mountains, a highly populated area of the Plateau. Lowresolution pollen and tree-ring records from the Hengduan Mountains are from highelevation sites (Fan et al., 2008; Fan et al., 2009), and therefore may not necessarily reflect hydroclimate variability affecting lower elevation intermontane areas where populations are centered. Limited understanding of Holocene monsoon expression in these low-elevation, highly populated areas of the Tibetan Plateau reduces the accuracy of future monsoon rainfall projections under climate change. Here I present a high-resolution, low elevation (2810 a.s.l.) sediment record from Galang Co (Fig. 4.1), an inter-montane valley lake in the Hengduan Mountains. The Galang Co record spans the last 12.3 ka and was developed to understand the expression of the ISM along elevational gradients across the eastern Tibetan Plateau. Local hydroclimate conditions throughout the Holocene was reconstructed using sedimentology, organic matter, X-ray fluorescence (XRF) geochemistry, and long- and short-chain leaf-wax n-alkane hydrogen isotopes. This record addresses: 1) hydroclimate variability at an under-represented area of the southeastern Tibetan Plateau, 2) how the expression of ISM precipitation differs between low and high elevation sites and across the eastern Tibetan Plateau, and 3) how the timing of the transition to a weak monsoon differs between synoptic and local ISM hydroclimate proxies. 4.2 Study Area: Galang Co Galang Co is a small (0.1 km2), low elevation lake (2810 a.s.l.) within the Hengduan Mountains of the southeastern Tibetan Plateau (Fig 4.2A, 29.90817° N, 98 95.60391° E). The lake is situated near the bottom of a deep valley at the confluence of the Parlung Zangpo and Quzong Zangpo rivers and surrounded by steep mountain terrain with nearby peaks rising to over 5900 m a.s.l. The lake’s small watershed (4.2 km2) consists of steep mountain slopes (4150-3750 m a.s.l.) to the northwest with a smaller hill (2900 a.s.l.) to the south of the watershed. Geomorphological observations of the lake’s watershed made in the field and from satellite images show scarp features on the mountain along the north side of the lake and the heterogeneous mixture of rocks within the hill formation on the south edge of the lake that are suggestive of an ancient landslide. There are no geomorphic features that would suggest any additional landslides and there are no landforms indicating glaciation in the watershed (Fig. 4.2B). Historical marker observed in the area suggest that the watershed was the home of the Galang or Tubo Dynasty which existed from around 700 CE to the early 20th century. Today, a small village (est. population = 100) exists along the outlet of the lake, utilizing the Galang Co watershed for grazing and small-scale agriculture. Field observations during coring indicate that Galang Co’s bathymetry consists of a broad wetland and littoral zone that sharply transitions to a deep central basin with a maximum depth of 18 m. The inlet on the southwest corner of the lake is modified with an 8-foot stone structure, extending a few feet above the water level, powering prayer wheels at a stupa on the southwest edge of the lake. There is no impoundment present behind the structure, indicating that it does not impact lake levels. The littoral zone of the lake is densely vegetated with aquatic macrophytes, while the vegetation immediately surrounding the lake is comprised of thick groundcover vegetation, including ferns and mosses. The watershed of the lake transitions from wetland to a mixed deciduousconiferous forest, which covers the rest of the watershed, including the surrounding slopes. This is consistent with the broader vegetation pattern of the region with montaneneedle and broadleaf forests in the southeastern plateau below 3000 m elevation (Herzschuh et al., 2006). The northern shore of the lake transitions into a shallow wetland where water collects from the steep mountainside. Modern regional climate data is derived from the Qamdo station (3307 m a.s.l.; 31.15° N, 97.167° E), which is ~220 km from Galang Co. Regional precipitation totals 367 mm and tracks the seasonal ISM cycle, with 89% of rainfall occurring between May 99 and September (330 mm; average summer temperature = 15.4°C; Fig. 4.3). Winters (December-February) are characterized by low precipitation (2.1 mm) and cold temperatures (-0.7 – 1.8°C), with winter ice cover on the lake from at least December through February. 4.3 Methods 4.3.1 Sample Collection Sediment cores, water samples, surface sediments, and vegetation were collected at Galang Co in June 2015. The surface water chemistry of the lake was close to neutral (pH = 7.82) while conductivity and turbidity were low. Dissolved oxygen was 6.1 mg/L and the temperature was 17°C. Three surface sediment cores that captured the sedimentwater interface were retrieved using a piston surface corer (Fig. 4.2). A 114 cm surface core, E-15, was acquired at a water depth of 17.3 m, while two shorter surface cores, A15 (102 cm) and B-15 (115 cm), were collected at water depths of 17.5 m. The top 27 cm of E-15 were extruded at 1 cm intervals in the field while A-15 and B-15 were secured with Xorbitol® gel for transport and split at the Paleoclimatology and Sedimentology Laboratory at Indiana University-Purdue University Indianapolis (IUPUI). A longer sediment core, D-15, was retrieved from 17.7 meter water depth using a modified Livingstone piston corer (composite core length = 294 cm) (Livingstone, 1955; Wright, 1967). D-15 consisted of four-1 m drives that were overlapped by 30 cm in order to ensure complete sediment recovery. A replicate Livingstone core C-15 (composite core length = 266 cm; water depth=17.5 m) was also retrieved with a 30 cm overlap. Composite cores were made using a combination of field depths, images, and magnetic susceptibility to identify and correlate lithological units between drives. Water samples were collected for isotopic analysis, while water chemistry, including temperature, pH, alkalinity, and conductivity, was measured in-situ using a Hydrolab MS5. Modern sediments from the surface-water interface were collected from the deep and shallow basins using an Ekman grab sampler. Two soil samples were also collected from the surrounding watershed. Samples of aquatic and terrestrial vegetation communities within and surrounding the lake were additionally collected. All samples 100 were stored at 4°C before analysis at the Paleoclimatology and Sedimentology Laboratory at IUPUI. 4.3.2 Geochronology Sediments were dated using a combination of 210Pb, 214Pb, 137Cs, and 14C radiometric techniques. The 210Pb, 214Pb, and 137Cs activities were measured by direct gamma counting on 13 samples from the upper 35 cm of the E-15 surface core at the University of Pittsburgh (Appleby and Oldfield, 1978). Radiocarbon (14C) dates of charcoal samples from the D-15 core (n = 9) were determined using accelerator mass spectrometry (AMS) at the Keck AMS Facility, University of California Irvine. Charcoal samples were isolated by wet sieving at 63 μm before undergoing acid-base-acid (1 N HCl and 1 N NaOH) pretreatment based on UCI protocols (KCCAMS, 2011; Olsson, 1986). Radiocarbon dates were calibrated using the IntCAL 13 dataset (Reimer et al., 2013) and an age model was produced using the Bacon software program (Blaauw and Christen, 2011). All dates for the Galang Co E-17 and D-17 composite core are reported in calendar years before present (0 ka; 0 ka = 1950 CE). 4.3.3 Initial Core Description All cores were split, imaged, and described before sub-sampling. High resolution images of the cores were made at IUPUI using a GeoTek Multi-Sensor Core Logger. Volumetric samples (1 cm3) were collected from the work half of all cores at 1 cm intervals, weighed, and dried at 60 °C for 24 hours before being reweighed to determine dry bulk density (ρdry; g/cm-3) and water content (%water). The sediment was then combusted at 550 °C for four hours, weighed, combusted again at 1000 °C for two hours, and weighed again in order to calculate total organic matter (%TOM) and total carbonate (%TC) from weight loss (Boyle, 2001; Heiri et al., 2001). The surface cores were then sliced into sections at a 1 cm resolution while Livingstone cores were sliced into 0.5 cm section for further analysis. 101 4.3.4 Grain Size Approximately ~1 g of wet sediment was taken from cores E-15 and D-15 cores at 1 cm intervals, and from homogenized samples of the surface sediments and soil samples for grain size analysis. The samples were dried at 60 °C for 24 hours before weighing. Organic matter was removed by soaking the samples in 30 % hydrogen peroxide (H2O2) for 24 hours at room temperature before treating them with up to 5-20 ml aliquots of 30 % H2O2 at 70°C (Gray et al., 2010). Biogenic silica was then removed from the samples by soaking them in 20 mL of 1 N NaOH for six hours at 60 °C. The samples were subsequently centrifuged and rinsed with DI H2O to remove any trace NaOH before freeze drying and reweighing to calculate lithics (%). Because carbonates were not present, the samples were not treated with HCl. Samples were lastly stored in 2.5% sodium metaphosphate and sonicated before grain size analysis, which was conducted using a Malvern Mastersizer 2000 at IUPUI. Grain size results were reported in a range of 49 particle diameter size bins between 0.2 and 2000 μm with an average of three replicates per sample. 4.3.5 XRF Geochemistry Sedimentary geochemistry for elements ranging between aluminum (Al) to uranium (U) (atomic numbers 13 – 92) were measured using scanning x-ray florescence (XRF) at 0.5 cm resolution. XRF analysis was conducted at the Large Lakes Observatory, University of Minnesota Duluth using an ITRAX XRF Core Scanner (Croudace et al. 2006). Cores were scanned using a Cr source tube (30 kV; 55 mA) with a 15 second dwell time and a 10 mm measurement resolution. Raw data was processed using Qspec 8.6.0 software. All measurements are reported as counts per second (cps). 4.3.6 Carbon and Nitrogen Isotopes Samples from the composite E-15 and D-15 core were collected at 2 cm intervals (n=148), dried, homogenized, and weighed into tin capsules (~4 mg) before C and N isotopic analysis at the Large Lakes Observatory, University of Minnesota Duluth. Measurements of total organic carbon (TOC), total nitrogen (TN), organic δ13C, and δ15N were made using a Thermo Finnigan Delta Plus XP Isotope Ratio Mass Spectrometer 102 (IRMS) combined with a Costech 4010 elemental combustion system. Measurements are reported as per mil (‰) with δ13C relative to the Vienna Peedee Belemnite (VPDB) and δ15N relative to atmospheric nitrogen. A series of standards were used including acetanilide, caffeine, B-2153, B-2159, and USGS41 (National Institute of Standards and Technology) with coefficient of variation for C and N ranging between 0.5-1.1 %. Isotopic precision for standards was 0.03-0.26 ‰ for N measurements and 0.05-0.18 ‰ for C. The carbon isotopic composition of organic matter (δ13Corg) is often used in conjunction with C:N to distinguish between C3 and C4 plant groups due to isotopic fractionation differences between their photosynthesis pathways (Meyers and LallierVergès, 1999). It is difficult to differentiate the δ13Corg signature between algal and C3 plants when lake and atmospheric CO2 are at equilibrium (both typically range between 30 to -25 ‰), but C4 plants have more positive isotopic values with a range between -14 and -10 ‰. Interpreting δ15N is complex because it is affected by organic matter source and available nitrogen in the water column and must be considered in conjunction with other productivity proxies, such as C:N and δ13Corg (Meyers and Lallier-Vergès, 1999; Talbot, 2002). C3 land plants typically have an average δ15N of 1 ‰ while phytoplankton have an average δ15N of 8 ‰. Because total organic matter can be derived from both terrestrial and aquatic sources, the ratio of elemental organic carbon to total nitrogen (C:N) provides useful information about changes in the sources of organic matter to lacustrine systems. C:N values under 10 indicate aquatic sourced organic matter, typically algae, while values greater than 15 are indicative of C3 and C4 land plants (Meyers and Lallier-Vergès, 1999). 4.3.7 Lipid Biomarker Extraction & 2H Analysis Lipids were extracted from a sub-set of thirty-five samples from the composite sediment core at the Lamont-Doherty Earth Observatory, Columbia University. Lipids were extracted from freeze-dried and homogenized sediments with dichloromethane and methanol solvent (9:1) using a Dionex Accelerated Solvent Extractor – 350. The total lipids extract was separated into aliphatic, ketone, and polar fractions through subsequent elutions using hexane, dichloromethane, and methanol solvent across a silica gel column 103 (70-230 mesh, 60A). The aliphatic fraction then underwent separation across a silver nitrate column (10 % AgNO3) with hexane elution for n-alkanes and ethyl acetate elution for n-alkenes. The concentration of n-alkanes for each sample was determined using an Agilent Technologies 7890A gas chromatography mass spectrometer (GCMS). The contribution of aquatic vs. terrestrial vegetation to the sediments was assessed using three indices. The average chain length (ACL) index quantifies the distribution of short vs. long chain n-alkanes with lower values (< 25) indicating aquatic vegetation and higher values (> 25) indicating terrestrial vegetation (Diefendorf et al., 2015; Mügler et al., 2008). The carbon preference index (CPI) represents the ratio of odd to even carbon atoms in leaf-wax n-alkanes with relative lows and highs indicating aquatic and terrestrial vegetation, respectively. The relative abundances of aquatic vs. terrestrial vegetation deposited in the lake was also assessed with the Paq index, where higher values indicate greater abundance of aquatic plants (Ficken et al., 2000; Seki et al., 2009). 25 𝐶25 ACL 𝐶𝑃𝐼 27 𝐶27 𝐶25 29 𝐶29 31 𝐶31 33 𝐶33 37 𝐶37 𝐶29 𝐶31 𝐶33 𝐶35 𝐶27 𝐶23 𝐶25 2 𝑋 C24 𝑃𝑎𝑞 𝐶25 𝐶27 C26 35 𝐶35 𝐶37 𝐶27 𝐶29 𝐶31 𝐶33 𝐶35 𝐶29 𝐶31 𝐶33 𝐶35 𝐶37 C28 C30 C32 C34 C36 𝐶23 𝐶23 𝐶25 𝐶25 𝐶29 𝐶31 Twenty long-chain n-alkane extract samples then underwent hydrogen isotopic analysis (2H). 2H measurements of the n-alkanes were made using a combined Thermo Scientific Trace GC Ultra GCMS and Delta V Plus IRMS (GC column: 30m, 0.25mm, 14.2psi, 60 °C). Samples were run with an isotopic standard (Mix A7) and a lab standard to assess drift. Raw isotopic values underwent drift correction using MATLAB. Isotopic variability ranged between 3.5-4.5 % for samples (Polissar and D'Andrea, 2014). Measurements are reported in delta notation as per mil (‰) with measurements relative to the VSMOW (Vienna Standard Mean Ocean Water). The average chain length (ACL), 104 carbon preference index (CPI), and aquatic vegetation index (Paq) were calculated to assess changes in the distribution of n-alkanes and assess whether they were sourced by aquatic or terrestrial vegetation (Diefendorf et al., 2015; Ficken et al., 2000; Marzi et al., 1993). Hydrogen isotopic measurements of the short-chain n-alkane nC23 reflects the isotopic composition of the lake water in which aquatic plants grow. The isotopic composition of lake water in turn incorporates changes in the isotopic composition of inflows (primarily precipitation) and subsequent modification from evaporation (Mügler et al., 2008). The isotopic measurements of longer chain n-alkanes (e.g., nC29 and nC31) incorporate the isotopic signature of soil water, which closely tracks the isotopic composition of precipitation. 4.4 Results 4.4.1 Core Description A 294-cm-long composite core was constructed using the E-15 surface and D-15 Livingstone cores. The composite core was differentiated into two distinct halves based on visual stratigraphy (Fig. 4.4). The bottom 144 cm of the core from 294 to 150 cm consisted of a light brown peat material with bands of white coarse sand and gravel between 283-280 cm and 270-265 cm and a tan sand layer from 220-215 cm. The top 150 cm of the core consisted of massive units of dark to light brown muds with interspersed fragments of organic matter, including charcoal and grasses. There were two distinct white clay bands between 125-120 cm and 145-142 cm. 4.4.2 Age Model Excess 210Pb activity was highest at the top of the E-15 core, peaking at 10 cm, before decaying to background levels at 32 cm (Table 4.1; Fig. 4.5). An age model was developed for the top 31.25 ± 0.25 cm based on the constant rate of supply (Appleby and Oldfield, 1978). Three samples had 137Cs activity at 14.75, 16.25, and 23.75 ± 0.25 cm depth, which were dated to -38 ± 3.4, -34 ± 3.8, and -3 ± 5.6 BP. The oldest 210Pb date was at 31cm depth and dated as 67.3 ± 13 BP. Eight radiocarbon dates (Table 4.2) were 105 obtained from charcoal fragments and calibrated using the IntCal 13 dataset (Reimer et al., 2013) using the program Bacon (Blaauw and Christen, 2011). The oldest 14C date for D-15 at 271-269 cm was calibrated to 11.27 ka. Dates below this depth were extrapolated by extending the age model in Bacon. The 210Pb and 14C dates were used to assess the age-depth relationship and an age model was established using the Bacon program spanning the last 12.3 ka (Fig. 4.6). The full age model dataset is in Appendix 3, Table A 3.1. 4.4.3 Organic Matter Chemistry Total organic matter was highest during the early Holocene (11.7 – 6.2 ka) averaging 44.5% until 6.2 ka (Fig. 4.7A). Total organic matter subsequently decreased throughout the end of the middle (5 – 3 ka; average: 33 %) and late Holocene (3 ka to present; average 27.4 %). Total carbonate was low throughout the record (3.0 %) with a few isolated high carbonate intervals (17.7-34 %) from 11 – 10.9 ka (Fig. 4.7B). The ratio of elemental organic carbon to total nitrogen (C:N) ranged between 8.6 and 28.1 with an average of 11.5 in the record (Fig. 4.7C). C:N was elevated during the early Holocene from 11.7 to 9.3 ka (average: 14.87) and slowly decreased from 9.3 to 6 ka (average: 12.13), suggesting a greater contribution of organic matter from terrestrial plants to the lake. After 6.0 ka, C:N was consistently lower for the rest of the record (average: 10.13). Organic matter δ13Corg at Galang Co varied significantly during the Holocene with 13C values averaging -27.2 ‰ and ranging between -32.41 ‰ to -12.4 ‰ (Fig. 4.7D). The most positive values of δ13Corg occurred during the early Holocene between 11.9 – 11 ka (average: -21.59 ‰). After 11 ka, δ13Corg varied between -29 and -25 ‰ before decreasing to an average -30.2 ‰ over the last 1 ka. Galang Co sedimentary δ15N averaged 0.99 ‰ and ranged between -1.25 ‰ and 2.37 ‰ throughout the record (Fig. 4.7E). δ15N ranged between -1 and 0.5 ‰ between 11.3 – 6.2 ka. After 6.2 ka, 15N increased by 1.7 ‰ and varied between 0.6 to 2.4 ‰ (average: 1.8 ‰), remaining elevated until 1 ka, at which point 15N decreased to 0.9 ‰. 106 4.4.4 Sedimentology & Magnetic Susceptibility Dry bulk density was variable throughout the record, averaging 0.2 g cm-3, with lower values during the early Holocene (11.7 – 9.1 ka; Fig. 4.8A). MS was low, averaging 1.3 SI x 10-5 SI, until 6.2 ka before increasing to an average of 12.16 SI x 10-5 SI over the last 6 ka (Fig. 4.8B). Percent lithics varied during the Holocene (average: 51.9 %; range: 0.7-98 %) with low lithics between 11.7 – 11 ka and 7.5 – 6.5 ka corresponding to high organic matter (Fig. 4.8C). Lithics were higher from 6.5 ka to present (average: 60.1 %; range: 1.1-98 %) corresponding with finer sediments. Clay content was low from 11.7 to 6 ka (average: 4.33 %; range: <0.1-18.5 %) before increasing and remaining high over the last 6 ka (average: 6.73 %; range: 0.2-35.3 %; Fig. 4.8D). Silt (average: 51.7 %; range: <0.1-86.1 %) and sand (average: 42.8 %; range: <0.1-100 %) abundances showed an inverse relationship throughout the Holocene (Fig. 4.8E and 4.8F). Silt content was lowest in the early Holocene from 11.7 to 6 ka, averaging 45%, before increasing around 6 ka to an average of 58.4 % when there was a noticeable change towards finer sediments in the core lithology. Percent sand was highest from 11.7 to 6 ka during the early Holocene averaging 50.6 % and declined after 6 ka by 15.7 %. Grain size diameters shows an abundance of coarser sediments from 11.7 until around 6 ka, when grain size distribution shifted to finer sediments for the rest of the Holocene (Fig. 4.8G). 4.4.5 XRF Geochemistry Of the forty-seven elements measured on the composite core using XRF, I focus on iron, manganese, titanium, and zirconium for hydroclimatic interpretations. Titanium (Ti) and Zirconium (Zr) are conservative elements typically associated with clastic detritus, where higher Ti is interpreted as representing more terrestrial sediments being deposited into the lake, and vice versa (Croudace et al., 2006). Measurements of Ti (range: 701-113,073 cps) were lower in the early Holocene, averaging 13,226 cps from 11.7 to 6 ka (Fig. 4.9A). Ti concentrations increased after 6 ka, averaging 17,940 cps, indicating an increase in terrestrial sediments being deposited into the lake. Zr (range: 0- 107 3413 cps) follows a similar pattern with Ti, with lower Zr from 11.7 to 6 ka, averaging 959 cps (Fig. 4.9C). Zr increased after 6 ka, averaging 1485 cps. Iron (Fe) is also linked with clastic material, but this relationship is additionally influenced by the lake’s redox potential, with Fe staying in solution under anoxic conditions because it is redox sensitive (Cuven et al., 2010; Nesbitt and Markovics, 1997). Fe content showed a significant transition from low measurements, average 68,188 cps, between 11.7 and 6 ka and subsequent higher values in the rest of the record after 6 ka, averaging 159,015 cps (Fig. 4.9B). Redox potential of the lake was inferred by the ratio of manganese (Mn) to Fe (Naeher et al., 2013). The Mn: Fe ratio was higher between 11.7 and 6 ka, averaging 0.052, than declined after 6 ka to an average of 0.025 (Fig. 4.9D). The full XRF dataset is in Appendix 4, Tables A 4.1 – 4.6. 4.4.6 δ2H Lipid Biomarkers Long-chain n-alkanes (e.g., nC29 and nC31) are typically produced by terrestrial vascular plants while short chain n-alkanes (e.g., nC23) are generally produced by emergent and submerged aquatic macrophytes (Ficken et al., 2000; Seki et al., 2009). Mid-chain n-alkanes (e.g., nC25) can reflect a mixture of aquatic and terrestrial vegetation sources (Mügler et al., 2008; Seki et al., 2009). Overall the concentration of nalkanes varied with the highest concentrations in the mid-chain n-alkanes nC25 (average: 6094 ng/g) and nC27 (average: 5913 ng/g), and with lower concentrations in short-chain and long-chain n-alkanes: nC23 (average: 3847 ng/g), nC29 (average: 4869 ng/g), and nC31 (average: 2528 ng/g; Fig 4.10). The concentration of leaf-wax n-alkanes in general were low for most of the Holocene before an increase in the concentrations of nC23nC29 around 1.7 ka and subsequent decline (Fig. 4.10A-D). The concentration of nC31 was high between 11.7-8 ka before decreasing and remaining low throughout the remainder of the Holocene (Fig. 4.10E). The ACL at Galang Co averaged 27.7 throughout the Holocene with values between 26.9 and 28.6, indicating that aquatic vegetation dominated the record (Fig. 4.10F). The CPI was highly variable over the record, ranging from 1.9 to 9 (average: 5.5), with higher CPI during the first half of the record from 12 to 5 ka, suggesting a higher abundance of terrestrial vegetation (Fig. 4.10G). Paq was high for most of the record, 108 varying between 0.28 and 0.69 and averaging 0.5 indicating a high contribution of aquatic vegetation to the lake (Fig. 4.10H). The concentration of sedimentary n-alkanes was generally low throughout the Galang Co core, limiting δ2H measurements to twenty of the thirty-five samples selected. Δ2H isotopic measurements on short-chain and long-chain n-alkanes ranged from -243.1 ‰ to -156.3 ‰ (Fig. 4.11). δ2HC23 was higher from 10.7 – 7.7 ka, averaging -192.2 ‰, then decreased by 18 ‰ during the middle Holocene (6 – 2.5 ka) to 174.2 ‰ (Fig. 4.11A). After 2.5 ka, δ2HC23 increased by 43.3 ‰ to an average of -167.4 ‰. Both δ2HC25 and δ2HC27 averaged -215.8 and -218.8 ‰ during the early Holocene (10.7 – 7.7 ka), increased during the middle Holocene (6 – 2.5 ka) by 21.1 ‰ and 12.6 ‰ for averages of -194.7 ‰ and -206.2 ‰ respectively and subsequently decreased from 2.5 ka to present (Fig. 4.11B and 4.11C). Both long-chain n-alkanes δ2HC29 and δ2HC31 were lower during the early Holocene from 10.7 – 7.7 ka, averaging -230.1 and -223.8 ‰ (Fig. 4.11D and 4.11E). δ2HC29 decreased by -13.1 ‰ at 5.6 ka then subsequently increased and remained higher throughout the middle and late Holocene, averaging -222.7 ‰ from 5.3 ka to present. Δ2HC31 record is limited after 7 ka with few data points, increasing to an average of -217.1 ‰ from 2.7 ka to present. 4.5 Discussion 4.5.1 Holocene Hydroclimate & Lake Level Variability at Galang Co The co-occurrence of peat, high C:N, low δ15N, high δ13Corg, and coarse grain sizes at Galang Co between 11.7 and 6.2 ka strongly suggests that water levels were at a minimum during the early and middle Holocene. High organic matter inputs to the lake between 11.7 to 6.2 ka, which coincides with low δ15N, high C:N, and high δ13Corg, all suggest high influxes of terrestrial vegetation (C3 and C4 plants) to the lake. Shallow lake conditions are additionally supported by high Mn:Fe ratios from 11.7 to 6.2 ka, which indicate oxygen-rich conditions during this time, with shallow waters being more oxygen-rich than deeper waters. The onset of deeper lake conditions between 7 and 6 ka is suggested by rapid changes in sedimentology, including a transition to finer sediments and greater aquatic productivity as indicated by higher δ15N and C:N values below 10. 109 Anoxic conditions as evident with lower Mn:Fe from 6.2 ka to present, indicate deeper lake conditions at Galang Co were established in the middle Holocene and have persisted through the present day. The short-chain n-alkane δ2HC23 results support the Galang Co lake level interpretations based on sedimentological and geochemical data. Specifically, high (low) δ2H values of nC23 correspond to lower (deeper) lake levels. δ2HC23 was high during the early Holocene from 11 to 7.7 ka, indicating increased evaporation when lake levels were low as indicated by peat-rich, coarse sediments. δ2HC23 decreased in the middle Holocene (6 – 2 ka) as the lake transitioned to a deeper steady-state as indicated by the predominance of fine-grained sediments and high aquatic productivity. Based on this relationship, I interpret δ2HC23 as a signal of effective moisture at Galang Co. Stronger ISM intensity, inferred by long-chain n-alkane δ2HC29 and δ2HC31, persisted in the early Holocene (11 – 6 ka) when effective moisture was lowest, likely as a result of high evaporation. Both evaporation and monsoon intensity decreased in the middle Holocene around 6 ka resulting in greater effective moisture that persisted until the late Holocene when effective moisture declined around 1.5 ka. This relationship between monsoon precipitation, effective moisture, and lake levels at Galang Co stands in contrast to many of the existing records from the Tibetan Plateau, but as is discussed below, is not incompatible with the well-established Holocene trend of the ISM. The Galang Co local hydroclimate record stands in sharp contrast to many of the ISM and lake level reconstructions from other sites on the Tibetan Plateau, which indicate greater effective moisture and deeper lake levels during the early Holocene (11 – 7 ka) when the ISM was strengthened, followed by a decline in effective moisture in the middle Holocene (7 – 3 ka) as the ISM weakened. This trend is evident at Paru Co (29.8°N, 92.4°E, 4845 m a.s.l.), a shallow high altitude lake approximately 300 km west of Galang Co, where high effective moisture and deeper lake levels are evident in the early Holocene (Bird et al., 2014). High %lithics and %sand, inferred as runoff and lake level signals respectively, indicate that effective moisture remained high until at least 7 ka when runoff declined while lake levels didn’t fall until 5 ka (Fig. 4.12G-H). An effective moisture and temperature record at Koucha Lake in eastern Tibet (34.0°N, 97.2°E, 4540 m a.s.l.), located 400 km northeast of Galang Co, shows a 110 maximum in effective moisture in the early Holocene (11.7 – 6 ka) simultaneous with warmer temperatures indicated by a steppe dominated plant community (Herzschuh et al., 2009). The warmer, wetter Tibetan Plateau during the early Holocene is also evident in the Lake Zigetang pollen record (90.9ºE 32.0ºN), where warmer temperatures persisted until 5 ka, when the climate transitioned to cooler and drier conditions (Herzschuh et al., 2006). High effective moisture derived from the pollen record coincided with lower carbonate δ18O in the sediments from Koucha Lake between 11.7 – 7 ka, indicating lower lake levels (Mischke et al., 2008). Colder temperatures and drier conditions became dominant after 6 ka, evidenced by a transition to a high-alpine meadow vegetation community, and coincides with deeper lake levels inferred from higher δ18O. The contradiction between high effective moisture in the watershed and lower lake levels at Koucha Lake indicates is suggested to be an indication that high evaporation impacted lake levels even as the local hydroclimate was warmer and wetter. The sharp contrast between Galang Co and other monsoon records is also evident when compared with records across the broader ISM extent. The timing of the transition to a deeper lake at Galang Co around 6.2 ka coincides with declining monsoon intensity at Dongge, Mawmluh, and Qunf Caves (Fig. 4.13C-E). Mawmluh Cave in northeastern India (25.3°N, 91.9°E, 1290 m a.s.l.), supports a strong monsoon in the early Holocene, with depleted δ18O between 8 to 6 ka (Berkelhammer et al., 2012). Monsoon intensity subsequently declined after 6 ka with a hiatus in the record after 3.5 ka, interpreted as a significant reduction in effective moisture. Another δ18O record from Dongge Cave (25.3°N, 108.1°E, 680 m a.s.l.), located in southeastern China, also shows a strengthened monsoon from 11-5 ka (Dykoski et al., 2005). The Dongge Cave is at the farthest east extent of the ISM and follows the same precipitation patterns as other ISM records, with a stronger monsoon during the early Holocene with a noted decline towards weaker monsoon conditions after 5 ka. These cave records indicate that monsoon intensity and effective moisture was greatest in the early Holocene and declined between 6 and 5 ka when solar insolation declined and the ITCZ shifted southward (Fleitmann et al., 2003). 111 4.5.2 Hydroclimate Drivers of Galang Co Effective Moisture I hypothesize that low effective moisture in the Galang Co record is attributed to local hydroclimate conditions. Whatever mechanism is responsible for the hydroclimate response at Galang Co, a reversal of this condition must have occurred around the midHolocene decline in the monsoon resulting in a deeper lake. The timing of the transition from a shallow to a deep lake at Galang Co occurs at the same time as monsoon intensity declines in other records, supporting the conclusion that hydroclimate is the driver of effective moisture and lake levels at Galang rather than other hydrological factors. Strong monsoon conditions in the early Holocene (11.7 to 7 ka) at ISM sites were driven by broader climate mechanisms, including higher solar insolation, the position of the ITCZ, and a La Niña-state in the Pacific (Berkelhammer et al., 2012; Bird et al., 2014; EmileGeay and Tingley, 2016; Emile‐Geay et al., 2016; Fleitmann et al., 2003). However, I propose that the more likely mechanism is evaporation driven by temperatures and ice cover. The early Holocene was warmer as observed in the Koucha Lake and Lake Zigetang pollen records which could have resulted in reduced ice cover on the lake. Ice plays an important role in reducing evaporation from a lake surface during the winter season, with modern studies of Tibetan Plateau lakes indicating that ice cover results in lower evaporation and greater lake levels (Lazhu et al., 2016; Lei et al., n.d.). Evaporation on Plateau lakes is highest during the fall and winter due to the large temperature differences between the lake water and air (Lei et al., n.d.), providing further evidence that a decline in ice cover on Galang could be responsible for the anti-phase effective moisture pattern observed in the early and middle Holocene. An ice free Galang Co would have allowed for year-round evaporation driving a reduction in effective moisture and decreasing lake levels. Evaporation rates in the early Holocene would have been higher due to warmer temperatures and could account for low lake levels if Galang Co had little or no ice cover during the year. When temperatures cooled on the Plateau during the middle Holocene between 6 and 5 ka, winter ice cover would have been reestablished and could reduce the evaporation season on the lake by up to six months, resulting in higher effective moisture and lake levels. Another possible driver of the effective moisture trends at Galang Co is a rainout or orographic effect with high convection in the early Holocene resulting in rainout along southern slopes in the 112 Himalayas and southern Tibet. When monsoon intensity and, subsequently, convection declined, moisture remained in the atmosphere longer, reaching low altitude intermontane valleys in the eastern plateau. The inter-montane valley where Galang is situated is flanked by high elevation mountains in three-directions, to the east, west and south, which could prevent moisture from reaching the site during high convection and may be responsible for the contradictory moisture record at this site. Further research is needed to determine which mechanism is responsible and requires the development of additional records from this region, including low-elevation sites, to see if this phenomenon is unique to Galang Co. 4.5.3 Elevation-Dependent Expression of Monsoon Precipitation As I hypothesized, Galang Co is an effective moisture record of the southeastern Tibetan Plateau, which shows that the early Holocene (11.7 – 7 ka) was extremely evaporative (low P:E balance). Evaporation began to decline between 7 and 6 ka, after which effective moisture increased (higher P:E balance). The middle Holocene transition in lake conditions at Galang Co from 7 to 6 ka coincides with shift towards a global weaker monsoon and cooler Northern Hemisphere temperatures. Solar insolation, a driver of the decline in monsoon intensity, declined after reaching an early Holocene maximum, and steadily decreased through the middle and late Holocene (Berger and Loutre, 1991). Lower solar insolation is a driving force of the southerly shift of the ITCZ, weaker monsoon winds, and more El Niño-like conditions in the Pacific. An ITCZ record at Qunf Cave in southern Oman (17.2°N, 54.3°E, 650 m a.s.l.), also supports stronger monsoon intensity from 10 – 6 ka with depleted δ18O during this period indicating a more northerly ITCZ position (Fleitmann et al., 2003). After 6 ka, the ITCZ moved further south as evidenced by increasing δ18O at Qunf Cave, where a hiatus in the record from 2.7 to 1.3 ka coincides with reduced ISM winds in the Arabian Sea (Gupta et al., 2003). Pacific sea surface temperatures (SSTs) from the eastern Pacific near the Baja Peninsula (Marchitto et al., 2010), Laguna Pallcacocha (Moy et al., 2002), and the sand record at El Junco (Conroy et al., 2008) indicate a La Niña-like state in the Pacific between 11.7 – 6 ka before a transition to more frequent El Niño-like conditions from 6 ka to present. The timing of the state-change in these ISM drivers, support our hypothesis that the transition 113 to a wetter local hydroclimate at Galang Co is the result of a climatic change rather than local hydrological change. As a low-elevation site on the Tibetan Plateau, Galang Co exhibits a strong local hydroclimate response to the decline in ISM precipitation, however, the lake level interpretation shows an anti-phase response to other high elevation records. A lack of low-elevation paleoclimate records from the region has limited our understanding of monsoon expression in low-elevation areas of the Tibetan Plateau, increasing the importance of the interpretation of the Galang Co record. I have hypothesized that this anti-phase lake level relationship is the result of high evaporation in the early Holocene driven by warmer temperatures and reduced ice coverage. Lower lake levels, despite higher precipitation, in the early Holocene suggests that local hydroclimate at lowelevation sites is driven by evaporation. The anti-phase trend of high precipitation and low lake levels, was also observed at Koucha Lake, where the pollen record indicated high effective moisture and warmer temperatures, while the carbonate sediment record shows low lake levels (Herzschuh et al., 2009; Mischke et al., 2008). Both Galang Co and Koucha Lake were evaporationcontrolled lakes, exhibiting lower lake levels despite higher monsoon precipitation in the warmer, early Holocene. Lakes are more susceptible to evaporation, as the lake experiences year-round evaporation, while the vegetation community is largely dormant during the driest parts of the year. As the monsoon coincides with the growing season, plant communities are reflective of trends in the ISM, with pollen and long-chain nalkane proxies being minimally affected by evaporation. The seasonality of the pollen record at Koucha Lake and the long-chain n-alkane record (δ2HC29 and δ2HC31) at Galang Co is the most likely explanation for indicators of high early Holocene ISM precipitation in the respective watersheds, while lower lake levels persisted. Projections of warmer temperatures on the Tibetan Plateau with climate change indicate that southeastern Tibetan Plateau will become drier, as evaporation increases, ice cover decreases, and other moisture sources, such as glacial melt, decrease (Yao et al., 2007; Yao et al., 2012). Lakes, like Galang Co, may be more strongly impacted by these changes, with greater evaporation occurring during the fall and winter months, that would be exacerbated by reduction in ice cover. The Galang Co Holocene ISM interpretation suggests that as air 114 temperatures continue to warm on the Tibetan Plateau, evaporation rates will play a larger role in determining water availability. 4.6 Conclusions Galang Co demonstrates a unique contradiction to other ISM paleoclimate records from the Tibetan Plateau, with a shallow lake during the ISM maximum from 11.7 to 6.2 ka and a deeper lake after monsoon intensity declined after 6.2 ka. Rising lake levels at Galang Co from 7 – 6.2 ka coincide with the gradual weakening of the mid-Holocene monsoon at other sites, evidenced by falling lake levels at Paru Co and higher δ18O at Dongge, Mawmluh, and Qunf Caves. The concurrent timing of the change in lake levels at Galang Co with declining ISM intensity at other sites from the Tibetan Plateau suggest that shifts in effective moisture at Galang Co was driven by broader climate forcing. This inverse relationship between ISM precipitation and effective moisture indicate that Galang Co was an extremely evaporative environment during the early Holocene and that evaporation declined after 6.2 ka. I suggest that ice cover drove this change, with warmer temperatures in the early Holocene resulting in limited ice cover on Galang Co and yearround evaporation. During the middle Holocene, temperatures on the Tibetan Plateau declined, increasing ice coverage on the lake and reducing evaporation. A lack of lowelevation sites on the Tibetan Plateau limits our ability to confirm whether the lake level responses at Galang Co to synoptic ISM intensity is consistent with other sites or is driven by local conditions. New records are needed both at low-elevation sites and in the easternmost extent of the ISM on the Tibetan Plateau to determine the mechanisms responsible for Galang Co’s low lake stand during a strong monsoon. The Galang Co record suggests that low-elevation lakes in the southeastern Tibetan Plateau are vulnerable to high evaporation when temperatures increase that can drive lower lake levels despite increased precipitation, indicating that climate change can have a significant impact on water availability in this highly populated region. 115 4.7 Tables Table 4.1: 210Pb and 137Cs results from Galang Co E-15 Core. DEPTH 210 (CM) ACTIVITY PB ± SUPPORTED ± EXCESS 210PB OR 214PB 210 ACTIVITY (BQ/G) ACTIVITY ± PB 137CS ± CAL. ACTIVITY YR BP (BQ/G) 116 2.75 0.336 0.113 0.0923 0.0375 0.2437 0.0755 NA NA -58.1392 5.75 0.55 0.145 0.171 0.0508 0.379 0.0942 NA NA -52.8343 10.25 1.04 0.289 0.287 0.105 0.753 0.184 NA NA -45.3396 14.75 0.759 0.197 0.185 0.0599 0.574 0.1371 0.0221 0.0178 -37.8562 16.25 0.536 0.15 0.15 0.0591 0.386 0.0909 0.0154 0.0148 -34.2936 17.75 0.26 0.0915 0.0839 0.0371 0.1761 0.0544 NA NA -27.2629 19.25 0.544 0.177 0.197 0.0832 0.347 0.0938 NA NA -17.1551 23.75 0.253 0.0638 0.103 0.0275 0.15 0.0363 0.00815 0.00679 -3.37822 25.25 0.304 0.0841 0.154 0.0404 0.15 0.0437 NA NA 33.14854 26.5 0.255 0.0655 0.132 0.029 0.123 0.0365 NA NA 56.26261 31.25 0.218 0.0917 0.116 0.0687 0.102 0.023 NA NA 67.37271 32.75 0.146 0.0706 0.12 0.0507 0.026 0.0199 NA NA NA 34.25 0.21 0.0783 0.146 0.0475 0.064 0.0308 NA NA NA Table 4.2: 14C dates from Galang Co D-15 Core. CORE MEAN 14 C YR ± CAL YR ± DEPTH (CM) D15 83 3085 30 3295 30 D15 140 6100 130 5030 130 D15 147 5100 60 5830 60 D15 162 6110 190 6600 190 D15 178 6360 80 7440 80 D15 201 6610 20 7504 20 D15 221 6980 20 7902 20 D15 270 9975 25 11273 25 117 4.8 Figures Figure 4.1. Paleoclimate archives from the greater ISM region including Galang Co (GAL; red), Paru Co (PC), Mawmluh Cave (MA); Dongge Cave (DC), Qunf Cave (QC), Arabian Sea (AS), Eastern Pacific (EP), and El Junco (EJ). Lake and marine sediments are marked with circles and stars respectively. Cave records are marked with squares. The Qamdo weather station (QA) is marked with an open circle. 118 119 Figure 4.2. Galang Co (blue outline) and its watershed relative to the Parlang Zangbo River and surrounding region (A). Galang Co and its surrounding shoreline with the modified inlet on the southwest corner of the lake and the outlet on the southeast (B). On the lake, locations of core sites are marked with red circles while the surface sediments and soil samples are marked with blue circles. Figure 4.3. Thirty-year average of monthly total precipitation (mm ± s.d.) and average temperature (°C ± s.d.) at Qamdo weather station. 120 Figure 4.4. Stratigraphy of the composite Galang Co E-17 surface and D-17 Livingstone core. Core lithological units have been colored and marked to include clay (dashed lines), mud (silt and clay; horizontal lines), sand (small dots), gravel (large dots), and peat (solid grey). The location of radiocarbon dated material are designated with triangles. 121 Figure 4.5. Supported (grey) and excess (blue) 210Pb activity (± 1 s.e.m,) and 137Cs activity (gray bar) from the top 35 cm of the E-17 surface core. 122 Figure 4.6. Age model for Galang Co composite E-17 and D-17 core over the past 12.3 ka using both 210Pb and 14C dates. 123 124 Figure 4.7. Sedimentology and geochemistry of Galang Co E-17 and D-17 composite core including total organic matter (TOM %; A) and total carbonates (TC %; B) as derived from loss-on-ignition and the ratio of elemental carbon to nitrogen (C: N; C), organic matter δ13C (VPDB ‰; D), and sediment δ15N (air ‰;E). Black vertical lines denote average values over the record. Red and blue backgrounds indicate shallow and deeper lake conditions respectively. 125 Figure 4.8. Physical sedimentology of Galang Co E-17 and D-17 composite core including dry bulk density (BD g x cm-3; A), wet sediment magnetic susceptibility (MS SI x 10-5), 5 point moving average (MA) percent total lithics I, percent clay 5 pt. MA (D), percent silt 5 pt. MA I, percent sand 5 pt. MA (F), and a histogram of grain size diameters (G). Black vertical lines denote average values over the record. Red and blue backgrounds indicate shallow and deeper lake conditions respectively. 126 Figure 4.9. Select elemental XRF results from Galang Co E-17 and D-17 composite core including Ti (A), Fe (B), and Zr (C) and the ratios of Mn: Fe (F). All measurements are in counts per second (cps). Black vertical lines represent average values over the record. Red and blue backgrounds indicate shallow and deeper lake conditions respectively. 127 Figure 4.10. The concentration of Galang sediment n-alkanes (ng/g) for nC23 (A), nC25 (B), nC27 (C), nC29 (D), and nC31 I carbon chain lengths. The average chain length (ACL; F), carbon preference index (CPI; G), and aquatic vegetation index (Paq; H) of sediment n-alkanes. Black vertical lines denote average values over the record. Red and blue backgrounds indicate shallow and deeper lake conditions respectively. 128 Figure 4.11. Galang E-17 and D-17 composite core sediment δ2H (‰) for nC23 (A), nC25 (B), nC27 (C), nC29 (D), and nC31 I carbon chain lengths. Black vertical lines denote average values over the record. Red and blue backgrounds indicate shallow and deeper lake conditions respectively. 129 Figure 4.12. Galang Co δ15N (‰; A), ratio of C to N (B), δ2HC23 (C), percent silt 5 pt. MA (D), percent sand 5 pt. MA (E) in conjunction with the reconstruction of effective moisture from Koucha Lake (F), the sand and lithics records from Paru Co (%; G-H), and temperature reconstruction from Lake Zigetang. Grey background indicates period of low lake level in Galang Co (12.5-6 ka). Average values over the record are designated as vertical lines. Red and blue backgrounds indicate shallow and deeper lake conditions respectively. 130 Figure 4.13. Galang Co sand 5 pt. MA (%; A) and δ2HC23 (‰; B) compared with records from the broader ISM extent, the East Asian Monsoon, and the El Niño-Southern Oscillation. Records include Dongge Cave δ18O (‰; C), Mawmluh Cave δ18O (‰; D), Qunf Cave δ18O (‰; E), Eastern Pacific SSTs (°C; F), El Junco sand (%: G), and Pallcacocha (red color intensity). Grey background represents low lake level stand (12.5-6 ka) at Galang Co. Vertical lines denotes average values over each record. Red and blue backgrounds indicate shallow and deeper lake conditions respectively. 4.9 References Appleby, P. and Oldfield, F. 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. CATENA 5(1), 18. Berger, A. and Loutre, M. 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10, 297-317. Berkelhammer, M., Sinha, A., Stott, L., Cheng, H., Pausata, F. and Yoshimura, K. (2012) Climates, Landscapes, and Civilizations, pp. 75-87, Geophysical Monograms AGU, Washington D.C. Bird, B., Lei, Y., Perello, M., Polissar, P., Yao, T., Finney, B., Bain, D., Pompeani, D. and Thompson, L. 2017. Late Holocene Indian summer monsoon variability revealed from a 3,300-year-long lake sediment record from Nir’pa Co, southeastern Tibet. The Holocene 27(4), 541-552. Bird, B., Polissar, P., Lei, Y., Thompson, L., Yao, T., Finney, B., Bain, D., Pompeani, D. and Steinman, B. 2014. A Tibetan lake sediment record of Holocene Indian summer monsoon variability. Earth and Planetary Science Letters 399, 92-102. Blaauw, M. and Christen, J.A. 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6(3), 457-474. Boyle, J. (2001) Tracking Environmental Change Using Lake Sediments. Last, W. and Smol, J. (eds), pp. 83-141, Kluwer Academic Publishers, Dordrecht. Cai, Y., Zhang, H., Cheng, H., An, Z., Edwards, R., Wang, X., Tan, L., Liang, F., Wang, J. and Kelly, M. 2012. The Holocene Indian monsoon variability over the southern Tibetan Plateau and its teleconnections. Earth Planetary Science Letters 335-336, 135-144. Chen, S., Hoffmann, S.S., Lund, D.C., Cobb, K.M., Emile-Geay, J. and Adkins, J.F. 2016. A high-resolution speleothem record of western equatorial Pacific rainfall: Implications for Holocene ENSO evolution. Earth and Planetary Science Letters 442, 61-71. Conroy, J.L., Overpeck, J.T., Cole, J.E., Shanahan, T.M. and Steinitz-Kannan, M. 2008. Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record. Quaternary Science Reviews 27, 1166– 1180. 131 Croudace, I., Rindby, A. and Rothwell, R. 2006. ITRAX: description and evaluation of a new multi-function X-ray core scanner. Geological Society, London, Special Publications 267(1), 51-63. Cuven, S.p., Francus, P. and Lamoureux, S.F. 2010. Estimation of grain size variability with micro X-ray fluorescence in laminated lacustrine sediments, Cape Bounty, Canadian High Arctic. Journal of Paleolimnology 44(3), 803-817. Diefendorf, A.F., Leslie, A.B. and Wing, S.L. 2015. Leaf wax composition and carbon isotopes vary among major conifer groups. Geochimica et Cosmochimica Acta 170(1), 145-156. Dykoski, C., Edwards, R., Cheng, H., Yaun, D., Cai, Y., Zhang, M., Lin, Y., Qing, J., An, Z. and Revenaugh, J. 2005. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters 233, 71-86. Emile-Geay, J. and Tingley, M. 2016. Inferring climate variability from nonlinear proxies: application to palaeo-ENSO studies. Climate of the Past 12, 31-50. Emile‐Geay, J., Cane, M., Seager, R., Kaplan, A. and Almasi, P. 2016. El Niño as a mediator of the solar influence on climate. Paleoceanography and Paleoclimatology 22(3), PA3210. Fan, Z.-X., Brauning, A. and Cao, K.-F. 2008. Tree-ring based drought reconstruction in the central Hengduan Mountains region (China) since A.D. 1655. International Journal of Climatology 28, 1879–1887. Fan, Z.-X., Bräuning, A., Yangc, B. and Cao, K.-F. 2009. Tree ring density-based summer temperature reconstruction for the central Hengduan Mountains in southern China. Global and Planetary Change 65(1-2), 1-11. Ficken, K., Li, B., Swain, D. and Eglinton, G. 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry 31(7-8), 745-749. Fleitmann, D., Burns, S., Mudelsee, M., Neff, U., Kramers, J., Mangini, A. and Matter, A. 2003. Holocene forcing of the Indian Monsoon recorded from a stalagmite from Southern Oman. Science 300, 1737-1739. 132 Fleitmann, D., Burns, S.J., Mangini, A., Mudelsee, M., Kramers, J., Villa, I., Neff, U., Al-Subbary, A.A., Buettner, A., Hippler, D. and Matter, A. 2007. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quaternary Science Reviews 26, 170-188. Gray, A., Pasternack, G. and Watson, E. 2010. Hydrogen peroxide treatment effects on the particle size distribution of alluvial and marsh sediments. The Holocene 20(2), 293-301. Gupta, A., Anderson, D. and Overpeck, J. 2003. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421, 354-357. Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C. and Ro, U. 2001. Southward Migration of the Intertropical Convergence Zone Through the Holocene. Science 293, 1304-1308. Heiri, O., Lotter, A.F. and Lemcke, G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25(1), 101-110. Herzschuh, U., Kramer, A., Mischke, S. and Zhang, C. 2009. Quantitative climate and vegetation trends since the late glacial on the northeastern Tibetan Plateau deduced from Koucha Lake pollen spectra. Quaternary Research 71, 162-171. Herzschuh, U., Winter, K., Wunnemann, B. and Li, S. 2006. A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra. Quaternary International 154-155, 113-121. KCCAMS, U. 2011. Acid/Base/Acid (ABA) sample pre-treatment, University of California Irvine, W.M. Keck Carbon Cycle Accelerator Mass Spectrometer Facility. Lazhu, Yang, K., Wang, J., Lei, Y., Chen, Y., Zhu, L., Ding, B. and Qin, J. 2016. Quantifying evaporation and its decadal change for Lake Nam Co, central Tibetan Plateau. Journal of Geophysical Research: Atmospheres 121, 7578-7591. Lei, Y., Yao, T., Yang, K., La, Z., Ma, Y. and Bird, B.W. n.d. Thermal regime, energy budget and lake evaporation at a deep alpine lake (Paiku Co) in the central Himalayas. In preparation. 133 Livingstone, D. 1955. A Lightweight Piston Sampler for Lake Deposits. Ecology 36(1), 137-139. Marchitto, T.M., Muscheler, R., Ortiz, J.D., Carriquiry, J.D. and Geen, A.v. 2010. Dynamical Response of the Tropical Pacific Ocean to Solar Forcing During the Early Holocene. Science 330, 1378-1381. Marzi, R., Torkelson, B. and Olson, R. 1993. A revised carbon preference index. Organic Geochemistry 20(8), 1303-1306. Meyers, P.A. and Lallier-Vergès, E. 1999. Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. Journal of Paleolimnology 21, 345-372. Mischke, S., Kramer, M., Zhang, C., Shang, H., Herzschuh, U. and Erzinger, J. 2008. Reduced early Holocene moisture availability in the Bayan Har Mountains, northeastern Tibetan Plateau, inferred from a multi-proxy lake record. Palaeogeography, Palaeoclimatology, Palaeoecology 267, 59-67. Moy, C.M., Seltzer, G.O., Rodbell, D.T. and Anderson, D.M. 2002. Variability of El Nino/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, 162-165. Mügler, I., Sasche, D., Werner, M., Xu, B., Wu, G., Yao, T. and Gleixner, G. 2008. Effect of lake evaporation on δD values of lacustrine n-alkanes: A comparison of Nam Co (Tibetan Plateau) and Holzmaar (Germany). Organic Geochemistry 39, 711-729. Naeher, S., Gilli, A., North, R.P., Hamann, Y. and Schubert, C.J. 2013. Tracing bottom water oxygenation with sedimentary Mn/Fe ratios in Lake Zurich, Switzerland. Chemical Geology 352, 125-133. Nesbitt, H. and Markovics, G. 1997. Weathering of grandioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments. Geochimica et Cosmochimica Acta 61(8), 1653-1670. Olsson, I. (1986) Handbook of Holocene palaeoecology and paleohydrology Berglund, B. (ed), John Wiley & Sons, Chichester. Polissar, P. and D'Andrea, W. 2014. Uncertainty in Paleohydrologic Reconstructions from Molecular dD values. Geochimica et Cosmochimica Acta 129, 146-156. Qui, J. 2008. China: The Third Pole Environment. Nature 454(7203), 393-396. 134 Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatté, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.S.M. and Plicht, J.v.d. 2013. INTCAL13 AND MARINE13 RADIOCARBON AGE CALIBRATION CURVES 0–50,000 YEARS CAL BP. RADIOCARBON 55(4), 1869-1887. Seki, O., Meyers, P.A., Kawamura, K., Zheng, Y. and Zhou, W. 2009. Hydrogen isotopic ratios of plant wax n-alkanes in a peat bog deposited in northeast China during the last 16 kyr. Organic Geochemistry 40(6), 671-677. Talbot, M.R. (2002) Tracking Environmental Change Using Lake Sediments. Volume 2: Physical and Geochemical Methods. Last, W.M. and Smol, J.P. (eds), pp. 401439, Kluwer Academic Publishers, New York. Tian, L., Yao, T., MacClune, K., White, J., Schilla, A., Vaughn, B., Vachon, R. and Ichiyanagi, K. 2007. Stable isotopic variations in west China: A consideration of moisture sources. Journal of Geophysics Research 112, D10112. Wright, H. 1967. A square-rod piston sampler for lake sediments. Journal of Sedimentary Petrology 37(3), 975-976. Yao, T., Pu, J., Lu, A., Wang, Y. and Yu, W. 2007. Recent glacial retreat and its impact on the hydrological processes on the Tibetan Plateau, China, and surrounding regions. Arctic, Antarctic, and Alpine Research 39(4), 642-650. Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., Yang, X., Duan, K., Zhao, H., Xu, B., Pu, J., Lu, A., Xiang, Y., Kattel, D. and Joswiak, D. 2012. Different glacial status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change 2, 663-667. Zhu, L., Wu, Y., Wang, J., Lin, X., Ju, J., Xie, M., Li, M., Mäusbacher, R., Antje, S. and Daut, G. 2008. Environmental changes since 8.4 ka reflected in the lacustrine core sediments from Nam Co, central Tibetan Plateau. The Holocene 18, 831-839. 135 5. CONCLUSIONS This dissertation provides three high-resolution paleoclimate records of Holocene (11.7 ka to present) Indian summer monsoon (ISM) expression in Tibet. Sediments from three small lakes, Nir’Pa Co, Cuobu, and Galang Co, situated along an east-west transect on the southeastern Tibetan Plateau address knowledge gaps of the spatial and temporal patterns of monsoon precipitation and local hydroclimate conditions in connection with broader regional and global climate drivers. Nir’Pa Co is a late Holocene, leaf wax nalkane hydrogen isotopes (δ2H) hydroclimate record (chapter 2), Cuobu is a 8.3 ka record of effective moisture, runoff, and leaf wax n-alkane δ2H hydroclimate (chapter 3), and Galang Co is a lower-elevation effective moisture and lake level record for the entire Holocene (chapter 4). Each record uses a combination of sedimentological (i.e., grain size, total organic matter), geochemical (i.e., XRF), and isotopic proxies (i.e., leaf-wax nalkanes hydrogen (δ2H), organic carbon (δ13C), and nitrogen (δ15N)) to characterize local and synoptic hydroclimate conditions on centennial and millennial time scales. Synoptic hydroclimate, inferred by long-chain n-alkane δ2H, is a measure of regional ISM precipitation signals and, as demonstrated in this dissertation, may not be reflective of local hydroclimate conditions. In contrast, local hydroclimate conditions including effective moisture, lake levels and runoff, inferred from short-chain n-alkane δ2H, Δδ2HC23-C31, grain size, XRF, carbon and nitrogen isotopes, explain how the lake and its watershed responded to altered monsoon precipitation patterns. The use of leaf-wax nalkane δ2H was crucial to this work, as this proxy captures growing season precipitation and evaporation signals that occur simultaneous with the monsoon season. Long-chain nalkanes captured precipitation isotopic signatures through terrestrial vegetation, while aquatic vegetation-derived short-chain n-alkanes reflected the precipitation and evaporation signals captured by lake water. This multi-proxy, high temporal resolution approach addressed questions about the relationship between local and synoptic hydroclimate indicators of changes in monsoon intensity with respect to 1) regional and global climate drivers and events and 2) local hydrological and elevation conditions. All three paleoclimate records are consistent with the well-documented pattern of an ISM-maximum in the early Holocene that transitioned to a weaker monsoon in the 136 middle Holocene with weaker conditions continuing to the present, however, each record shows that local hydroclimate and monsoon expression is more complex on shorter time scales and can be greatly impacted by site specific geomorphology and hydrology. Both the Galang and Cuobu records show that the early Holocene, when the ISM is recognized at its strongest, there were distinct periods of dry conditions locally. Cuobu indicated that intense precipitation in the early Holocene resulted in greater hydrological connectivity, due to higher lake and river water levels. Meanwhile, an anti-phase relationship observed at Galang, between ISM precipitation and lake levels in the early Holocene, indicates that it is possible to have low lake levels, even with heavy precipitation, if evaporation rates reach an unknown threshold. The Nir’Pa Co late Holocene leaf-wax δ2H record demonstrates that even as monsoon intensity was at its weakest during the Holocene, there were distinct periods of drought and pluvial (wet) conditions. These changes in late Holocene monsoon intensity do not appear to be connected with globally-recognized climate events, the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). Instead, these changes may be attributed to other broader scale climate drivers, such as sea surface temperatures and land surface gradients. The connection between synoptic and local hydroclimate indicators varied between records, dependent on the mechanisms responsible for local hydroclimate variability and the sensitivity of the lake system to precipitation changes. The Nir’Pa Co δ2H and grain size records suggested that synoptic long-chain n-alkane δ2HC31 showed earlier evidence of monsoon weakening than grain size-inferred lake levels. Just as in the other records, when local hydroclimate responded to the monsoon weakening, that response was abrupt, indicating some threshold when monsoon precipitation declines before lake level responds. Abrupt changes in local hydroclimate are also highly visible in the Cuobu and Galang grain size records, but for both of these lakes, the timing of variability in runoff and lake levels, respectively, is concurrent with synoptic shifts in ISM expression. While this dissertation has addressed several questions about the expression of the Holocene ISM on the Tibetan Plateau, particularly in relation to synoptic and local hydroclimate, it has also shown where further research is needed. The Galang Co record showed an anti-phase effective moisture and ISM precipitation relationship, however, 137 limited records in the region and, particularly, in low-elevation sites prevents further analysis on determining whether ice cover changes in the early and middle Holocene drove this relationship. The grain size record at Cuobu interpreted as a river runoff signal, suggests that rivers on the Tibetan Plateau may have peaked during the early Holocene, altering hydrological connections. To determine whether these proposed mechanisms are correct and answer other questions about the ISM, additional high-resolution paleoclimate records from the Tibetan Plateau and the broader ISM region need to be developed, with an emphasis on greater spatial and elevation representation. Paleoclimate records remain a crucial tool for improving our understanding of this complex and vital monsoon system and how it will respond to changes in climate drivers. 138 6. APPENDICES Appendix 1: Cuobu age model produced by Bacon® with composite depths vs. mean age. Table A 1.1 Depth and Mean Age (BP) for Cuobu composite core. Depth Mean Age (BP) Depth Mean Age (BP) (cm) (cm) 1 -66.5 33 390 2 -65.4 34 418 3 -64.4 35 446 4 -63.3 36 467.2 5 -62.3 37 488.4 6 -59.9 38 509.5 7 -57.6 39 530.9 8 -55.3 40 551.9 9 -53 41 580.2 10 -50.6 42 608.4 11 -46.6 43 636.7 12 -42.6 44 665.1 13 -38.7 45 693.4 14 -34.8 46 699.6 15 -30.9 47 705.8 16 -20.4 48 711.9 17 -10.1 49 717.9 18 0.3 50 723.7 19 10.6 51 728.5 20 20.9 52 733.3 21 55 53 738 22 88.8 54 742.7 23 122.4 55 747.4 24 155.8 56 752 25 189.5 57 756.8 26 212.9 58 761.4 27 236.3 59 766.2 28 259.7 60 770.8 29 282.9 61 776 30 306.4 62 781.1 31 334 63 786.2 32 362 64 791.3 139 Depth (cm) Mean Age (BP) 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Depth (cm) 796.2 801.1 806.1 811 815.9 820.8 825.6 830.5 835.2 840 844.8 849.4 854 858.7 863.3 868.1 873 877.9 882.9 888 893.1 898.1 903 908.1 913 917.9 923.7 929.6 935.5 941.5 947.5 957.6 967.6 977.6 987.8 997.6 1007.4 1017 1026.8 Mean Age (BP) 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 140 1036.3 1045.9 1055.5 1065.4 1075.1 1085 1094.8 1105.5 1116.1 1126.7 1137.4 1148.1 1158.6 1168.9 1179.4 1189.9 1200.2 1210.9 1221.5 1232.2 1242.7 1253.3 1263.6 1273.9 1284.1 1294.5 1304.8 1314.5 1324.3 1334.2 1344 1353.9 1364.1 1374.3 1384.6 1395 1405.4 1415.6 1425.6 Depth (cm) Mean Age (BP) 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 Depth (cm) 1435.8 1446.1 1456.1 1470.6 1485.2 1499.5 1513.6 1527.5 1541.8 1556.3 1570.6 1584.9 1599.2 1612.5 1625.7 1639 1652.1 1665.3 1678.9 1692.2 1705.7 1719.3 1732.6 1747.1 1761.9 1776.9 1791.7 1806.6 1821 1835.4 1849.7 1863.5 1877.4 1890.5 1903.8 1917.2 1930.8 1944.3 1959.6 Mean Age (BP) 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 141 1975.1 1990.7 2006.4 2022 2035.4 2048.9 2062.6 2076.4 2089.9 2104.8 2119.7 2134.7 2149.5 2164.4 2179.1 2193.8 2208.8 2223.8 2238.7 2257.4 2275.9 2294.2 2312.5 2330.6 2349.1 2367.4 2385.4 2403.2 2421.2 2439.9 2458.7 2477.3 2496 2514.8 2532.8 2550.9 2568.9 2586.9 2604.9 Depth (cm) Mean Age (BP) 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 Depth (cm) 2625.3 2645.6 2666.1 2686.5 2706.9 2725.1 2743.4 2761.6 2780.1 2798.3 2818.2 2838.1 2858.2 2878.1 2897.7 2916 2934.1 2952.5 2970.7 2988.8 3007.5 3026 3044.5 3062.9 3081.5 3101.4 3121 3140.9 3160.6 3180.6 3200.2 3220.2 3240 3260 3279.7 3299.3 3318.9 3338.4 3358 Mean Age (BP) 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 142 3377.5 3397.1 3417.1 3436.7 3456.5 3476.1 3496.9 3517.6 3538.5 3559.5 3580.2 3598.5 3617.2 3635.9 3655.5 3674.8 3692.8 3710.8 3728.6 3746.8 3765.2 3794.8 3825 3854.6 3883.6 3912.7 3944.4 3975.8 4007.8 4039.1 4069.6 4101.9 4134.4 4166.7 4199.3 4231.8 4266.2 4300.7 4335.3 Depth (cm) Mean Age (BP) 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 Depth (cm) 4369.8 4404.4 4439.1 4473.9 4508.7 4543.3 4578.1 4616.3 4655.8 4694.9 4734.3 4773.6 4804.5 4836.9 4869.4 4901.7 4933.6 4953.8 4973.8 4993 5012.2 5031.1 5050.3 5069.3 5088.4 5107.2 5125.9 5146.1 5166.4 5187.1 5207.4 5227.4 5246.9 5266.5 5286 5305.4 5324.9 5345.9 5366.8 Mean Age (BP) 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 143 5387.6 5408.6 5429 5449 5469 5489.2 5509.3 5529.1 5548.8 5568.8 5588.8 5608.8 5628.6 5647.9 5667.5 5687.1 5706.7 5726.3 5745.3 5764.4 5783.3 5802.2 5820.9 5839.6 5858.3 5876.9 5895.6 5914.6 5934.2 5954.3 5974.8 5995.2 6015.8 6036.6 6057.7 6079.7 6101.2 6122.6 6161.6 Depth (cm) Mean Age (BP) 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 Depth (cm) 6200.4 6239.6 6278.5 6317.6 6360 6402.4 6444.6 6486.4 6527.9 6574.2 6620.4 6666.8 6712.6 6758.6 6800.7 6843 6885.6 6928.2 6970.7 7016.8 7062.7 7108.8 7155.2 7201.7 7245.7 7290.9 7335.7 7380.7 Mean Age (BP) 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 144 7425.5 7471 7517.3 7563.6 7609.8 7656.1 7698.9 7741.8 7784.9 7828.4 7656.1 7698.9 7741.8 7784.9 7828.4 7873 7916.5 7959.4 8002.3 8045.3 8087.6 8130.8 8173.2 8216.1 8258.4 8301.2 8344.1 Appendix 2: Cuobu XRF Geochemistry Table A 2.1 Cuobu XRF Geochemistry Al - Ca Depth Al Ar As Au Ba Bi Br Ca (cm) 27 67 23916 241 407 3086 640 12 23465 27.5 184 19929 234 487 225 253 0 7172 28 255 11320 802 641 713 1138 0 15346 28.5 217 10670 1076 864 624 1120 73 16093 29 179 12182 1067 470 522 643 0 16735 29.5 184 11470 1088 550 638 878 0 14702 30 218 10086 1116 913 636 1052 0 15285 30.5 205 10114 797 404 754 831 216 14020 31 216 9359 786 531 585 726 0 14472 31.5 241 8966 1406 1034 379 1034 144 14269 32 236 9077 1251 1076 523 678 216 15286 32.5 172 9136 1194 680 593 814 89 14995 33 210 8523 1022 1006 481 922 553 13822 33.5 201 8128 1157 1013 437 562 69 14154 34 205 7616 770 879 557 658 0 14928 34.5 260 8469 984 812 648 769 0 13774 35 182 9066 1136 823 484 914 0 14744 35.5 117 10111 913 597 738 444 0 14281 36 201 10441 1332 723 459 995 0 14929 36.5 155 9919 873 740 630 949 0 15586 37 295 9627 1161 820 934 981 0 16928 37.5 217 10000 1024 697 627 916 0 18828 38 214 9510 1032 664 575 1073 0 19795 38.5 249 9774 1068 725 552 1027 0 16806 39 222 10689 1522 657 475 649 0 16690 39.5 195 10949 1397 906 666 980 0 16648 40 237 9638 964 898 694 721 0 15123 40.5 164 10486 1117 792 529 807 199 17003 41 207 11087 1171 915 661 809 137 16294 41.5 244 11099 1169 467 827 783 0 16150 42 240 10775 1288 554 487 933 0 15653 42.5 222 11165 1084 543 492 478 53 15616 43 223 11045 1313 741 720 722 0 15479 43.5 175 9871 1121 617 581 960 0 14837 44 190 8766 1151 984 733 738 0 14956 44.5 194 10019 1133 517 485 1033 17 14756 45 165 10439 1145 900 669 848 0 14665 145 Depth Al Ar As Au Ba Bi Br Ca (cm) 45.5 238 10224 1118 850 811 803 103 14342 46 285 10214 1375 805 366 823 29 14704 46.5 270 9642 941 573 518 618 284 15200 47 183 8608 1387 927 384 765 0 14587 47.5 228 7898 1094 1057 739 705 0 13967 48 227 7931 1433 707 651 908 0 13743 48.5 136 7932 1331 677 656 841 0 15461 49 180 8583 1098 890 816 678 0 15914 49.5 202 9558 1216 831 710 1026 0 15361 50 181 9164 1126 588 601 920 47 15887 50.5 220 9365 1625 812 721 860 121 16949 51 224 10792 927 674 620 789 0 16148 51.5 195 10064 1203 816 577 834 0 15190 52 207 8133 969 911 645 759 0 14485 52.5 263 7827 1650 1031 561 1205 0 15219 53 154 8608 1271 719 746 636 0 14573 53.5 236 9138 1378 1191 545 879 0 15532 54 222 7984 993 692 628 628 0 13445 54.5 226 7483 1061 589 554 922 0 14395 55 272 9729 1079 849 867 936 0 16660 55.5 170 8106 1519 1168 585 834 0 15731 56 220 8555 1316 1032 457 735 379 15563 56.5 229 8971 1208 794 458 940 0 15955 57 174 9380 1147 627 719 324 0 15920 57.5 206 8750 993 601 893 386 0 14885 58 149 8656 1089 945 560 807 0 14701 58.5 150 9212 1396 911 687 966 0 15227 59 215 7571 1136 851 412 815 223 15511 59.5 229 8189 1074 998 674 865 0 15604 60 223 7649 1363 704 396 696 0 16301 60.5 221 8431 1511 873 558 809 0 15442 61 181 7733 1447 681 553 881 0 14033 61.5 226 8194 1130 577 744 947 0 15164 62 217 10083 1464 871 630 1039 203 15167 62.5 146 9066 1372 812 429 897 0 14878 63 236 7592 1184 834 630 729 0 14251 63.5 172 8758 952 777 583 714 0 15423 64 182 10162 1032 979 796 744 215 14875 64.5 176 9958 1207 1036 629 903 0 15609 146 Depth Al Ar As Au Ba Bi Br Ca (cm) 65 193 10555 1105 755 431 858 8 16048 65.5 176 11129 1288 729 668 904 151 16336 66 223 12432 904 641 838 548 0 15537 66.5 206 12108 837 717 705 594 0 15679 67 199 9618 1285 581 498 833 219 16687 67.5 195 8060 1261 782 688 1072 0 16699 68 249 8054 1258 900 1137 1043 11 16834 68.5 213 7965 890 817 816 817 0 16135 69 193 8741 1453 719 746 836 0 17261 69.5 186 9240 1314 626 721 899 0 15413 70 206 9405 1475 1021 682 852 0 15492 70.5 229 8371 1354 933 863 713 0 14378 71 232 7805 1148 926 303 880 0 15388 71.5 248 8636 1301 840 674 715 0 16240 72 200 8950 1442 724 878 569 75 18031 72.5 277 8098 1108 840 962 1090 0 17034 73 210 8343 1511 945 837 896 0 16856 73.5 276 8279 1185 764 838 969 0 18833 74 291 11996 822 926 643 519 0 15483 74.5 131 17977 422 377 273 351 0 8577 75 114 17419 944 698 384 311 0 9480 75.5 133 15359 1064 539 522 500 41 10838 76 238 10183 780 569 590 557 0 13938 76.5 243 8571 855 834 291 851 0 14853 77 220 8352 1148 906 610 924 0 15410 77.5 208 8517 1377 923 743 707 318 16121 78 247 8166 1209 737 835 892 705 15624 78.5 182 7548 1224 729 676 526 0 16049 79 240 8357 1039 685 975 585 130 17270 79.5 271 8128 1194 656 459 690 0 16590 80 279 7647 1166 714 682 1030 21 17469 80.5 187 7906 816 1027 726 945 0 15789 81 217 10016 849 1013 837 546 0 15225 81.5 218 10524 952 794 674 739 0 15518 82 235 9687 1490 701 510 577 0 15698 82.5 237 10242 1188 546 1134 882 0 15960 83 225 12435 965 669 762 671 40 17195 83.5 150 13613 732 204 560 161 0 9712 84 123 12966 1239 598 456 397 69 9714 147 Depth Al Ar As Au Ba Bi Br Ca (cm) 84.5 116 12654 933 584 633 395 0 10241 85 104 12433 1101 380 257 145 0 10558 85.5 89 12070 1373 478 484 324 0 10933 86 92 11583 776 341 644 537 313 11499 86.5 146 11235 801 478 631 548 431 11625 87 137 11612 740 285 519 287 0 12356 87.5 79 11610 504 641 565 97 198 12080 88 106 11680 618 475 469 419 143 12377 88.5 160 11551 921 381 566 683 0 11804 89 135 11539 641 303 767 261 0 11792 89.5 98 12028 731 454 309 417 0 10904 90 126 12219 651 463 430 185 729 10615 90.5 101 12180 512 417 287 351 366 10433 91 140 11954 438 162 377 251 0 11144 91.5 102 10899 599 444 387 622 0 12122 92 125 9782 827 301 166 265 0 13398 92.5 166 9369 739 405 299 443 0 13905 93 133 10130 966 441 295 506 0 13444 93.5 126 9711 985 679 398 311 44 13489 94 70 9851 995 319 287 270 0 13656 94.5 83 9700 1199 505 320 560 0 13383 95 110 9484 1064 373 616 417 0 13706 95.5 121 8756 1396 413 611 454 154 13816 96 121 9754 888 287 584 488 0 13867 96.5 124 11307 894 577 411 356 0 12105 97 102 9170 1312 689 536 400 175 13957 97.5 167 8928 1653 686 445 645 0 14050 98 142 8464 1430 622 567 704 323 14006 98.5 74 7614 1889 517 714 647 0 14379 99 138 5860 1235 514 570 347 195 14642 99.5 53 4908 1654 691 458 512 219 14207 100 120 7220 1413 542 398 447 137 13721 100.5 90 7717 1794 664 591 549 0 13041 101 136 7730 1809 538 357 380 10 13616 101.5 120 5844 1877 432 565 471 0 14326 102 154 4243 2345 638 620 287 0 14003 102.5 137 4911 1908 642 427 742 12 14988 103 132 4900 1979 672 282 573 0 14260 103.5 76 4656 2170 513 737 622 0 13864 148 Depth Al Ar As Au Ba Bi Br Ca (cm) 104 107 5100 2074 663 645 383 0 17124 104.5 151 4562 2381 774 539 556 0 13988 105 173 4117 2423 594 604 564 0 13775 105.5 170 4213 2451 811 554 527 71 14240 106 225 4310 2386 726 555 579 166 14401 106.5 71 4477 2657 935 573 592 58 14730 107 140 4946 2380 1127 374 420 164 14901 107.5 113 5219 2123 906 394 678 0 15041 108 133 4728 2579 819 507 558 0 15222 108.5 107 4365 2791 818 460 482 0 14791 109 180 4612 2622 782 517 575 117 15107 109.5 201 4981 2587 673 848 837 0 15477 110 121 4608 2458 764 438 404 0 15203 110.5 154 4355 2587 759 327 576 33 14561 111 118 3392 2633 921 425 337 183 13627 111.5 165 3574 2732 801 537 564 38 14412 112 151 3345 2435 827 395 350 0 14028 112.5 136 3444 2681 720 421 514 0 14702 113 167 3468 2042 851 317 545 57 14218 113.5 153 3721 2296 513 772 700 446 14884 114 178 4503 2532 593 697 421 0 15537 114.5 83 5109 2756 638 743 419 0 15952 115 111 5144 2511 814 959 445 0 15484 115.5 137 5076 2523 927 576 490 0 15108 116 135 4932 2516 562 552 455 0 15079 116.5 178 4241 2571 929 788 737 0 14875 117 183 3839 2671 769 255 671 0 14705 117.5 165 5534 2188 853 628 496 0 14494 118 116 8627 1421 431 228 324 0 12006 118.5 114 9014 1473 463 511 318 0 12647 119 108 8398 1620 570 848 587 94 12956 119.5 171 5225 2078 539 308 601 211 14833 120 101 4361 2724 827 722 441 0 15764 120.5 140 3772 2570 741 793 466 0 15673 121 143 3724 2622 961 474 727 0 15068 121.5 181 3705 2229 676 690 451 0 15956 122 161 4090 1856 770 653 398 0 16359 122.5 97 4264 1855 870 544 518 58 16017 123 126 4101 1602 516 719 708 0 15870 149 Depth Al Ar As Au Ba Bi Br Ca (cm) 123.5 150 4914 1744 581 561 655 27 16008 124 156 4091 1802 872 714 514 0 15050 124.5 187 3809 1854 806 729 922 18 15060 125 91 3937 1654 615 511 881 0 15794 125.5 196 4189 1649 586 600 536 0 15580 126 102 4503 1403 840 844 443 0 16419 126.5 87 5159 1644 574 426 641 0 16309 127 174 4495 1383 563 318 552 0 14467 127.5 154 4487 1603 625 489 569 0 15842 128 124 4840 1490 546 316 680 0 15619 128.5 168 5027 1541 904 496 640 0 15460 129 161 4861 1656 802 764 510 0 16082 129.5 158 4776 1765 692 562 647 0 15622 130 159 4215 1753 858 480 854 0 15446 130.5 125 4131 1997 718 477 686 0 14654 131 101 4654 1701 784 704 552 0 15476 131.5 184 5190 1698 858 515 611 0 16267 132 182 4801 1458 637 663 584 0 16169 132.5 136 5146 1458 847 869 944 0 16044 133 187 5093 1886 935 473 442 0 15937 133.5 89 5287 1690 664 517 467 0 15935 134 153 5122 1748 829 612 695 0 16117 134.5 124 5350 1927 920 351 605 0 16405 135 151 5553 1701 776 629 797 0 16151 135.5 167 5552 1910 521 988 569 204 16560 136 167 5250 1812 917 745 705 0 16239 136.5 155 5158 1986 770 451 574 0 16316 137 144 5062 2117 665 576 488 0 15655 137.5 161 5659 2042 509 706 443 0 16297 138 94 14090 432 456 327 53 0 9241 138.5 145 15023 152 244 200 46 0 7069 139 45 15954 354 261 144 240 0 6524 139.5 176 6972 1707 506 670 463 99 13594 140 164 6047 2350 762 625 368 0 15711 140.5 186 5830 1717 624 776 683 0 15948 141 135 6110 2022 912 176 622 0 15585 141.5 142 5704 2128 818 280 595 70 15766 142 129 6320 1728 577 613 541 0 15999 142.5 168 5914 1849 756 489 531 133 15697 150 Depth Al Ar As Au Ba Bi Br Ca (cm) 143 97 5441 1904 526 723 572 0 15456 143.5 167 5556 2151 727 637 204 0 15957 144 168 5682 2157 448 513 679 0 15185 144.5 145 5916 1777 760 880 599 100 15823 145 150 5833 2023 886 487 806 0 16019 145.5 165 6010 2076 529 443 508 0 15702 146 147 5995 2172 739 443 427 73 16045 146.5 111 6299 2260 952 577 689 0 15863 147 199 6585 1996 619 795 574 95 16175 147.5 130 6496 1624 495 809 414 0 15899 148 176 6577 2256 1038 763 594 0 16176 148.5 125 7257 1776 543 736 543 0 16391 149 114 6778 1340 636 498 627 0 15765 149.5 80 7423 1063 564 727 587 0 15838 150 104 8697 1253 584 432 509 103 13526 150.5 102 7734 1095 736 317 356 0 10171 151 109 10320 648 341 321 473 181 10768 151.5 139 6040 1130 503 64 425 0 10839 152 162 6082 1910 657 598 815 0 15691 152.5 207 7870 2314 571 930 697 0 15929 153 141 7965 2540 741 721 350 0 16152 153.5 138 9914 502 1017 115 599 0 15688 154 101 9667 1200 1075 115 153 0 15381 154.5 174 9900 1027 957 80 94 0 15137 155 116 10101 1335 941 122 0 0 14616 155.5 141 10105 1336 831 124 70 37 14874 156 168 9801 847 781 112 233 0 14986 156.5 150 10554 1059 844 144 0 0 14651 157 107 11056 1292 727 91 164 0 13778 157.5 150 10806 1457 822 159 0 62 13777 158 117 10361 1617 1177 195 139 0 13828 158.5 179 9828 1939 1017 132 53 121 13735 159 79 9528 1921 1145 235 0 18 14243 159.5 130 9610 1514 1017 126 78 0 14239 160 86 9277 1343 1098 169 0 0 14897 160.5 176 8979 1289 925 84 79 0 14284 161 116 9029 957 980 135 173 0 14865 161.5 150 9201 1119 1016 83 220 0 14594 162 124 9378 758 977 252 454 140 15131 151 Depth Al Ar As Au Ba Bi Br Ca (cm) 162.5 190 9255 1411 945 163 16 0 14819 163 101 9168 1382 1143 112 420 307 14905 163.5 164 8871 1323 820 171 256 0 14715 164 115 8457 1023 1168 110 362 465 14579 164.5 127 8534 1245 832 142 93 0 15110 165 73 8465 940 1238 153 108 458 15088 165.5 123 8194 919 947 120 457 132 15084 166 128 8523 1359 1135 138 232 356 15186 166.5 100 8190 1800 819 132 237 0 14589 167 141 8332 1386 836 79 0 0 14631 167.5 145 8681 1064 830 162 93 0 14259 168 129 11345 899 912 6 26 0 9385 168.5 107 11283 771 950 103 0 0 6599 169 58 10643 519 752 71 216 0 7747 169.5 124 9657 895 794 78 87 0 11287 170 146 6744 1008 973 211 248 180 14552 170.5 86 8417 1276 781 137 0 74 14571 171 118 9046 1025 895 63 317 0 14581 171.5 178 8972 1467 1109 76 108 40 13575 172 70 9424 1343 1005 182 263 147 13529 172.5 68 9014 1970 1001 137 0 0 14058 173 143 9172 1813 995 159 0 0 14054 173.5 134 9314 1118 845 130 320 0 13710 174 167 9255 1449 613 167 11 42 14572 174.5 153 9010 1777 882 73 0 0 14481 175 172 9083 1448 1119 59 60 0 14575 175.5 135 9009 1246 848 114 116 0 15157 176 185 9219 1306 1270 80 0 75 14948 176.5 201 9020 1365 862 142 293 69 15107 177 128 9136 662 893 209 437 245 15004 177.5 177 8813 1003 972 145 131 26 14169 178 135 8999 997 716 122 168 0 15238 178.5 121 9578 1097 1088 186 100 0 14263 179 113 9072 1220 1009 192 12 64 14479 179.5 172 9822 1150 826 72 0 39 14080 180 128 9439 674 1212 121 162 0 14128 180.5 107 9268 659 695 119 537 0 14592 181 144 8920 922 1186 166 264 0 14879 181.5 107 8961 1229 1017 170 45 94 14806 152 Depth Al Ar As Au Ba Bi Br Ca (cm) 182 95 9277 1097 1020 126 162 183 14598 182.5 95 9085 1344 979 173 0 127 14767 183 94 9155 1453 926 56 0 0 14286 183.5 103 9206 1163 1090 123 162 0 14626 184 111 9182 1341 1173 208 0 0 14787 184.5 86 9095 1150 1015 195 162 0 15024 185 161 9128 1782 1401 199 0 0 14745 185.5 79 9600 1241 1146 156 100 0 14537 186 150 9748 1221 1037 95 78 0 14424 186.5 123 10301 920 637 188 205 0 13186 187 146 8847 1433 886 234 0 0 13945 187.5 175 8850 1606 1004 113 0 0 14409 188 121 8905 1693 920 228 33 0 14723 188.5 131 8769 1576 926 154 379 213 14431 189 169 8880 1372 711 195 305 109 14118 189.5 194 9445 1275 879 81 192 0 13969 190 89 9148 1586 1108 209 102 0 14759 190.5 92 8180 1457 662 102 0 0 14422 191 226 6662 1553 751 52 76 0 14667 191.5 131 8153 1186 1171 161 130 0 15606 192 129 7950 868 1079 209 282 0 15356 192.5 138 7746 1302 1185 158 564 144 15432 193 144 7756 1860 1162 163 145 0 15089 193.5 136 8010 2342 1081 156 133 0 15461 194 144 7970 2651 928 171 266 0 14291 194.5 137 8285 3376 1085 71 76 18 14341 195 151 8756 2914 723 156 131 0 14790 195.5 112 8804 2557 984 248 221 0 15083 196 114 8069 1809 1219 107 28 0 16245 196.5 197 8439 1549 1006 184 217 152 16088 197 159 8030 1201 885 152 140 0 16123 197.5 155 8542 986 1094 220 638 0 16573 198 195 8364 833 818 208 455 0 16638 198.5 151 8454 1115 774 107 165 0 16681 199 179 8356 1417 1061 136 336 0 16613 199.5 241 8535 1897 701 113 0 0 16710 200 99 8637 1644 904 146 189 0 16421 200.5 158 8664 1225 830 73 245 0 16273 201 161 8356 1968 904 143 210 64 15899 153 Depth Al Ar As Au Ba Bi Br Ca (cm) 201.5 125 9051 1766 1007 188 180 0 15380 202 145 8647 1990 1164 239 0 0 15672 202.5 101 10953 1455 693 113 0 65 13329 203 125 13756 1149 591 123 0 0 8377 203.5 85 14742 946 563 127 0 0 7520 204 116 14383 679 392 63 0 122 7986 204.5 135 6917 1342 894 79 0 0 13678 205 155 8410 1357 1062 172 400 0 16284 205.5 123 7945 1641 810 198 177 0 16691 206 111 8151 1817 874 244 29 0 16549 206.5 135 8270 1739 932 182 287 0 15772 207 199 8699 1190 951 171 297 0 16759 207.5 143 8488 1162 994 201 262 93 16969 208 164 8598 2288 859 196 0 13 15874 208.5 136 8724 1755 918 233 184 0 16073 209 72 8588 1867 1026 195 0 0 16216 209.5 181 9036 1188 1025 118 171 0 16732 210 126 8968 1511 1023 191 0 0 16926 210.5 119 8336 1045 1088 120 160 82 17144 211 126 8304 1276 900 228 278 0 16802 211.5 104 8534 1032 879 139 0 36 17255 212 123 8412 892 888 98 392 0 17288 212.5 108 8421 1213 931 168 290 9 16868 213 137 8414 611 967 217 381 607 17414 213.5 109 8825 902 947 104 273 0 17013 214 132 9956 1160 816 211 38 200 15465 214.5 137 9129 1152 878 179 214 0 15950 215 95 6365 1194 900 164 100 0 17553 215.5 142 8019 1335 792 128 33 0 17379 216 136 7924 1320 767 135 215 0 17825 216.5 141 8711 1709 937 132 80 76 17892 217 163 8738 2123 972 194 0 0 17341 217.5 180 8534 2392 865 138 0 0 17614 218 185 8815 1953 1018 130 0 0 17506 218.5 143 8742 1274 811 115 331 0 17453 219 95 9203 1174 707 135 161 0 17418 219.5 148 9831 678 1033 50 271 320 17194 220 198 10367 1393 1151 188 221 167 17164 220.5 165 9360 1200 987 75 314 0 16901 154 Depth Al Ar As Au Ba Bi Br Ca (cm) 221 148 9872 1706 1073 206 0 0 17212 221.5 182 9739 836 855 139 296 15 17510 222 140 9520 1051 1035 69 25 0 17237 222.5 162 9512 999 1232 199 292 0 17830 223 178 9254 832 907 156 381 252 17678 223.5 92 9437 875 1034 122 200 0 17898 224 121 13311 981 606 189 0 0 13101 224.5 88 8154 1583 773 305 0 0 16129 225 157 9317 751 806 142 388 246 17695 225.5 130 8915 1016 1159 213 0 0 18188 226 126 9188 725 1112 155 129 0 18533 226.5 177 8816 818 1111 142 146 0 16618 227 90 8043 909 1228 155 108 29 17926 227.5 169 8453 746 718 73 90 0 18136 228 129 8355 1146 870 195 0 202 17775 228.5 105 8632 849 850 177 103 0 17928 229 199 8540 802 1023 128 105 0 18264 229.5 93 8527 434 1053 179 158 42 17288 230 128 8842 821 1171 180 210 0 17854 230.5 136 7944 886 1016 150 109 0 17892 231 131 7477 539 1163 76 583 0 18133 231.5 84 1605 1062 853 0 766 0 9340 232 122 1723 709 450 0 536 233 9718 232.5 145 2114 1233 763 12 713 157 9806 233 125 3007 540 872 0 634 0 9590 233.5 123 2731 550 529 0 447 198 7554 234 207 1770 826 928 73 752 0 10310 234.5 151 1779 1011 825 107 724 93 9801 235 143 1645 909 644 0 737 122 9846 235.5 139 1338 1306 794 0 514 11 9396 236 117 1344 1383 943 94 486 110 9585 236.5 132 1123 1398 1088 0 797 0 9412 237 138 1396 1438 980 0 582 141 10309 237.5 132 1486 1565 889 0 792 13 10226 238 115 1178 1468 749 102 696 327 9655 238.5 153 847 1398 1225 0 704 141 8523 239 169 893 1723 730 0 535 247 8539 239.5 100 2320 1243 717 0 663 0 9896 240 129 3238 780 581 33 325 22 9425 155 Depth Al Ar As Au Ba Bi Br Ca (cm) 240.5 136 2885 1358 604 0 791 0 10001 241 107 1552 1305 734 11 407 0 8667 241.5 133 1272 1754 916 0 940 228 9355 242 127 1081 1605 855 0 654 0 8889 242.5 142 944 1728 709 0 674 0 8790 243 150 693 1400 974 0 795 206 7420 243.5 137 2048 1142 1064 0 295 0 6847 244 158 3193 983 777 23 539 74 5995 244.5 138 3581 869 501 0 449 241 6472 245 127 3697 810 590 0 86 0 6013 245.5 122 2058 1395 845 119 712 27 8682 246 125 1500 1256 521 46 439 0 9298 246.5 93 1400 1182 988 0 431 0 8958 247 135 1544 1175 963 0 664 0 9433 247.5 136 1460 1380 782 0 660 94 9373 248 171 1285 1357 994 0 634 0 8416 248.5 97 1071 1177 645 0 679 328 8212 249 112 1162 1458 872 0 779 63 8501 249.5 97 1404 1348 1035 103 753 21 9222 250 77 1240 1471 977 82 732 82 8380 250.5 131 1162 1429 729 0 578 0 8446 251 142 1023 1928 964 5 875 221 7830 251.5 142 778 1817 1116 0 749 0 7013 252 167 779 1602 712 0 637 0 7310 252.5 180 971 1779 928 10 624 206 7743 253 148 1097 1692 1039 123 759 0 8096 253.5 52 851 1913 1033 0 432 0 7262 254 153 984 1694 1071 0 615 0 7692 254.5 114 1212 1606 852 0 870 0 8202 255 140 1373 1889 1151 136 708 0 8381 255.5 98 1238 1690 714 35 697 0 8395 256 163 1209 2128 985 0 497 0 8423 256.5 169 1065 1866 1216 0 717 0 8462 257 110 1213 1760 720 0 585 0 8778 257.5 92 1318 2090 948 0 658 154 8429 258 138 989 1717 983 94 665 0 8081 258.5 125 974 1768 898 33 750 0 8081 259 114 1081 1721 712 12 640 0 7714 259.5 129 960 1412 1313 0 808 0 8234 156 Depth Al Ar As Au Ba Bi Br Ca (cm) 260 152 1142 1605 794 0 540 0 9300 260.5 163 2060 1658 1028 73 652 0 10588 261 174 3286 1803 780 0 844 0 12909 261.5 158 3369 1688 793 0 686 0 13955 262 141 3210 1402 865 0 719 0 13798 262.5 137 3689 2162 821 270 549 101 14250 263 91 4434 1996 733 0 487 0 14708 263.5 138 4709 2182 894 0 782 304 14620 264 174 5145 1747 987 117 756 0 14762 264.5 130 4833 1656 755 145 553 0 14809 265 101 5215 1722 768 20 853 0 15115 265.5 103 4787 2269 1071 21 790 0 14036 266 165 3456 2053 751 7 617 0 13721 266.5 115 4149 2021 638 155 674 0 14839 267 118 6530 1727 659 169 721 0 13862 267.5 95 6722 1644 519 121 593 0 13807 268 103 7149 1225 619 163 564 0 12147 268.5 119 4404 2160 906 93 639 0 13059 269 119 2742 1935 905 172 829 0 13061 269.5 132 3334 2507 846 0 857 0 14506 270 193 3231 2032 781 74 709 118 13136 270.5 167 3122 1918 1068 191 864 245 14395 271 124 3439 2338 771 72 680 0 14140 271.5 141 4589 1945 729 75 594 0 14504 272 180 3429 1782 1011 157 755 207 13976 272.5 130 4033 2304 813 177 970 0 15331 273 129 3274 1697 950 10 843 290 14884 273.5 158 3630 1693 732 129 731 0 15874 274 146 5083 2047 911 0 764 0 17548 274.5 107 4644 1799 894 157 567 0 18650 275 159 4352 2118 980 186 585 0 18784 275.5 208 4879 1711 755 130 757 367 18201 276 173 5943 1705 596 198 586 0 16911 276.5 132 4840 1641 656 205 780 125 17706 277 208 4907 1517 1034 132 932 0 16760 277.5 181 5029 1873 798 272 713 0 17857 278 147 5781 2307 632 126 793 0 18030 278.5 126 6088 2088 932 194 639 0 17359 279 164 6256 1685 651 267 683 0 17798 157 Depth Al Ar As Au Ba Bi Br Ca (cm) 279.5 156 6437 1925 510 75 835 0 17428 280 76 5595 1646 757 0 684 0 17106 280.5 139 5756 1518 633 0 575 0 16917 281 153 5771 1863 723 56 838 0 18190 281.5 186 6316 1946 535 318 700 166 18339 282 156 5475 2326 973 0 1070 91 17435 282.5 165 5681 2233 818 150 691 0 17336 283 154 6204 1941 737 246 592 242 17841 283.5 176 6054 1781 649 24 801 0 17439 284 149 5688 1643 805 269 616 0 17701 284.5 158 6022 1548 784 12 639 0 17319 285 90 5894 1952 482 412 631 0 16702 285.5 121 6555 2119 752 167 491 0 16369 286 182 5829 1777 698 148 510 0 16042 286.5 117 10687 1119 463 63 471 298 10446 287 94 12095 837 566 16 322 882 8456 287.5 65 11819 706 434 102 351 0 8023 288 116 5591 1470 616 0 514 0 11533 288.5 145 6712 1730 680 73 692 218 16565 289 167 7104 1753 806 166 723 0 16641 289.5 129 7438 1472 753 296 442 0 15873 290 109 7779 1711 354 0 563 0 15723 290.5 128 7956 1503 751 216 434 0 15912 291 45 7985 1224 396 135 497 0 15434 291.5 111 8080 1127 462 0 593 0 16530 292 185 8369 1336 573 247 620 0 15445 292.5 172 8520 1506 888 150 656 176 15383 293 138 8201 1388 446 108 399 0 15967 293.5 143 8509 1194 712 18 642 36 15802 294 132 8659 1473 520 131 583 0 14545 294.5 111 8518 1212 406 15 491 0 15967 295 126 9165 1194 495 76 692 231 15891 295.5 140 9782 1107 396 184 392 0 15416 296 115 6564 1232 597 150 423 0 11020 296.5 137 10482 695 476 0 308 92 9771 297 103 11600 257 308 0 425 0 8601 297.5 89 9398 327 511 32 257 0 9482 298 150 7550 1298 438 0 506 88 15042 298.5 184 7997 1322 452 0 384 0 14629 158 Depth Al Ar As Au Ba Bi Br Ca (cm) 299 123 9166 1248 531 5 263 0 15285 299.5 138 9238 1323 847 0 391 0 15590 300 129 9075 1742 513 117 336 0 15266 300.5 144 9391 1706 796 101 581 0 15577 301 122 9821 1136 497 160 716 0 14105 301.5 182 10010 1603 680 127 500 188 14539 302 160 10146 1583 863 52 724 53 14734 302.5 144 10468 1248 549 159 567 0 14039 303 124 8527 1275 653 0 680 0 12078 303.5 129 10588 1095 386 0 517 0 13802 304 72 10638 1139 516 87 510 0 13785 304.5 98 10872 926 469 71 487 0 13881 305 114 11233 1017 495 0 574 0 13200 305.5 157 11058 1054 770 143 671 234 13489 306 136 11704 948 641 158 775 15 12767 306.5 187 11739 985 801 0 437 0 12862 307 157 11983 715 586 0 414 116 12716 307.5 123 3778 1072 725 322 844 0 14761 308 122 4174 1168 901 93 889 0 15186 308.5 159 4264 1077 944 307 1067 0 15316 309 208 4280 1008 994 243 424 0 15040 309.5 144 4132 1117 1154 114 811 0 15407 310 101 4230 1136 899 357 615 0 15522 310.5 99 4738 1236 1076 415 812 0 15695 311 221 5454 1389 911 492 444 86 16377 311.5 141 5633 1105 803 114 625 0 14653 312 95 5332 883 956 238 998 0 15086 312.5 105 4480 1078 800 411 659 0 14408 313 177 3822 1066 1005 0 1125 110 14300 313.5 131 4316 921 1128 396 903 207 14886 314 104 4272 991 621 291 963 0 14728 314.5 126 5258 861 1009 246 931 12 15370 315 110 4806 1490 884 183 597 0 15445 315.5 186 4852 1355 1012 379 503 233 16259 316 125 5054 1261 946 184 613 31 15452 316.5 165 4886 833 668 174 856 220 16176 317 170 4770 895 890 462 639 0 15431 317.5 100 4205 1286 843 101 771 0 15525 318 97 4707 1278 1122 192 724 0 15888 159 Depth Al Ar As Au Ba Bi Br Ca (cm) 318.5 79 5594 1606 659 0 574 0 15977 319 125 4981 967 1048 190 581 0 15529 319.5 142 5256 1083 741 469 456 0 15274 320 133 5170 1465 885 493 541 257 16011 320.5 131 5229 1195 970 566 830 0 15396 321 164 5053 961 782 734 309 246 15080 321.5 103 4568 1003 894 721 779 24 14809 322 69 5302 1240 1102 367 694 0 15636 322.5 152 5898 1525 1011 777 873 0 15347 323 139 5850 988 767 362 870 0 16112 323.5 98 5999 720 756 434 676 0 15589 324 136 6042 800 920 564 640 0 15856 324.5 111 6006 1368 791 572 616 98 15805 325 84 6665 1359 650 451 263 0 16133 325.5 137 8108 809 666 233 603 0 16160 326 137 8370 896 727 495 702 53 16579 326.5 126 8497 592 635 489 678 0 15316 327 76 8101 902 684 322 582 0 15938 327.5 140 7493 973 795 277 670 0 15837 328 142 7286 1146 788 499 740 0 16331 328.5 137 6583 1231 674 467 625 0 15802 329 114 6729 809 720 606 390 228 15382 329.5 143 5997 1308 739 426 469 0 14867 330 179 5580 1200 950 628 546 0 15104 330.5 164 5704 1664 984 574 875 0 15752 331 124 5810 1612 832 378 859 284 17200 331.5 132 6690 1127 698 750 528 0 17279 332 176 7358 1903 812 459 677 0 17128 332.5 94 8874 1404 637 431 641 124 16975 333 138 9581 1217 435 119 546 0 16045 333.5 130 8202 1759 944 436 647 0 16973 334 166 7358 1480 855 587 842 0 16767 334.5 110 7864 1506 735 595 363 264 17194 335 150 8033 1162 822 731 843 0 17947 335.5 93 15936 759 341 216 0 0 4799 336 0 16915 105 195 14 181 0 2849 336.5 27 17415 45 112 7 58 0 3273 337 115 7494 984 596 338 500 131 11993 337.5 118 5195 1348 690 517 513 38 17389 160 Depth Al Ar As Au Ba Bi Br Ca (cm) 338 137 9325 1601 641 495 670 0 17395 338.5 134 10022 1034 546 51 550 0 16056 339 136 9762 1667 640 834 515 0 16295 339.5 140 10396 1136 778 762 355 0 15478 340 121 10317 1215 551 405 386 0 14629 340.5 134 9242 1287 661 424 466 0 16604 341 185 9403 450 719 111 654 20 16646 341.5 166 9717 961 697 557 330 0 16748 342 116 10239 1448 678 504 581 0 15540 342.5 98 10366 527 783 321 585 34 14853 343 98 10030 890 379 467 408 87 14908 343.5 140 10102 994 794 231 556 0 15119 344 108 10720 810 641 522 541 0 14801 344.5 129 10621 1154 464 186 492 0 15841 345 103 10600 709 675 283 480 13 15313 345.5 112 10472 1085 595 493 304 0 15102 346 121 10861 671 626 449 601 0 14929 346.5 84 11232 413 434 289 307 0 14171 347 92 10913 798 377 389 612 0 15328 347.5 181 11118 830 615 485 390 0 14243 348 172 11473 799 722 517 439 0 13988 348.5 125 11604 670 623 471 584 86 14272 349 145 11351 798 688 297 621 188 14439 349.5 129 11815 737 500 102 282 0 13657 350 107 11287 687 484 449 252 0 13174 350.5 152 11332 1335 595 668 203 0 13500 351 81 12401 717 698 66 481 0 12755 351.5 156 11857 1024 564 106 570 242 12765 352 138 11596 843 518 567 490 0 13290 352.5 171 11731 812 583 238 207 0 13272 353 152 14550 500 481 314 205 0 7938 353.5 63 14444 605 366 190 64 0 6786 354 62 13162 551 361 83 223 86 7336 354.5 49 13104 648 357 117 307 0 8825 355 117 6419 1137 716 78 375 0 14416 355.5 128 6953 1191 502 268 414 0 16985 356 131 12492 676 456 384 638 0 13109 356.5 154 12173 807 737 38 524 0 12592 357 81 12646 1003 499 485 306 0 12160 161 Depth Al Ar As Au Ba Bi Br Ca (cm) 357.5 162 12796 795 404 599 308 0 11483 358 126 12780 1014 552 338 392 31 12151 358.5 157 13513 451 426 517 261 0 10805 359 96 14175 919 459 433 367 0 8873 359.5 121 13941 686 429 274 167 0 9097 360 127 14206 543 522 468 335 0 8103 360.5 113 14371 96 497 566 208 146 8765 361 132 13667 395 508 425 225 0 9216 361.5 100 13267 836 386 610 367 0 10104 362 111 13163 687 505 525 567 19 10307 362.5 115 12968 839 502 654 376 0 10326 363 144 12478 732 470 271 554 0 11248 363.5 103 12905 0 620 467 458 0 10917 364 139 12802 219 676 460 569 322 11809 364.5 83 12659 602 459 358 445 0 12094 365 68 11945 634 533 688 504 0 13112 365.5 104 12405 733 622 560 449 0 12426 366 103 12153 640 595 172 327 0 12405 366.5 116 12044 601 693 363 453 0 12826 367 179 14018 853 506 288 482 0 10138 367.5 71 14083 267 351 482 152 191 10094 368 123 13169 448 564 826 290 0 11102 368.5 111 8220 1027 606 961 420 0 17532 369 90 8529 1340 690 806 382 248 18857 369.5 128 8813 1386 887 961 805 0 18199 370 133 8602 1365 862 1001 472 0 18369 370.5 207 8800 1396 578 1034 480 49 18960 371 118 8898 1345 644 509 501 20 18590 371.5 177 8758 1281 840 858 879 129 19391 372 119 9081 1167 735 694 455 0 18704 372.5 187 8705 1161 672 603 549 0 17957 373 156 8424 1049 358 482 445 74 18403 373.5 126 7945 880 954 545 674 117 18872 374 145 8004 1153 691 796 362 0 18352 374.5 138 9499 786 583 804 464 0 17122 375 163 8755 1009 548 794 423 0 16901 375.5 156 8947 988 759 623 307 0 17220 376 109 7488 1010 774 647 657 68 18782 376.5 97 7094 1005 760 783 622 0 18993 162 Depth Al Ar As Au Ba Bi Br Ca (cm) 377 156 7560 873 599 1193 636 0 19172 377.5 122 7418 1151 535 934 557 0 19664 378 122 7112 923 630 767 675 0 19484 378.5 110 7223 817 498 936 323 273 18615 379 206 6972 927 766 629 294 0 18955 379.5 122 6911 1117 877 922 642 20 18888 380 132 6465 539 540 838 423 80 18457 380.5 166 6215 1015 863 501 668 0 18242 381 130 8576 1074 586 672 286 0 19025 381.5 102 7774 702 518 411 437 0 15543 382 155 6386 821 600 367 189 0 18342 382.5 67 6490 1119 510 855 381 0 18649 383 117 6833 1127 775 997 233 0 19374 383.5 199 6981 1255 775 1199 679 153 19659 384 146 7433 1323 743 742 558 0 19512 384.5 113 7341 1023 480 887 516 0 21234 385 100 7302 1038 703 593 792 0 19687 385.5 97 7373 904 481 646 576 0 19929 386 142 7521 971 645 711 443 0 20015 386.5 181 7587 1137 670 809 851 0 19565 387 117 7206 998 813 1149 515 0 20391 387.5 152 7459 912 478 1257 601 0 21341 388 145 8432 1100 581 1402 476 0 21499 388.5 168 8962 1310 724 1189 532 0 21062 389 171 8850 1519 521 861 463 0 21021 389.5 96 10387 1558 707 1018 412 0 20839 390 117 9964 1028 695 404 558 0 19594 390.5 183 9380 1007 751 770 481 0 19957 391 103 9103 770 569 525 571 0 19603 391.5 74 8970 955 405 718 562 0 19746 392 110 8885 858 477 718 729 0 19533 392.5 128 8805 1385 472 611 489 0 19328 393 151 9330 1523 557 700 805 78 18518 393.5 147 8973 1501 613 612 283 0 18017 394 124 8682 1233 618 461 598 0 18960 394.5 188 8799 605 619 558 487 0 19797 395 134 8895 771 539 616 426 0 19249 395.5 112 9509 599 651 541 597 0 19182 396 101 8906 702 297 506 465 72 17635 163 Depth Al Ar As Au Ba Bi Br Ca (cm) 396.5 127 8616 914 601 583 558 0 19375 397 134 8992 798 424 763 642 0 19380 397.5 138 8745 727 467 431 1064 156 19789 398 113 8892 683 450 467 377 0 19872 398.5 186 8609 1107 583 578 399 0 20420 399 125 8822 860 533 842 695 0 20532 399.5 145 9133 389 695 1095 243 0 20943 400 135 8966 861 433 879 601 165 21236 400.5 148 8969 925 702 569 571 0 21180 401 97 8988 1461 660 897 686 0 21097 401.5 125 8965 931 650 1043 426 0 20699 402 94 8717 956 685 1005 523 0 20980 402.5 119 8729 697 456 735 599 0 21194 403 68 8643 899 469 842 582 0 21350 403.5 175 8504 983 415 759 748 0 21405 404 129 8813 1874 977 931 874 209 21400 404.5 148 8782 1450 730 514 685 0 21679 405 128 8992 2232 466 933 459 0 23127 405.5 134 9431 1591 471 1372 588 0 21014 406 83 8192 1254 319 976 450 0 21932 406.5 142 7977 2018 614 1171 784 0 22135 407 93 7888 1505 501 920 362 0 22857 407.5 131 7488 1513 776 955 597 23 23483 408 152 8270 1466 649 1038 363 0 23233 408.5 105 8316 1388 402 723 407 0 23320 409 127 8442 1818 777 983 471 33 23668 409.5 136 9062 1512 674 591 629 0 23730 410 131 8144 1384 612 937 736 202 23140 410.5 193 7963 1075 573 980 561 0 23291 411 132 8050 1289 581 729 482 9 23479 411.5 146 8476 1144 737 815 535 0 22755 412 119 7714 941 569 1071 660 137 23242 412.5 178 7948 1052 591 660 532 0 23790 413 149 7854 1098 579 714 551 0 22996 413.5 155 7502 969 546 476 453 0 23201 414 107 8385 881 466 792 283 0 22811 414.5 202 9514 687 481 667 316 0 19332 415 128 10163 616 434 515 453 0 18537 415.5 97 9422 624 286 876 227 0 20343 164 Depth Al Ar As Au Ba Bi Br Ca (cm) 416 151 8616 992 618 259 339 161 23833 416.5 160 8081 945 675 1009 752 67 24253 417 169 7678 1245 853 575 635 0 23979 417.5 152 7614 1112 491 1014 610 320 23958 418 169 7548 1375 729 766 731 0 23959 418.5 165 7579 1230 663 939 519 0 24915 419 143 7518 980 515 1099 432 0 25308 419.5 110 7612 1023 574 872 487 0 24536 420 123 7598 999 359 570 283 175 25518 420.5 164 7652 864 393 882 301 0 25369 421 132 7417 1132 614 990 572 0 25618 421.5 132 7714 1247 716 1066 279 140 25713 422 135 7351 1010 525 987 475 0 26144 422.5 163 7550 849 658 394 409 0 26268 423 136 7512 1221 727 982 441 0 24811 423.5 132 6991 871 591 461 481 0 25012 424 148 7024 1535 616 1133 602 0 24577 424.5 166 7070 1251 498 1234 521 0 25248 425 154 7477 1097 464 806 527 0 24529 425.5 183 7312 1131 769 1227 851 117 25120 426 82 7558 775 523 1250 405 121 25564 426.5 153 7361 985 632 1191 646 0 24810 427 125 7060 1044 563 940 507 0 25383 427.5 135 6611 1438 604 1168 483 0 25100 428 165 6438 1162 689 1264 593 0 24001 428.5 185 7149 975 495 829 533 0 23972 429 158 8925 703 438 380 299 433 19689 429.5 116 9842 631 461 529 260 397 19859 430 112 11037 1047 392 594 334 507 16566 430.5 128 8027 959 534 842 357 214 18779 431 102 4119 1320 780 432 425 223 12602 165 Table A 2.2 Cuobu XRF Geochemistry Cl – Hf Depth Cl Co Cu Eu Fe Ga Ge Hf (cm) 27 264 0 460 3102 15005 69 70 0 27.5 32 0 906 2236 15269 582 356 50 28 0 0 1760 7862 29854 1069 524 443 28.5 24 0 1470 8418 32194 875 505 676 29 53 0 1306 8677 33019 864 823 546 29.5 0 0 1142 7438 32852 437 837 697 30 21 15 1591 7597 33778 1002 962 436 30.5 0 55 1134 7845 32239 717 668 462 31 0 0 1223 8376 32909 897 720 602 31.5 19 0 1319 8114 34689 753 984 747 32 53 0 1212 7898 36548 477 556 505 32.5 23 0 1467 8234 39882 388 734 345 33 0 0 1227 8189 34826 955 712 372 33.5 12 0 1110 6677 34304 939 994 612 34 8 0 1238 7874 35733 815 407 365 34.5 0 0 1209 7071 34209 1111 674 538 35 0 0 1359 8254 37105 1032 421 492 35.5 0 0 1237 8029 33922 657 678 551 36 43 0 1158 8412 35055 807 716 714 36.5 0 0 1021 8135 37304 600 522 482 37 53 0 1488 8727 41717 897 746 493 37.5 339 0 1111 8105 36553 1063 612 603 38 391 25 1161 7496 38401 1273 792 429 38.5 54 0 1241 8185 42793 974 591 434 39 59 0 1290 7576 44572 607 841 350 39.5 25 0 1390 8900 42717 796 712 693 40 0 0 1160 8276 39579 796 598 425 40.5 81 114 1171 8089 43857 624 491 638 41 73 0 1149 8583 45592 806 639 504 41.5 62 0 1117 8283 44324 1165 753 431 42 16 0 1184 8999 43258 1046 347 641 42.5 37 0 1370 8854 42416 942 779 405 43 60 0 1135 8346 40095 859 588 570 43.5 74 0 1259 7474 42569 1307 774 439 44 61 0 1105 7123 43468 1090 517 251 44.5 68 0 1308 7537 42083 1011 740 297 45 92 0 1269 7143 41606 784 365 358 45.5 23 0 1217 7043 39118 441 716 233 46 40 0 1098 6940 43595 899 733 482 166 Depth Cl Co Cu Eu Fe Ga Ge Hf (cm) 46.5 124 0 1297 6593 41994 940 790 253 47 99 0 1240 6510 42435 928 837 351 47.5 50 0 1062 6735 42319 989 627 229 48 58 0 901 7059 42154 961 546 294 48.5 56 0 952 7648 40418 755 830 425 49 48 0 1089 7807 39781 654 717 379 49.5 0 0 1343 7566 39712 989 626 500 50 37 0 1075 7743 46278 526 557 307 50.5 55 0 1187 8120 44844 1292 754 421 51 71 0 985 7775 42344 523 786 641 51.5 85 0 979 7533 40810 846 361 312 52 115 0 1133 7018 42522 848 812 264 52.5 33 0 1417 7491 47005 1190 599 307 53 21 0 937 7712 47490 909 348 307 53.5 23 0 1120 8141 49313 397 682 230 54 0 0 1097 6672 38861 741 828 238 54.5 51 0 1279 6908 41024 1010 661 444 55 119 69 1362 7727 44345 1147 396 501 55.5 73 0 1264 7107 43639 975 630 493 56 21 0 1104 7473 46349 960 778 282 56.5 39 30 1099 7440 47560 1260 685 316 57 0 0 1047 7800 44598 815 954 271 57.5 22 0 1095 7352 38635 820 887 407 58 31 0 1133 6475 41576 1294 635 416 58.5 39 0 993 7331 43595 549 978 338 59 19 0 1025 7042 46162 119 1002 322 59.5 41 0 1308 7636 42839 912 758 277 60 28 0 1137 7451 44990 505 707 311 60.5 100 0 1022 7643 45246 736 771 336 61 0 76 1102 6991 39467 776 650 81 61.5 21 0 879 7185 41730 685 765 356 62 34 0 1276 8248 45346 739 598 360 62.5 0 0 844 7322 43910 880 663 412 63 14 0 1019 7077 41186 1153 441 213 63.5 0 0 741 7713 44211 298 621 275 64 6 95 1365 6707 41338 585 961 356 64.5 36 0 1076 7633 43178 647 647 455 65 20 0 1127 7292 45588 790 721 336 65.5 33 0 1079 7936 45048 1111 500 331 167 Depth Cl Co Cu Eu Fe Ga Ge Hf (cm) 66 53 43 1086 7260 44695 660 689 429 66.5 62 0 1199 7355 42619 572 403 181 67 35 0 1362 7682 47033 940 490 242 67.5 31 0 919 7826 52762 922 615 428 68 0 0 1314 8218 51267 1356 731 315 68.5 48 0 934 7825 49259 829 720 339 69 69 0 953 7926 51364 995 866 468 69.5 0 0 1164 6756 46286 744 666 318 70 0 0 1052 7766 50120 962 666 351 70.5 8 0 1190 6658 43536 1034 218 323 71 26 0 1236 7933 47218 868 464 205 71.5 48 0 1394 8565 53955 1393 804 303 72 25 0 1198 9209 54555 508 1077 478 72.5 27 0 1080 7363 51591 1248 522 284 73 27 0 1154 8096 50558 1095 776 485 73.5 5 0 1089 8273 56196 858 1096 390 74 110 0 828 5433 47664 862 624 220 74.5 79 0 455 2216 23216 455 546 0 75 55 11 587 2230 26760 568 428 38 75.5 68 45 797 4622 31504 616 668 362 76 55 65 998 6044 42478 513 533 253 76.5 0 25 1024 6832 44388 1026 406 445 77 0 0 1327 7749 46279 1330 659 329 77.5 54 0 1157 6584 45821 783 565 408 78 0 0 1049 7153 48675 924 1206 258 78.5 18 0 953 7584 50834 1017 488 288 79 0 0 977 8165 51461 923 1358 271 79.5 7 0 1068 7375 50317 725 558 373 80 0 0 1117 7615 50190 939 915 332 80.5 0 0 1019 7466 50297 698 791 413 81 0 0 1064 7030 47948 718 521 346 81.5 38 0 956 6849 44154 743 726 374 82 17 0 1276 7515 46487 829 776 344 82.5 0 64 1106 7016 47094 1015 738 443 83 5 0 877 6853 45895 686 973 440 83.5 22 0 532 3969 63993 707 205 225 84 46 0 680 4187 100466 546 436 125 84.5 20 0 408 4265 96589 689 234 306 85 32 0 423 4199 68025 572 355 265 168 Depth Cl (cm) 85.5 86 86.5 87 87.5 88 88.5 89 89.5 90 90.5 91 91.5 92 92.5 93 93.5 94 94.5 95 95.5 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 101 101.5 102 102.5 103 103.5 104 104.5 Co 31 0 54 19 23 40 22 33 0 54 36 18 4 20 28 11 29 37 0 14 8 0 0 0 0 0 0 0 0 33 0 38 0 0 0 0 0 0 0 Cu 0 36 0 0 81 60 0 0 0 0 0 0 0 0 0 0 0 0 59 0 0 5 0 0 4 17 14 0 0 0 0 229 0 29 0 0 0 0 0 Eu 698 762 799 541 586 669 669 667 736 519 508 323 478 977 761 925 797 575 653 702 408 877 860 692 596 671 864 506 672 572 647 463 410 413 730 555 612 621 574 Fe 4462 4137 4821 4553 3792 3909 4086 4018 2847 3141 2341 3221 4212 4288 5085 4939 4775 5215 6204 5689 6462 5711 4258 6124 6495 7085 7345 6568 6281 5909 5490 6228 8392 8134 7924 7323 8294 7722 7920 169 86294 75061 75238 43971 39379 40623 41333 43565 32203 35488 27122 30982 30319 36065 41263 37096 51565 64719 95813 75232 71989 64198 43123 105413 116970 139521 128364 88964 92635 87918 104487 125838 140424 170900 142904 151630 159718 158784 171076 Ga 676 336 722 605 376 562 546 540 567 534 536 373 208 542 316 565 703 570 739 397 297 857 609 559 305 942 717 625 1003 553 792 533 755 585 956 743 555 525 708 Ge Hf 440 343 665 434 448 474 539 266 359 330 438 416 342 592 395 291 339 545 410 517 466 328 570 652 598 496 358 530 680 465 617 422 385 673 495 301 656 308 411 211 241 178 275 277 235 257 276 149 212 96 181 318 195 285 337 226 321 318 219 284 304 265 282 272 337 302 292 273 126 352 340 113 127 224 279 181 238 166 Depth Cl (cm) 105 105.5 106 106.5 107 107.5 108 108.5 109 109.5 110 110.5 111 111.5 112 112.5 113 113.5 114 114.5 115 115.5 116 116.5 117 117.5 118 118.5 119 119.5 120 120.5 121 121.5 122 122.5 123 123.5 124 Co 0 4 0 0 0 0 0 5 0 0 0 0 0 25 0 0 15 0 0 0 0 0 19 0 24 0 41 34 17 18 12 0 0 0 0 20 12 0 0 Cu 75 150 64 0 0 70 71 47 0 0 15 0 0 0 117 37 32 0 29 295 172 75 142 0 86 0 196 314 235 0 0 0 23 0 86 0 0 65 11 Eu 495 513 524 479 478 770 539 543 488 620 606 582 439 278 398 477 603 556 416 455 429 382 323 493 448 510 584 475 448 368 517 487 647 590 369 616 529 750 467 Fe 8724 8214 7725 8721 9046 8121 8043 9093 7603 8077 7452 7872 8464 8147 7390 7910 6978 7618 8838 7821 8186 8431 8150 8912 8275 7339 4347 4643 5997 7946 7466 8062 6936 7187 7397 7337 6839 6370 6483 170 206332 215602 187062 211796 202772 155814 204564 214388 157846 151522 152947 184217 188051 177391 170190 169429 167382 143019 180063 197630 217695 222688 182315 196937 206658 154909 131560 144862 130677 145572 166012 166846 154208 131754 129569 117589 93042 97764 118454 Ga 747 683 629 593 465 777 844 1049 681 662 776 1034 806 832 628 783 675 785 955 643 716 813 547 997 477 1244 420 414 560 764 903 834 879 824 651 837 711 583 264 Ge Hf 500 313 491 481 452 415 641 299 458 763 272 424 536 632 758 246 693 548 564 623 527 227 605 356 426 578 431 372 204 444 475 580 467 572 641 587 407 664 558 145 167 273 145 333 215 218 173 387 434 172 154 187 194 181 40 89 164 182 238 267 154 235 100 251 238 27 117 136 361 200 79 195 24 185 203 324 222 167 Depth Cl (cm) 124.5 125 125.5 126 126.5 127 127.5 128 128.5 129 129.5 130 130.5 131 131.5 132 132.5 133 133.5 134 134.5 135 135.5 136 136.5 137 137.5 138 138.5 139 139.5 140 140.5 141 141.5 142 142.5 143 143.5 Co 0 0 0 22 0 0 0 0 23 0 0 0 0 0 6 0 0 0 0 0 0 9 8 0 0 0 0 61 71 38 16 20 0 0 20 0 20 0 0 Cu 0 0 0 83 123 0 81 0 0 0 0 0 0 0 0 0 0 0 0 91 226 269 25 0 264 129 78 0 0 28 0 195 0 307 87 128 194 0 298 Eu 452 768 483 597 743 519 594 553 486 574 499 717 709 683 399 473 452 552 608 627 603 633 726 353 567 430 598 415 347 218 636 514 477 553 470 507 463 586 513 Fe 7541 6907 7397 7043 6344 6693 6049 6721 7031 7068 7682 7449 7676 7053 7870 7369 7387 7252 7810 6824 7789 7331 8134 8007 7679 8744 8402 1318 1194 1196 6032 7283 8485 7412 8097 7833 7411 7658 7789 171 130545 111863 134608 119125 100765 106512 91120 82837 103326 121047 143106 147065 138463 119645 120773 102542 112502 139277 135618 114117 149225 150639 163650 146273 198362 208662 197253 52924 29305 27882 104646 169296 149100 180972 179365 147587 177648 164974 183768 Ga 958 947 800 301 967 525 459 588 615 703 280 892 668 443 796 501 668 662 677 807 891 883 747 866 810 739 796 286 155 181 849 758 487 759 523 412 828 1054 890 Ge Hf 768 552 648 636 430 474 397 830 486 531 645 495 493 242 698 356 532 605 874 521 359 564 553 712 316 688 650 419 105 105 758 466 459 364 610 219 308 825 444 248 362 104 286 293 323 268 325 260 309 266 296 228 314 292 352 401 331 161 386 307 261 223 471 274 232 202 0 0 95 264 317 212 294 227 182 178 220 181 Depth Cl (cm) 144 144.5 145 145.5 146 146.5 147 147.5 148 148.5 149 149.5 150 150.5 151 151.5 152 152.5 153 153.5 154 154.5 155 155.5 156 156.5 157 157.5 158 158.5 159 159.5 160 160.5 161 161.5 162 162.5 163 Co 0 0 0 0 0 0 0 0 10 0 0 0 0 16 17 0 0 0 0 0 7 26 71 8 45 21 6 46 16 0 0 0 0 26 0 0 11 18 10 Cu 102 27 199 155 29 0 212 283 324 0 100 0 0 0 0 0 169 220 231 276 483 143 368 145 144 217 396 712 620 389 625 758 408 296 268 354 112 69 287 670 363 621 678 535 614 389 461 640 705 718 832 615 443 521 497 758 511 552 842 757 930 690 857 993 885 729 805 967 818 896 624 800 893 1072 1012 866 896 1103 Eu Fe 7684 7887 7348 7846 7997 8342 8527 7954 7980 7860 6714 6348 5341 2958 3374 4326 7551 8359 8739 865 244 944 1991 1016 1280 934 1178 855 39 1234 688 908 1361 1044 1504 897 1746 599 1656 172 147587 140513 135170 143967 164116 157515 151396 173604 160789 129621 117721 83964 67822 57718 31762 54116 122423 149478 168867 59252 68533 39293 68439 57081 35325 51078 83212 124782 121769 95697 117740 107942 92656 75237 66907 45624 34472 47439 88486 Ga Ge 809 554 910 693 646 653 814 560 991 895 892 528 616 23 444 494 762 688 742 530 807 451 565 852 675 377 674 193 754 927 955 611 590 653 321 654 452 657 489 Hf 552 522 448 581 591 457 527 21 396 574 183 495 539 360 423 639 477 247 429 429 526 406 607 390 389 681 581 527 352 581 353 455 240 760 344 381 690 611 339 246 322 321 238 154 405 298 153 492 360 283 352 317 0 118 227 426 459 334 465 554 438 555 370 451 347 331 385 471 328 438 528 447 528 362 437 476 444 426 Depth Cl (cm) 163.5 164 164.5 165 165.5 166 166.5 167 167.5 168 168.5 169 169.5 170 170.5 171 171.5 172 172.5 173 173.5 174 174.5 175 175.5 176 176.5 177 177.5 178 178.5 179 179.5 180 180.5 181 181.5 182 182.5 Co 0 30 8 0 32 0 16 0 0 78 46 47 89 0 0 27 0 0 0 11 0 0 0 0 19 0 29 12 0 0 0 34 0 12 0 0 13 6 0 Cu 422 332 132 9 409 269 362 137 379 356 255 354 387 386 510 356 567 738 690 752 606 678 676 459 667 644 432 582 316 448 396 474 330 465 512 436 230 436 335 619 702 768 758 956 752 756 745 909 471 531 601 614 960 794 804 687 883 586 735 808 677 552 620 826 890 768 936 917 778 768 1047 829 874 782 1174 934 763 843 Eu Fe 1279 1064 1508 636 1836 1922 2027 1894 1096 0 0 0 158 613 875 1387 322 519 394 723 432 1093 0 1265 964 1029 527 313 867 565 955 758 494 0 247 594 1995 290 1229 173 86490 81739 70114 41456 48581 65944 84255 56334 50719 43221 44951 41699 63176 97548 91447 90882 96105 120790 141496 157392 132817 140265 118973 92677 92268 89089 94218 87608 91937 87453 68497 73376 73016 70175 68979 55897 61428 66017 60264 Ga Ge 401 335 576 501 322 640 332 596 702 261 596 309 700 677 553 677 387 764 715 594 399 828 301 736 400 723 749 550 535 544 507 336 373 605 414 934 485 394 634 Hf 867 703 604 536 753 666 601 362 449 217 353 240 347 421 657 593 446 564 438 530 351 518 601 610 404 552 575 689 569 335 220 484 618 290 334 699 763 530 456 599 331 321 367 499 357 364 298 363 188 100 154 318 297 504 439 455 454 583 281 359 451 408 287 490 512 466 491 423 433 390 296 277 453 519 576 307 513 363 Depth Cl (cm) 183 183.5 184 184.5 185 185.5 186 186.5 187 187.5 188 188.5 189 189.5 190 190.5 191 191.5 192 192.5 193 193.5 194 194.5 195 195.5 196 196.5 197 197.5 198 198.5 199 199.5 200 200.5 201 201.5 202 Co 0 0 0 0 44 0 0 0 0 0 24 11 10 0 0 10 52 10 39 0 4 33 0 10 0 0 0 0 0 0 0 0 4 38 0 0 0 0 0 428 608 282 664 572 350 341 209 521 694 875 802 499 587 552 450 542 190 183 480 350 643 724 1030 1065 650 163 93 52 227 216 0 408 297 311 399 770 596 502 Cu 936 943 730 494 830 891 792 826 907 798 572 827 626 725 967 769 555 1100 838 913 866 857 752 664 805 763 969 897 680 807 1169 689 988 918 790 1093 686 680 652 Eu Fe 331 660 1037 0 807 810 410 0 230 688 1681 627 870 209 723 1264 1103 0 535 709 443 17 621 0 920 647 1500 1622 1206 863 1209 823 1600 372 56 1174 799 1412 354 174 66041 79478 80854 99288 88162 81092 70607 58004 90082 114834 139990 128717 94170 79804 80228 69535 86191 50127 54332 66826 88022 123616 145012 206331 172721 117285 38853 37774 34745 33423 34488 36243 34627 44018 68454 54899 109272 97337 90513 Ga 800 579 172 332 725 624 344 366 440 760 552 618 435 838 510 755 537 522 747 574 585 853 1012 816 741 231 241 570 562 734 584 537 661 871 616 943 407 757 548 Ge Hf 542 696 370 299 639 273 306 356 421 540 383 872 610 364 297 480 619 529 375 834 475 618 617 734 556 257 593 822 507 493 443 589 594 736 727 502 795 516 413 484 354 264 413 476 505 412 230 199 239 455 399 268 467 415 388 313 426 481 388 463 377 157 283 211 375 363 306 360 496 452 391 520 477 500 507 410 526 526 Depth Cl (cm) 202.5 203 203.5 204 204.5 205 205.5 206 206.5 207 207.5 208 208.5 209 209.5 210 210.5 211 211.5 212 212.5 213 213.5 214 214.5 215 215.5 216 216.5 217 217.5 218 218.5 219 219.5 220 220.5 221 221.5 Co 19 41 52 0 0 42 22 0 0 39 14 0 37 0 0 23 30 13 0 0 42 49 14 39 62 46 54 34 7 30 29 29 7 0 23 18 33 28 47 503 500 368 140 415 273 496 314 873 640 248 427 925 821 289 367 563 770 573 345 596 640 300 637 680 604 585 971 1258 981 1418 801 961 478 325 518 404 237 266 Cu 929 579 516 463 662 981 875 677 698 663 747 838 698 799 863 838 1022 879 813 577 855 732 592 801 638 905 675 760 752 603 832 462 946 709 590 975 603 759 778 Eu Fe 0 0 0 0 802 1344 1212 1178 27 674 1363 617 598 0 1115 1110 0 346 696 1628 408 390 695 1019 455 1315 369 1890 37 1006 0 232 479 195 828 197 0 619 665 175 72716 48620 43667 23625 68319 80361 80030 82562 115841 77407 62809 90981 117504 101806 66642 49701 55534 108285 65447 59154 95139 94903 98887 92415 110969 115799 100689 151818 179937 183169 174126 129287 130251 84803 84169 69871 61172 66711 71017 Ga 654 380 301 198 713 653 587 591 559 171 659 441 387 713 785 791 377 784 554 377 849 440 1090 939 858 651 965 573 612 670 257 512 667 706 669 757 376 880 513 Ge Hf 667 400 367 445 437 797 573 726 844 475 664 927 638 433 817 662 538 382 873 565 735 486 505 465 831 833 430 415 757 590 616 319 646 664 601 610 384 483 499 311 113 97 131 205 482 481 510 351 486 564 326 510 450 660 607 427 589 478 486 522 465 554 664 681 370 344 508 549 387 438 709 612 422 454 574 601 499 510 Depth Cl (cm) 222 222.5 223 223.5 224 224.5 225 225.5 226 226.5 227 227.5 228 228.5 229 229.5 230 230.5 231 231.5 232 232.5 233 233.5 234 234.5 235 235.5 236 236.5 237 237.5 238 238.5 239 239.5 240 240.5 241 Co 14 15 14 30 12 0 8 12 0 30 4 61 14 24 21 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 7 34 0 0 0 0 0 0 Cu 466 516 377 415 336 355 256 349 148 56 151 94 543 148 80 372 455 304 387 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 953 767 824 724 590 679 846 1135 1058 1009 896 733 918 1014 897 879 830 945 953 654 607 861 692 691 753 752 705 1044 718 845 667 824 638 600 989 792 814 518 673 Eu Fe 0 0 0 1102 0 0 264 133 763 1190 0 151 115 1022 500 0 0 906 433 4912 4543 5604 3847 3183 4800 5297 5438 5279 5613 5323 5730 5718 5353 4909 4547 5255 4441 6472 4898 176 59871 76761 75526 65301 40256 57230 68884 40913 37044 30756 39488 47632 45143 37295 37523 50190 51242 42107 41448 34146 29552 30582 26949 24107 35864 37324 40140 41724 40340 40855 43023 41271 42003 49671 37866 40055 44420 55783 42220 Ga Ge 669 456 494 463 556 722 520 427 634 986 653 647 808 711 698 617 354 614 829 540 584 653 435 569 743 821 751 970 625 716 539 553 704 619 908 772 351 757 562 Hf 634 527 823 486 244 821 591 652 330 535 834 784 566 838 510 360 507 290 370 737 832 597 472 597 771 449 764 693 658 602 923 669 867 353 655 532 120 355 849 411 330 481 524 325 403 432 507 331 478 526 531 325 427 405 453 502 365 424 316 211 249 236 89 335 272 256 214 257 117 318 189 75 90 223 244 175 406 95 Depth Cl (cm) 241.5 242 242.5 243 243.5 244 244.5 245 245.5 246 246.5 247 247.5 248 248.5 249 249.5 250 250.5 251 251.5 252 252.5 253 253.5 254 254.5 255 255.5 256 256.5 257 257.5 258 258.5 259 259.5 260 260.5 Co 0 5 0 0 0 28 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 17 0 0 14 31 0 Cu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 729 468 629 609 654 395 531 505 668 674 419 696 682 822 436 787 742 753 576 633 720 465 814 805 875 605 724 812 604 621 791 207 1000 719 683 731 765 722 791 Eu Fe 5634 5573 4681 4201 2781 2824 2910 3231 4109 5255 5000 5462 4944 5046 4907 5270 5961 5003 5164 5240 3963 3892 4577 4877 4914 5599 5839 5388 4983 5194 5359 4821 4882 4366 4957 5209 3830 4584 4901 177 57027 49416 38651 39219 32517 26598 26312 27480 31739 38023 34881 33741 35899 40574 45537 40920 43464 48296 47514 44193 39065 34079 29790 40654 47522 56969 58214 55410 47348 45143 44817 52054 43925 32974 42024 35926 27686 30434 32868 Ga Ge 917 502 770 709 829 552 351 494 554 616 296 532 597 386 627 797 554 790 506 609 471 840 758 733 807 478 777 831 627 887 576 687 453 864 765 960 799 569 452 Hf 810 622 712 836 732 602 679 435 688 792 765 863 828 270 651 705 678 620 810 817 589 567 907 583 660 699 775 719 821 734 606 368 632 810 757 806 759 507 599 264 181 106 212 208 144 139 172 203 85 262 232 172 251 90 254 328 237 112 99 0 74 170 145 0 90 59 228 146 201 167 266 210 43 99 78 278 250 234 Depth Cl (cm) 261 261.5 262 262.5 263 263.5 264 264.5 265 265.5 266 266.5 267 267.5 268 268.5 269 269.5 270 270.5 271 271.5 272 272.5 273 273.5 274 274.5 275 275.5 276 276.5 277 277.5 278 278.5 279 279.5 280 Co 0 17 0 18 0 0 8 0 0 0 5 27 0 22 27 20 21 0 0 0 0 0 19 0 0 0 0 0 0 27 48 0 35 0 24 0 0 16 0 Cu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 774 803 705 776 783 830 949 951 1103 787 665 720 717 823 766 590 710 624 790 688 729 707 896 989 926 849 1025 956 922 1143 872 811 946 896 723 941 1008 1004 949 Eu Fe 5408 4944 5065 7072 7496 6546 6371 5177 4968 6601 5377 4845 5144 5575 4733 4966 4784 4795 5394 5804 6192 6647 5980 6740 6131 6660 6573 5889 5642 5722 5450 5699 5344 6242 6119 5643 5550 5791 5726 178 33256 33852 35312 90971 121178 83777 44803 30250 30020 72916 42463 27674 33941 46077 42344 35542 45838 48303 51466 47727 56812 52859 56970 79527 61813 65716 65135 40788 34491 37628 36674 39296 38161 46404 47998 46523 41138 34757 40685 Ga 742 843 376 642 540 893 616 779 607 522 589 472 621 441 867 459 484 520 682 353 728 449 686 601 300 953 898 234 576 793 852 740 690 506 803 943 385 1033 483 Ge 766 775 560 355 592 829 576 504 632 660 668 479 324 559 288 959 513 527 777 629 884 665 547 725 591 566 945 417 543 1006 856 1034 636 638 398 590 437 899 628 Hf 393 328 182 173 383 238 469 341 376 388 311 261 527 250 259 382 146 422 158 168 409 231 68 258 203 134 369 280 364 391 442 304 267 335 310 326 343 522 390 Depth Cl (cm) 280.5 281 281.5 282 282.5 283 283.5 284 284.5 285 285.5 286 286.5 287 287.5 288 288.5 289 289.5 290 290.5 291 291.5 292 292.5 293 293.5 294 294.5 295 295.5 296 296.5 297 297.5 298 298.5 299 299.5 Co 0 0 0 0 0 0 0 6 0 0 11 0 0 8 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 28 23 0 9 16 20 32 0 0 0 Cu 0 0 0 0 0 0 0 0 0 0 0 151 0 0 0 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 855 948 883 948 654 960 994 1011 971 697 729 697 595 495 549 551 794 864 708 1024 1248 913 735 863 1134 708 610 781 825 1152 675 738 492 528 414 776 799 805 1062 Eu Fe 5595 5779 6819 5745 6414 6333 6434 6058 5994 6154 6434 6361 2854 1702 2656 5341 6853 5891 6512 6029 6181 5470 6916 6815 6351 7317 7962 7034 5849 6899 7327 4028 2533 1938 2425 5194 4679 6933 6404 179 42718 37506 40822 46160 62710 65785 52831 47486 52343 66682 93446 110754 63684 33943 29247 69134 93674 56210 61931 54512 39474 32129 50994 50754 72976 96578 108311 89732 57961 61734 88520 70954 31642 22876 18548 30422 31096 94298 54671 Ga 898 821 351 1050 518 760 905 786 333 435 1010 380 684 635 453 235 1151 366 607 430 641 561 157 729 727 720 824 714 641 859 504 428 370 394 87 615 244 813 415 Ge Hf 954 523 423 594 495 600 735 549 571 529 983 298 171 361 488 453 668 625 578 626 615 365 491 652 834 558 438 557 647 474 559 503 308 286 370 872 653 826 505 334 327 295 491 365 434 439 315 372 341 507 329 79 93 129 243 238 460 285 271 323 293 368 426 430 162 374 448 345 384 348 29 0 0 187 396 470 224 321 Depth Cl (cm) 300 300.5 301 301.5 302 302.5 303 303.5 304 304.5 305 305.5 306 306.5 307 307.5 308 308.5 309 309.5 310 310.5 311 311.5 312 312.5 313 313.5 314 314.5 315 315.5 316 316.5 317 317.5 318 318.5 319 Co 5 0 0 27 0 23 0 47 15 0 0 0 4 17 44 0 57 0 0 0 17 38 24 0 33 0 59 41 20 47 51 0 0 6 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 454 146 282 338 728 507 272 533 321 548 596 586 509 984 582 532 628 872 923 698 551 814 600 1204 Cu Eu 788 968 700 836 913 751 532 788 767 841 826 882 889 764 882 741 546 675 530 696 618 699 802 869 825 732 512 859 770 690 721 814 617 601 819 769 517 778 640 Fe 6867 6595 5900 6734 7007 4593 4611 6299 5509 4914 4866 4557 3800 4461 4394 3399 2749 2684 2940 2786 2901 2992 3046 3283 3470 2895 3096 4352 3110 3586 3641 3982 3907 2997 4138 3668 3857 3919 2972 180 82294 92621 59736 83609 107915 40325 67743 93182 56509 41700 32953 37092 27229 35504 34494 82389 43208 56344 72223 102313 92562 67172 82800 78959 82597 76461 98528 122706 126133 108941 89246 126385 135200 117179 138289 136309 135598 117777 145870 Ga 466 650 466 622 538 400 403 507 728 487 777 595 556 698 520 679 383 693 595 728 717 447 474 550 649 724 882 612 1046 741 537 577 696 641 553 814 615 707 487 Ge Hf 932 514 483 597 285 263 761 324 451 662 249 570 338 506 447 372 564 892 695 299 534 524 603 700 772 729 713 560 376 256 615 973 602 510 384 516 528 952 561 396 262 266 440 309 341 234 247 467 311 157 339 311 396 132 127 134 232 271 174 72 209 215 126 344 200 340 257 392 267 179 377 150 226 0 173 231 237 143 Depth Cl (cm) 319.5 320 320.5 321 321.5 322 322.5 323 323.5 324 324.5 325 325.5 326 326.5 327 327.5 328 328.5 329 329.5 330 330.5 331 331.5 332 332.5 333 333.5 334 334.5 335 335.5 336 336.5 337 337.5 338 338.5 Co 9 0 39 27 17 0 0 4 0 0 0 33 0 18 67 27 0 19 47 9 6 64 8 0 0 29 0 29 0 0 33 0 76 95 51 34 0 0 17 1014 1125 1151 1029 1477 1547 1681 1235 1066 1334 1382 1279 481 430 462 210 269 90 695 658 1096 1179 776 455 491 826 843 482 790 574 669 561 215 158 140 122 808 912 703 Cu 851 479 691 505 652 517 583 555 689 479 670 688 747 933 728 893 814 777 665 552 507 637 769 788 521 1015 833 599 854 556 713 719 298 219 258 433 787 792 576 Eu Fe 3754 4017 3713 4333 3412 4295 3062 3995 3995 2770 3151 3064 2993 3493 3397 2990 2720 2678 3052 3614 2881 2962 2622 2583 2487 3232 3684 2633 3123 3305 3313 2744 0 0 0 1743 2734 2697 2862 181 175145 195217 169449 185228 200886 219200 195669 177188 179443 161474 170534 165851 83590 86003 79692 51499 37963 37059 97680 115856 134148 152170 98046 62388 57715 98314 105774 50149 109993 88581 109830 71577 10017 1914 1805 43077 108022 103673 107101 Ga Ge 727 479 851 222 677 891 656 340 586 570 970 829 438 730 300 662 555 455 345 293 481 750 738 865 908 911 796 883 502 975 518 703 267 175 24 393 709 907 599 Hf 751 549 735 687 500 686 604 478 636 329 518 487 459 671 474 542 359 485 644 702 451 403 576 603 758 432 358 650 583 477 549 604 176 191 82 175 500 404 464 126 64 220 50 227 332 224 171 132 113 210 293 186 251 302 175 261 266 225 97 203 175 247 235 375 243 205 383 279 389 161 287 60 13 26 103 243 254 156 Depth Cl (cm) 339 339.5 340 340.5 341 341.5 342 342.5 343 343.5 344 344.5 345 345.5 346 346.5 347 347.5 348 348.5 349 349.5 350 350.5 351 351.5 352 352.5 353 353.5 354 354.5 355 355.5 356 356.5 357 357.5 358 Co 13 58 52 75 41 17 0 26 33 58 42 40 85 27 47 49 47 38 41 24 32 47 45 85 79 0 63 52 9 48 42 0 15 0 62 37 35 15 72 805 1275 1697 1357 628 663 936 728 981 1015 1095 775 931 837 475 449 455 802 715 428 326 525 1416 1120 897 822 756 760 412 365 534 309 524 443 658 1242 877 576 631 Cu 760 470 468 581 692 721 618 660 536 702 468 773 596 776 765 767 591 549 693 785 1048 651 610 642 705 846 686 556 704 398 329 372 661 794 535 713 735 460 537 Eu Fe 3411 2956 3066 2797 3087 2972 3096 2579 3148 3058 3384 2891 2976 2526 2503 2032 2446 3138 2195 1788 1874 2037 2235 2437 1856 1982 2643 2984 553 502 369 1696 2279 2806 2159 2722 1576 1945 2331 182 125144 168788 194745 147006 99922 97237 114895 105042 153885 118510 156546 105649 120880 94387 64512 54939 72508 114053 83269 39498 46129 66535 180115 138011 93180 101314 106178 108913 38041 44166 50283 48484 86025 90661 70079 153433 92718 96941 90986 Ga Ge 762 459 345 670 599 359 522 660 680 913 892 860 438 682 718 625 287 526 667 668 590 269 695 502 655 927 649 556 178 440 494 289 502 453 458 706 560 508 505 Hf 314 375 306 553 455 704 553 421 453 326 289 685 279 602 577 292 0 408 502 486 607 424 700 480 389 704 412 252 273 183 313 181 410 509 544 413 319 344 316 267 261 114 258 179 136 251 191 163 253 120 198 103 167 308 135 166 138 282 243 187 182 220 412 236 155 324 306 164 175 128 129 169 114 331 173 157 293 98 Depth Cl Co Cu Eu Fe Ga Ge Hf (cm) 358.5 80 776 705 1214 77850 374 134 110 359 52 454 705 821 55784 560 360 134 359.5 63 883 699 850 83474 594 261 178 360 66 934 570 548 89588 586 380 192 360.5 51 360 737 466 24933 608 564 202 361 58 772 436 1073 69922 289 387 176 361.5 113 1063 711 869 110156 390 411 283 362 51 703 508 1633 83661 593 418 124 362.5 34 1147 514 1837 119902 619 472 215 363 35 735 543 1785 79292 497 519 197 363.5 70 462 662 1658 48907 491 161 258 364 0 390 550 1319 35172 786 655 281 364.5 49 366 769 1680 32195 870 600 117 365 55 530 488 1796 64830 640 405 362 365.5 126 620 510 1983 84797 495 506 242 366 40 661 668 1958 84442 643 378 151 366.5 96 779 731 1864 75319 595 267 186 367 51 709 505 993 55395 476 293 217 367.5 4 366 656 1115 43591 569 340 187 368 55 362 695 1571 30567 289 555 288 368.5 51 606 664 5119 181121 558 461 95 369 0 246 644 3900 128192 627 368 291 369.5 0 307 820 3940 113934 607 218 288 370 71 521 718 5136 201789 286 122 70 370.5 52 198 785 4754 113143 498 821 354 371 0 366 915 3977 133752 450 280 248 371.5 81 246 1056 3620 92894 661 613 305 372 36 92 613 4997 174012 531 411 200 372.5 0 679 844 3998 161738 1101 520 168 373 29 218 753 3937 102590 301 893 224 373.5 10 227 1009 3799 87925 380 440 224 374 49 507 878 3722 128346 401 609 265 374.5 50 123 839 4422 106758 553 511 281 375 68 627 598 3533 168057 491 544 184 375.5 69 569 793 4153 141937 467 280 110 376 0 404 816 3948 126943 329 651 197 376.5 24 283 810 3750 112853 652 332 153 377 43 118 874 3476 68326 396 773 122 377.5 43 211 690 2730 60372 658 286 367 183 Depth Cl (cm) 378 378.5 379 379.5 380 380.5 381 381.5 382 382.5 383 383.5 384 384.5 385 385.5 386 386.5 387 387.5 388 388.5 389 389.5 390 390.5 391 391.5 392 392.5 393 393.5 394 394.5 395 395.5 396 396.5 397 Co 22 0 0 44 49 24 82 35 43 0 18 80 0 41 0 0 45 74 38 75 0 54 6 48 62 0 21 67 19 9 14 46 0 58 21 25 29 30 0 Cu 40 0 0 0 0 0 0 0 0 0 0 0 6 36 41 0 0 175 24 51 164 0 0 0 0 34 52 0 0 0 0 44 0 58 0 0 0 0 0 812 814 654 955 712 708 795 809 764 987 939 845 756 1074 961 784 1042 956 925 804 967 853 1022 798 858 1096 949 940 1073 949 790 764 795 1074 929 704 745 835 947 Eu Fe 3258 3470 3640 3247 2978 3362 3255 2551 2969 3845 3666 3034 3306 3137 3038 3658 3906 3286 2632 3808 3232 3906 3752 3122 3207 2860 2996 3391 3182 3405 3484 2654 2465 2374 2557 2678 2686 2743 2728 184 46942 61371 48878 43647 39886 42237 38128 31408 46784 66278 52304 51986 46974 49590 51639 56038 73900 75900 50562 51593 51845 52265 51582 52873 45760 47241 49103 48766 51485 48383 47544 49292 42710 43029 43329 45475 46218 44966 47258 Ga 874 440 725 464 259 299 637 567 512 833 483 482 521 720 653 517 633 1054 576 456 521 368 901 397 563 876 625 575 727 352 703 344 352 653 401 796 309 499 477 Ge Hf 503 770 657 491 412 659 646 379 446 826 656 402 477 491 315 390 726 175 472 591 197 617 497 218 381 375 436 621 499 602 294 447 483 700 613 435 408 364 257 276 294 317 429 215 336 265 205 186 138 264 283 313 238 347 221 322 245 345 185 180 261 125 400 175 327 140 354 242 265 102 189 251 256 146 238 280 272 103 Depth Cl (cm) 397.5 398 398.5 399 399.5 400 400.5 401 401.5 402 402.5 403 403.5 404 404.5 405 405.5 406 406.5 407 407.5 408 408.5 409 409.5 410 410.5 411 411.5 412 412.5 413 413.5 414 414.5 415 415.5 416 416.5 Co 39 29 25 18 26 19 58 10 62 22 0 76 41 24 11 61 77 37 63 28 0 14 15 7 42 67 0 16 53 0 46 60 48 46 0 32 32 51 66 Cu 165 52 120 45 23 181 57 61 40 0 0 183 90 290 12 293 65 160 0 163 135 33 0 73 0 34 0 82 148 209 58 244 171 38 118 223 40 82 32 600 923 680 941 774 741 610 784 898 1025 929 943 762 911 874 900 406 999 1164 741 755 1039 792 916 940 785 796 791 952 905 915 599 798 701 713 691 722 725 830 Eu Fe 2667 3051 2876 2775 2752 2788 3147 3278 3021 3182 3261 2333 2964 2934 3162 2840 3073 2489 3480 3351 3203 3430 3130 2847 3519 3034 3357 3379 3066 2665 3187 3000 3042 2473 1890 1598 2432 3615 3414 185 51303 52986 63868 67627 51733 55747 57491 75010 77624 57405 51764 49648 50370 63978 69373 88423 56931 48597 60662 60524 59275 54492 55145 55235 56937 56691 55491 60014 59495 57698 59364 63108 60531 60771 51638 45803 45961 59060 59444 Ga 736 578 490 717 247 545 273 1004 562 497 495 496 522 573 555 644 752 737 840 466 757 922 540 471 513 611 461 460 462 711 539 609 404 623 606 488 400 815 868 Ge Hf 575 577 630 217 716 417 82 549 653 482 404 498 496 617 178 539 436 701 495 475 492 438 560 269 408 725 572 405 325 466 586 449 439 387 366 591 443 671 464 280 298 277 227 155 194 184 311 284 289 77 243 363 248 14 197 237 58 221 319 136 294 141 181 309 406 180 289 286 234 198 206 50 193 319 158 43 277 187 Depth Cl (cm) 417 417.5 418 418.5 419 419.5 420 420.5 421 421.5 422 422.5 423 423.5 424 424.5 425 425.5 426 426.5 427 427.5 428 428.5 429 429.5 430 430.5 431 Co 40 0 38 0 20 39 74 47 35 8 42 50 80 72 34 82 52 30 41 34 60 14 63 31 59 35 38 22 8 Cu 75 25 155 75 54 18 83 15 0 0 0 0 231 117 286 278 98 124 188 0 53 111 162 96 218 378 189 170 0 947 744 979 842 859 853 881 1114 875 826 871 1005 807 761 905 779 637 886 965 811 958 797 1095 848 681 758 435 517 568 Eu Fe 2445 3266 2590 3249 3128 3151 3230 2855 3593 2991 3608 3864 2778 2918 2945 2448 2763 2858 2865 2881 2868 2775 2697 3177 1867 1724 1822 1745 1299 186 57628 63119 63832 58160 58484 59183 62185 60380 61248 63707 58636 62110 58859 60370 63284 61919 61921 59599 56240 55820 58555 61344 62327 61934 50011 50808 55004 60812 45807 Ga Ge 499 505 624 517 625 586 690 861 548 400 704 678 775 490 986 468 656 534 711 687 851 914 625 862 806 557 469 438 417 Hf 793 538 566 454 654 564 699 287 668 563 723 389 602 840 736 608 604 715 760 359 523 932 460 446 752 352 412 429 278 321 53 237 262 242 312 319 185 112 280 205 331 358 273 245 223 345 325 316 200 206 293 125 199 222 167 224 151 0 Table A 2.3 Cuobu XRF Geochemistry Hg – Mo Depth Hg I (cm) 27 120 27.5 224 28 243 28.5 471 29 396 29.5 534 30 613 30.5 37 31 683 31.5 697 32 329 32.5 500 33 115 33.5 266 34 690 34.5 455 35 567 35.5 359 36 501 36.5 534 37 564 37.5 555 38 297 38.5 345 39 377 39.5 531 40 440 40.5 502 41 177 41.5 517 42 575 42.5 402 43 266 43.5 439 44 749 44.5 343 45 540 45.5 402 Ir 45 20 86 32 80 86 154 38 115 50 132 97 6 52 88 17 54 25 0 49 51 15 65 72 10 42 69 19 50 22 0 13 77 0 82 0 0 22 K 484 222 153 358 532 534 288 277 566 484 566 855 322 360 291 130 230 525 228 319 508 133 0 204 529 594 393 402 547 70 343 291 195 0 448 123 538 566 La 141 2208 4936 5707 5653 5090 5745 5095 5282 5009 5184 5198 4892 4864 5010 4503 5795 5300 5824 6360 8368 6330 6643 7564 8331 7677 7128 7897 8442 7386 7893 7579 7308 8158 8629 7813 7155 6973 187 Mg 830 940 2015 2031 1906 1838 2017 1889 1960 1786 1897 2061 1892 1793 1861 1915 1955 1944 1796 1770 1941 1843 1840 1984 1863 2040 1937 1987 1927 2018 1967 1960 1903 1854 1762 1919 1655 1666 Mn 45 42 42 0 86 83 80 26 49 44 89 0 66 0 35 170 47 91 72 0 69 19 91 24 69 0 60 0 94 16 99 23 61 112 82 12 25 0 1496 328 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Mo Depth Hg I (cm) 46 584 46.5 154 47 637 47.5 544 48 628 48.5 285 49 486 49.5 561 50 128 50.5 392 51 493 51.5 693 52 216 52.5 431 53 615 53.5 445 54 279 54.5 664 55 607 55.5 740 56 258 56.5 654 57 310 57.5 448 58 354 58.5 475 59 358 59.5 798 60 784 60.5 576 61 582 61.5 478 62 385 62.5 548 63 726 63.5 352 64 194 64.5 576 65 321 Ir 86 44 70 0 0 0 0 48 75 0 79 0 35 59 20 0 19 36 60 93 79 9 12 25 0 74 19 73 49 0 0 43 0 0 41 130 73 0 0 K 318 151 543 116 219 256 510 213 260 177 748 393 156 240 33 529 218 419 353 583 114 0 351 514 0 463 590 400 697 331 226 280 455 198 82 392 618 371 267 La 8623 7991 8083 7952 6972 7822 8218 7786 8652 10499 9486 8723 7998 8513 7893 9218 6536 7223 10235 10031 8905 9251 9650 8683 8039 8625 9968 9385 10464 9150 7541 8460 9820 8733 8276 9628 8540 9484 9977 188 Mg 1741 1659 1505 1753 1663 1758 1909 1861 1861 1886 1895 1633 1677 1697 1908 1756 1772 1675 1838 1786 1848 1817 1865 1724 1713 1795 1629 1729 1803 1835 1728 1761 1864 1726 1755 1960 1874 1765 1820 Mn 121 5 22 50 43 41 0 0 54 115 51 41 72 44 62 69 81 62 72 114 19 9 98 60 46 17 0 79 13 125 54 96 36 43 38 107 28 8 27 Mo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 787 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Depth Hg I (cm) 65.5 222 66 458 66.5 251 67 228 67.5 474 68 688 68.5 422 69 237 69.5 410 70 650 70.5 659 71 584 71.5 385 72 192 72.5 575 73 728 73.5 248 74 554 74.5 97 75 347 75.5 136 76 430 76.5 405 77 445 77.5 514 78 181 78.5 782 79 167 79.5 585 80 398 80.5 410 81 943 81.5 375 82 440 82.5 495 83 118 83.5 312 84 215 84.5 195 Ir 0 0 16 18 0 36 14 43 0 0 0 0 104 36 0 6 0 0 12 9 0 0 33 22 90 61 0 0 22 24 0 52 40 55 0 0 40 49 28 K 67 520 547 404 112 106 396 151 182 420 0 394 23 551 361 338 464 439 36 212 179 469 188 0 647 300 381 537 252 334 234 558 522 449 508 408 109 437 216 La 10890 10209 10375 10808 11862 11544 10431 11309 10181 9769 8899 10031 10978 13430 12707 11444 14569 11316 4226 5227 6749 9392 9687 10239 10446 10861 10951 13252 11968 12572 11061 10097 10319 10744 10421 12391 4479 4233 5429 189 Mg 1870 1775 1660 1749 1739 1887 1843 1835 1743 1886 1819 1598 1839 1931 1891 1782 1904 1586 835 912 1164 1571 1625 1745 1824 1721 1655 1962 1775 1888 1840 1831 1772 1771 1987 1718 830 830 957 Mn 95 0 136 17 0 14 10 19 20 46 70 96 67 8 56 43 86 0 0 0 16 84 43 69 52 0 35 42 39 27 73 77 0 69 0 0 27 0 54 Mo 0 0 0 0 0 0 0 0 53 0 0 0 0 0 0 0 0 0 0 892 0 0 0 0 111 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Depth Hg I (cm) 85 159 85.5 405 86 274 86.5 6 87 173 87.5 52 88 177 88.5 172 89 302 89.5 244 90 209 90.5 9 91 215 91.5 280 92 209 92.5 234 93 196 93.5 252 94 154 94.5 377 95 124 95.5 224 96 265 96.5 300 97 107 97.5 442 98 320 98.5 593 99 260 99.5 169 100 224 100.5 590 101 389 101.5 505 102 642 102.5 260 103 753 103.5 493 104 589 Ir 0 40 31 63 30 44 47 0 21 0 0 0 65 64 6 61 20 7 34 49 0 88 0 39 48 7 75 0 82 29 74 58 36 28 61 52 11 0 74 K 289 289 432 238 390 502 421 39 452 324 198 17 52 311 334 589 192 269 186 380 226 359 234 317 175 514 226 227 297 197 295 142 294 8 477 8 363 497 490 La 5249 5422 5848 5593 6202 6789 7157 6121 6087 5083 4580 4848 4928 5502 7055 8496 6820 6872 6433 7174 6531 6660 5691 4844 8235 7570 6629 7830 7483 6151 7523 6964 6066 7208 6549 5912 4893 5673 5313 190 Mg 848 826 947 940 1007 1036 1011 1003 985 848 863 730 931 942 1150 1350 1088 1139 1119 1179 1312 1215 1118 1048 1204 1351 1248 1188 1312 1134 1149 989 1091 1282 1189 1257 1231 1307 1308 Mn 21 64 12 38 54 0 0 23 99 0 20 27 25 20 53 34 34 22 6 14 0 38 10 0 12 33 33 12 51 0 0 9 52 22 61 0 46 21 24 Mo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 709 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Depth Hg I (cm) 104.5 616 105 539 105.5 720 106 775 106.5 608 107 746 107.5 813 108 601 108.5 763 109 451 109.5 527 110 626 110.5 751 111 610 111.5 639 112 574 112.5 615 113 384 113.5 138 114 496 114.5 618 115 718 115.5 1049 116 397 116.5 849 117 915 117.5 738 118 454 118.5 427 119 521 119.5 511 120 625 120.5 500 121 619 121.5 388 122 451 122.5 357 123 587 123.5 266 Ir 0 26 44 111 57 0 82 22 78 68 35 87 0 67 124 29 62 31 71 0 53 96 0 10 51 36 86 0 48 0 0 0 33 103 27 30 94 45 94 K 240 78 407 280 719 732 334 159 52 237 317 262 262 222 338 311 0 243 85 208 341 64 237 341 116 614 95 385 394 124 221 257 216 281 107 235 237 21 370 La 6283 6230 5473 6563 6983 6043 5614 6361 6347 6696 8324 6797 6697 6021 6728 8056 8702 8001 7371 7593 7457 7897 6778 6004 7196 7008 6658 6347 6034 7091 7668 9059 9089 9951 9468 9595 10198 8336 9115 191 Mg 1148 1163 1112 1177 1322 1400 1254 1285 1233 1435 1264 1422 1317 1108 1085 1089 1152 1054 1190 1414 1248 1213 1161 1332 1343 1178 1263 804 990 1072 1232 1358 1106 1244 1178 1372 1321 1341 1405 Mn 62 9 89 30 65 61 69 37 36 6 46 42 90 0 28 44 85 0 73 0 5 0 50 36 55 5 22 5 19 29 0 0 27 29 5 28 0 27 23 Mo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Depth Hg I (cm) 124 680 124.5 524 125 649 125.5 630 126 502 126.5 535 127 371 127.5 567 128 301 128.5 568 129 762 129.5 637 130 598 130.5 567 131 619 131.5 356 132 656 132.5 480 133 662 133.5 255 134 620 134.5 687 135 424 135.5 454 136 365 136.5 702 137 544 137.5 590 138 0 138.5 114 139 8 139.5 265 140 675 140.5 665 141 836 141.5 553 142 492 142.5 510 143 369 Ir 49 25 54 115 80 33 51 125 124 53 0 89 106 125 0 51 82 92 48 83 40 56 77 74 112 71 24 93 61 0 0 0 101 30 113 81 0 62 46 K 503 287 84 146 543 139 129 529 271 430 497 630 141 264 376 63 429 231 479 198 168 67 81 375 147 6 120 280 435 208 74 94 514 417 410 485 316 98 34 La 7875 8296 8539 8982 8390 8242 6917 7941 6994 7315 7482 7189 7172 6620 7483 8022 8856 7999 8242 8462 8216 8671 9275 9587 7730 7962 8462 8533 4066 3070 1838 6092 8001 9267 8617 8639 8049 7709 9198 192 Mg 1257 1353 1375 1311 1367 1415 1213 1380 1358 1257 1292 1324 1234 1110 1220 1347 1329 1311 1285 1394 1394 1316 1368 1432 1429 1399 1371 1381 648 516 484 1263 1425 1241 1346 1324 1377 1463 1342 Mn 37 24 57 33 77 0 27 0 45 0 0 72 49 85 40 65 88 22 24 0 0 57 10 14 42 18 51 0 0 0 0 10 41 71 69 30 32 0 22 Mo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 721 370 269 0 0 0 0 0 0 0 0 Depth Hg I (cm) 143.5 674 144 563 144.5 244 145 712 145.5 581 146 510 146.5 573 147 410 147.5 606 148 792 148.5 594 149 578 149.5 411 150 0 150.5 480 151 55 151.5 273 152 628 152.5 809 153 548 153.5 737 154 682 154.5 555 155 477 155.5 830 156 647 156.5 464 157 690 157.5 680 158 1176 158.5 710 159 740 159.5 745 160 625 160.5 893 161 793 161.5 905 162 807 162.5 705 Ir 21 94 110 136 31 30 82 72 66 45 101 76 57 121 0 38 71 15 35 81 54 142 0 151 45 66 124 74 115 236 118 82 162 24 98 7 144 117 169 K 184 248 266 108 199 288 512 169 362 271 276 155 423 54 481 138 239 158 352 488 2686 2643 2714 2692 2736 2809 2771 2381 2341 2353 2738 2767 2551 2754 2627 2780 2679 2811 2876 La 7656 7689 7235 8149 7382 7917 7603 7039 7038 6806 6494 7357 6467 5565 3832 3959 3256 6523 6833 6489 8272 7807 6705 6961 6087 6998 6835 5953 6227 5814 4827 4787 4980 4889 4544 5492 5946 6040 5310 193 Mg 1423 1286 1362 1360 1311 1378 1321 1424 1381 1350 1411 1361 1350 1025 769 814 750 1242 1391 1488 258 631 372 185 107 339 257 106 302 347 243 242 287 318 216 264 291 374 214 Mn 0 51 54 59 21 60 39 98 15 67 12 9 0 0 0 23 0 36 16 0 33 0 20 0 54 57 34 0 0 0 0 0 77 0 12 0 0 48 77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 407 0 0 0 0 0 5521 5022 5578 5742 4425 4754 5786 3928 3369 3008 3900 5239 5637 3323 3472 5033 5074 6523 3442 Mo 444 793 470 425 459 483 355 948 751 555 744 867 715 504 625 543 649 453 438 Depth Hg I (cm) 163 931 163.5 521 164 671 164.5 740 165 791 165.5 733 166 695 166.5 647 167 582 167.5 564 168 574 168.5 544 169 599 169.5 594 170 734 170.5 670 171 647 171.5 1053 172 748 172.5 642 173 826 173.5 678 174 532 174.5 710 175 669 175.5 560 176 971 176.5 918 177 695 177.5 681 178 657 178.5 651 179 772 179.5 423 180 852 180.5 625 181 770 181.5 716 182 583 Ir 159 175 81 92 141 181 60 126 0 174 22 55 0 69 182 70 109 172 55 104 180 109 0 156 46 73 21 0 102 102 0 132 65 169 168 38 86 213 151 K 2788 2698 3018 2605 2666 2867 2741 2850 2825 2834 1748 1476 1614 1852 2745 2862 2912 2559 2574 2714 2499 2622 2536 2572 2789 2990 2805 2682 2627 2710 2591 2796 2832 2686 2681 2862 2784 3113 3019 La 5602 5327 5311 5836 5763 5595 5641 4496 5303 5739 3241 1715 1609 2511 4877 5750 4997 4351 4490 4830 5461 4842 5758 4902 5482 6084 5908 6068 5352 5574 6043 5084 5410 4723 5495 5373 5662 5250 5126 194 Mg 188 446 0 141 270 114 289 137 217 410 90 42 167 175 448 339 492 182 101 0 283 391 285 476 240 362 216 414 558 614 609 301 575 270 69 229 389 318 374 Mn 0 0 30 0 0 39 15 11 82 35 0 0 27 0 51 0 0 0 0 16 33 67 0 52 40 47 41 63 15 41 37 0 0 100 21 0 77 20 40 5445 3776 4376 4647 5471 6682 4550 5450 6209 5653 4100 3772 3264 3772 5559 5052 4474 5594 4308 3578 3617 4152 4630 4049 3923 4680 6052 4680 5123 5508 4590 5095 5305 5506 4324 4804 6005 6202 4920 Mo 400 1059 1130 269 506 731 519 814 649 332 279 38 507 345 209 716 735 907 470 708 1428 388 961 738 294 539 496 946 814 666 445 548 669 602 209 100 406 316 350 Depth Hg I (cm) 182.5 883 183 932 183.5 650 184 777 184.5 586 185 1017 185.5 758 186 834 186.5 738 187 789 187.5 507 188 851 188.5 837 189 696 189.5 733 190 994 190.5 804 191 668 191.5 816 192 824 192.5 806 193 838 193.5 915 194 543 194.5 1083 195 654 195.5 911 196 543 196.5 598 197 759 197.5 751 198 677 198.5 417 199 724 199.5 623 200 692 200.5 549 201 690 201.5 728 Ir 214 176 130 0 60 32 188 72 154 40 140 113 0 94 79 34 153 168 171 89 161 132 0 73 149 44 78 39 147 188 136 73 165 0 0 15 5 0 23 K 2848 2658 2818 2865 2634 2772 2614 2869 2360 2593 2628 2627 2629 2773 2558 2727 2687 2612 2757 2770 2876 2637 2775 2486 2585 2817 2717 3008 2832 2863 3015 2955 2973 2991 2773 2775 2875 2820 2650 La 5816 5663 5245 5063 5330 5704 5262 5233 5471 5491 5337 5152 4854 4799 4702 5969 4775 6193 7931 8150 8054 6331 5866 4936 6248 6762 8053 8441 8787 9378 9449 9589 9724 8665 9353 8920 9214 7774 6536 195 Mg 325 320 156 6 104 92 251 243 376 387 214 298 265 278 242 247 362 351 135 105 348 269 411 308 0 236 92 0 160 354 408 425 232 366 464 423 209 398 73 Mn 32 0 0 0 0 82 0 12 0 12 53 48 18 62 50 27 0 71 86 15 63 59 5 78 31 22 0 12 91 17 28 52 23 70 52 0 0 39 5 6194 5619 5018 4720 5058 5820 4581 5912 4504 4418 4503 5539 4901 3877 5958 4958 6023 7281 5051 5515 7025 4506 3721 5675 2336 4442 5406 6907 5550 6809 5290 6334 5794 7081 5184 5637 6843 6821 6618 Mo 684 797 492 354 881 725 674 593 760 663 662 541 410 568 1003 653 241 284 487 741 632 419 567 834 570 368 631 594 594 565 587 634 888 881 602 605 438 1141 910 Depth Hg I (cm) 202 779 202.5 369 203 478 203.5 346 204 296 204.5 575 205 599 205.5 601 206 766 206.5 798 207 736 207.5 686 208 622 208.5 677 209 768 209.5 741 210 469 210.5 542 211 763 211.5 651 212 508 212.5 762 213 824 213.5 799 214 593 214.5 731 215 777 215.5 771 216 674 216.5 537 217 741 217.5 561 218 419 218.5 700 219 545 219.5 701 220 848 220.5 650 221 708 Ir 158 86 0 27 24 0 100 176 136 105 228 99 27 34 64 0 0 57 33 229 0 129 198 166 122 102 42 131 0 155 57 163 72 97 298 24 197 177 215 K 2909 2278 1459 1395 1265 2541 2899 2840 2845 2780 2960 2833 2763 2821 2872 2741 3042 2802 2583 2820 3040 2803 2675 2440 2504 2489 2756 2695 2459 2786 2611 2626 2873 2756 2684 2643 2563 2795 2642 La 7614 5620 2459 1927 2756 5290 8168 7896 7461 6270 7998 7783 6469 6457 8267 7784 8563 7790 6863 8136 7855 7496 8724 6055 5250 5219 8102 8482 8702 9150 9419 8217 7022 5609 7597 7380 6583 6866 6469 196 Mg 302 300 153 328 80 434 170 291 612 490 395 448 49 369 283 387 339 430 112 484 171 307 363 515 456 133 247 542 610 484 672 932 551 269 274 321 424 392 676 Mn 0 0 0 52 22 28 29 0 15 44 75 0 0 9 30 81 38 57 50 42 50 40 6 48 14 5 0 23 10 35 0 46 28 41 0 0 0 24 48 4463 4819 3697 3108 2880 5112 5732 4984 5794 6817 6633 5930 6015 5527 5322 5099 5966 5357 5454 5831 6896 5530 5618 5299 4545 5723 4326 5954 6642 4262 4746 5918 4976 5695 5958 5701 5721 5351 5657 Mo 820 675 652 589 469 858 743 788 899 984 512 406 978 599 1058 437 1090 312 860 222 741 643 493 722 603 586 936 850 477 343 622 348 785 887 364 888 423 725 835 Depth Hg I (cm) 221.5 790 222 528 222.5 858 223 755 223.5 731 224 606 224.5 697 225 658 225.5 483 226 547 226.5 757 227 803 227.5 577 228 700 228.5 500 229 725 229.5 613 230 719 230.5 907 231 820 231.5 577 232 177 232.5 656 233 364 233.5 171 234 580 234.5 456 235 451 235.5 415 236 582 236.5 644 237 528 237.5 422 238 423 238.5 575 239 502 239.5 449 240 352 240.5 460 Ir 125 0 142 48 0 0 193 202 50 69 59 104 73 103 64 118 132 184 57 197 82 75 68 108 66 131 102 84 106 127 135 103 98 100 81 71 127 86 89 K 2639 2842 2621 2656 2598 1891 2681 2875 2772 2656 2740 2837 2917 2612 2744 2667 2513 2873 2632 2795 491 261 423 376 350 268 288 0 129 284 373 394 370 232 447 237 243 418 42 La 7299 7278 8034 8358 7176 4369 3660 5193 4511 4745 3794 3526 4162 4314 3901 4011 3879 4010 3339 3914 1915 2376 2389 2287 2343 2619 2628 2212 2637 2587 3265 3435 3653 3647 3345 2711 2861 2420 1922 197 Mg 411 576 790 969 870 640 513 627 198 299 295 317 704 485 251 450 218 510 498 862 633 775 759 777 568 829 806 687 716 692 711 793 832 775 605 622 697 696 795 Mn 9 58 75 58 5 0 84 32 43 38 19 33 16 96 32 0 55 65 67 58 5 8 29 15 64 58 86 56 66 51 96 0 22 12 25 39 18 66 47 3939 5392 3682 5607 6457 2966 5991 5588 6244 5646 4866 5200 5412 6570 6272 5511 6684 6563 6701 6639 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Mo 455 650 545 722 267 475 662 696 896 633 829 614 605 532 519 455 715 664 636 656 Depth Hg I (cm) 241 407 241.5 527 242 393 242.5 638 243 458 243.5 645 244 533 244.5 142 245 343 245.5 530 246 402 246.5 385 247 408 247.5 396 248 1018 248.5 273 249 509 249.5 501 250 492 250.5 461 251 463 251.5 671 252 819 252.5 299 253 701 253.5 490 254 593 254.5 575 255 426 255.5 381 256 585 256.5 570 257 614 257.5 353 258 425 258.5 547 259 428 259.5 744 260 747 Ir 26 108 59 77 4 59 117 45 16 51 107 82 100 108 114 88 84 124 132 63 83 56 162 76 119 154 133 147 66 105 83 166 78 80 44 0 124 125 112 K 177 169 367 85 304 441 418 156 271 526 387 572 312 371 589 86 161 480 135 274 91 504 41 351 242 269 403 293 240 460 106 597 313 575 24 266 82 341 433 La 1723 2473 2594 2554 2048 2012 1514 1498 1246 1887 1840 2041 1865 2276 1812 1963 1937 2033 1979 1814 1892 1629 1796 1730 2166 2045 1922 1737 2073 2553 2574 2441 2714 2521 2370 2254 2032 3058 2810 198 Mg 628 631 678 699 623 517 378 384 448 615 648 699 768 718 589 581 726 749 568 665 626 583 563 644 642 563 570 706 785 632 632 551 743 695 548 711 708 704 752 Mn 50 85 19 63 43 74 75 39 0 33 0 38 33 26 43 80 13 43 11 87 86 87 61 51 0 73 37 42 80 16 0 48 0 49 104 102 73 14 55 Mo 0 0 0 0 0 295 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 598 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Depth Hg I (cm) 260.5 577 261 698 261.5 464 262 381 262.5 547 263 620 263.5 305 264 810 264.5 676 265 488 265.5 640 266 400 266.5 671 267 846 267.5 380 268 632 268.5 348 269 655 269.5 697 270 242 270.5 455 271 506 271.5 686 272 416 272.5 815 273 461 273.5 735 274 667 274.5 448 275 705 275.5 264 276 350 276.5 253 277 318 277.5 665 278 687 278.5 392 279 584 279.5 142 Ir 120 108 126 22 89 35 117 126 120 0 128 153 81 61 105 34 111 45 66 138 58 82 139 174 108 64 105 82 74 99 51 129 53 88 106 54 87 125 106 K 447 295 391 432 299 513 312 462 240 460 504 316 506 453 383 53 511 442 276 399 759 263 663 304 402 732 156 286 510 596 425 322 344 376 417 364 199 536 208 La 3293 3777 5188 4667 4188 4777 5804 4615 4402 4611 4054 3970 3970 3868 3585 2672 3249 3729 4982 3027 4221 3738 3641 4120 4418 4665 5198 5380 3048 4197 4896 4498 4470 4635 4845 4283 3900 4292 4958 199 Mg 743 882 913 841 1059 1080 1042 946 1162 890 921 942 993 1007 845 782 917 897 909 984 1002 937 1015 963 1159 908 990 1121 1057 1049 1160 1373 1147 1087 1077 1156 1093 1035 1003 Mn 35 65 19 34 28 97 0 37 27 41 61 67 24 31 7 65 13 30 24 57 58 0 56 28 0 35 70 18 26 94 21 87 43 50 79 49 0 10 43 Mo 0 0 0 7 0 0 117 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Depth Hg I (cm) 280 702 280.5 148 281 507 281.5 609 282 416 282.5 577 283 315 283.5 476 284 392 284.5 607 285 486 285.5 482 286 857 286.5 106 287 289 287.5 320 288 349 288.5 43 289 495 289.5 451 290 251 290.5 476 291 356 291.5 248 292 257 292.5 565 293 419 293.5 432 294 367 294.5 412 295 323 295.5 389 296 322 296.5 134 297 249 297.5 0 298 272 298.5 124 299 512 Ir 160 142 108 119 0 34 72 88 56 112 153 159 132 0 7 0 49 57 152 43 54 147 118 141 152 100 109 39 88 96 138 52 62 0 38 64 72 6 122 K 445 252 292 420 47 429 410 338 306 587 492 352 623 124 0 186 464 86 737 453 481 457 454 455 307 543 384 243 149 598 148 487 473 205 202 346 380 637 405 La 5061 5154 4133 6089 5990 6787 6255 5962 6344 6544 6340 4958 5804 3069 2016 2223 2773 5837 5875 5004 4673 4654 5298 4916 4641 4734 5768 5347 4795 5652 5861 5586 4451 3124 3131 3503 5076 4517 5709 200 Mg 1131 1033 1093 1237 1056 1109 1297 1159 1147 1021 1126 1251 1132 691 460 401 770 1166 1142 1086 1015 1042 1021 1253 1138 1026 1081 1010 1182 998 1080 1114 656 540 536 660 893 1015 1324 Mn 10 73 74 11 9 23 41 21 54 0 23 22 14 24 0 45 37 10 47 26 0 0 0 68 14 61 15 32 37 17 48 0 26 0 0 114 52 45 34 Mo 0 0 0 0 0 0 0 0 0 0 0 0 0 153 487 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 87 0 0 0 0 Depth Hg I (cm) 299.5 612 300 140 300.5 407 301 421 301.5 159 302 523 302.5 547 303 290 303.5 535 304 375 304.5 48 305 321 305.5 152 306 337 306.5 383 307 104 307.5 691 308 699 308.5 754 309 649 309.5 982 310 549 310.5 793 311 633 311.5 217 312 574 312.5 841 313 752 313.5 573 314 710 314.5 634 315 659 315.5 531 316 573 316.5 487 317 684 317.5 853 318 783 318.5 353 Ir 99 133 24 67 91 51 99 75 136 114 37 54 78 52 104 93 131 104 199 169 155 133 127 133 95 188 81 133 160 129 71 133 197 164 173 145 123 180 146 K 587 468 262 442 598 571 442 294 494 480 553 309 357 519 484 111 355 454 464 601 564 187 630 594 456 386 488 246 426 118 489 451 712 564 381 486 458 649 567 La 5646 5781 5993 5250 5361 5885 6145 4165 4989 5275 5127 4538 5205 5805 5727 5360 6318 7170 7324 6955 7098 7176 7285 8002 6647 7315 6602 6277 6690 6371 6533 6838 7616 7598 7907 7456 7977 7998 7510 201 Mg 1133 1088 1084 1009 1038 1090 828 891 1079 953 843 874 729 879 964 893 1106 1187 1095 1088 1124 1153 1142 1319 1167 1256 1158 1179 1228 1206 1273 1193 1361 1208 1247 1190 1271 1235 1244 Mn 72 54 51 0 14 0 34 9 0 0 37 69 21 27 52 24 0 59 17 43 51 17 99 19 42 8 52 21 6 15 43 23 87 70 49 41 23 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3096 2904 3844 4048 4333 3110 3863 2993 2476 2496 3827 2638 2938 3385 3051 3721 1533 1936 3272 2195 3157 1344 2226 Mo 1148 731 965 478 547 926 818 1017 952 1076 793 937 1039 732 389 820 879 692 908 966 1423 931 1195 Depth Hg I (cm) 319 828 319.5 901 320 562 320.5 805 321 412 321.5 850 322 1019 322.5 949 323 731 323.5 547 324 776 324.5 572 325 333 325.5 427 326 535 326.5 532 327 335 327.5 600 328 683 328.5 366 329 123 329.5 569 330 651 330.5 666 331 392 331.5 365 332 747 332.5 264 333 607 333.5 658 334 563 334.5 502 335 323 335.5 0 336 0 336.5 0 337 337 337.5 478 338 700 Ir 182 118 141 244 28 70 166 173 234 222 147 191 207 155 148 195 115 183 153 200 227 168 140 200 230 220 167 231 144 172 169 171 234 88 94 48 114 138 163 K 448 460 537 395 668 465 298 477 631 456 450 559 405 617 690 559 583 606 314 627 630 534 370 621 502 342 521 167 139 634 441 630 530 263 105 209 508 607 398 La 7476 8014 7650 7839 7023 6853 7289 6567 6870 6957 7957 7562 7952 7769 8215 7257 7110 6905 7445 7413 6735 6874 6355 7991 8828 8740 8446 8371 7410 8216 8392 7935 9405 1769 0 0 5906 10061 10057 202 Mg 1243 1184 1277 1189 1078 1214 1487 1199 1179 1236 1321 1413 1494 1271 1380 1235 1280 1175 1332 1204 1224 1286 1258 1269 1230 1343 1320 1305 1294 1358 1151 1239 1347 293 191 192 752 1136 1293 Mn 0 18 23 44 0 39 0 49 32 53 62 101 0 16 64 55 52 45 21 0 0 16 13 66 24 0 40 0 0 11 0 53 18 0 0 0 0 46 0 2799 2731 1029 1945 1209 3231 1316 2815 1037 1411 2086 3643 2796 2060 2985 2454 1855 3202 3180 2764 1711 2773 3414 3051 4448 4839 3262 998 1938 2626 2778 3116 2833 1730 561 801 1456 3827 2257 Mo 950 1015 1186 976 732 476 648 493 403 979 537 386 811 364 636 832 756 713 1123 577 244 996 718 1025 855 855 1210 1338 1040 493 997 1041 553 90 55 0 533 910 951 Depth Hg I (cm) 338.5 658 339 661 339.5 392 340 333 340.5 338 341 412 341.5 397 342 489 342.5 382 343 390 343.5 505 344 509 344.5 412 345 381 345.5 191 346 440 346.5 323 347 663 347.5 326 348 266 348.5 273 349 5 349.5 364 350 204 350.5 511 351 254 351.5 115 352 354 352.5 411 353 8 353.5 6 354 64 354.5 122 355 577 355.5 548 356 364 356.5 367 357 348 357.5 388 Ir 149 155 101 196 139 189 70 103 147 218 195 210 156 153 159 185 132 94 162 114 170 106 132 172 156 139 89 74 145 87 52 93 99 212 176 141 158 127 172 K 368 381 598 560 214 495 752 587 381 336 135 278 216 671 412 520 481 609 367 367 461 395 549 289 519 302 379 380 546 642 206 130 115 527 461 550 456 562 352 La 8510 9270 9024 7761 8501 9349 9081 7663 8042 8112 7667 7574 7711 7346 7598 7745 7594 7153 7021 7095 7073 7590 7148 6238 6469 6291 6390 6539 6109 3711 2374 2136 3852 6501 7910 6341 6236 5769 5799 203 Mg 1238 1120 1330 1186 1054 1219 1345 1036 1084 1218 1166 1107 1180 1148 1277 1098 1247 1080 1069 1044 1113 1019 1063 1076 1200 973 1032 1190 1129 516 549 550 693 874 1246 1130 889 959 966 Mn 7 0 51 68 13 44 45 26 35 22 0 0 63 43 42 16 25 0 26 31 0 47 0 0 0 21 28 12 0 34 0 0 0 7 71 19 71 15 68 1162 1510 1214 1775 3406 2264 1904 994 1848 1795 861 296 989 1928 1169 836 3048 1729 1185 1804 2761 2031 1667 2103 1946 1858 1657 1288 7 1750 1670 1319 705 3018 3179 1792 605 2013 1729 Mo 994 580 940 1183 836 1092 1022 1230 855 713 1109 1178 885 1085 1098 767 732 792 1251 769 467 745 699 772 867 1040 947 954 719 538 488 500 245 783 936 392 1011 623 1022 Depth Hg I (cm) 358 359 358.5 266 359 242 359.5 313 360 460 360.5 279 361 217 361.5 417 362 113 362.5 213 363 246 363.5 436 364 68 364.5 146 365 430 365.5 401 366 298 366.5 310 367 164 367.5 53 368 338 368.5 478 369 289 369.5 799 370 623 370.5 311 371 426 371.5 537 372 266 372.5 387 373 0 373.5 273 374 543 374.5 357 375 536 375.5 398 376 423 376.5 761 377 251 Ir 137 155 155 125 172 114 205 157 168 180 132 146 164 188 181 157 71 162 118 103 138 93 146 164 55 102 158 150 118 101 172 81 123 146 139 188 103 46 120 K 497 428 339 468 225 438 421 562 156 336 634 459 373 40 142 544 263 529 406 206 615 655 469 515 651 663 657 727 464 290 670 740 738 458 587 584 805 572 529 La 6269 6219 4717 4783 3682 4056 5164 5438 5430 5207 5359 5978 6731 5900 6321 6178 5627 7100 4909 5058 5600 9195 10347 9327 11057 10820 10424 11384 10557 9470 10040 10650 10090 8807 9471 10111 10513 11116 11427 204 Mg 991 883 829 830 800 788 898 778 872 992 1011 883 915 925 1056 909 886 869 764 847 903 1340 1217 1252 1176 1257 1220 1164 1346 1266 1267 1238 1240 1165 1101 1278 1233 1116 1241 Mn 66 4 56 0 0 32 0 0 0 20 44 8 57 42 35 27 20 52 52 0 51 83 0 29 0 44 61 21 47 83 52 0 90 11 36 24 13 20 29 862 1111 965 1663 1781 2309 2038 2259 1222 128 1677 1496 2442 2250 1929 2586 469 1301 2225 2560 2084 0 363 0 0 0 814 536 0 0 119 215 0 0 592 0 0 470 436 Mo 1016 884 945 1220 858 426 730 1019 734 497 537 130 0 692 525 744 652 715 712 875 518 Depth Hg I (cm) 377.5 541 378 570 378.5 239 379 410 379.5 283 380 196 380.5 309 381 417 381.5 168 382 548 382.5 260 383 472 383.5 270 384 506 384.5 272 385 518 385.5 473 386 428 386.5 765 387 549 387.5 400 388 498 388.5 251 389 448 389.5 506 390 485 390.5 360 391 393 391.5 234 392 347 392.5 397 393 245 393.5 460 394 524 394.5 194 395 327 395.5 469 396 80 396.5 549 Ir 219 217 195 202 114 115 140 130 171 127 104 167 185 222 154 122 158 156 105 111 82 188 156 78 186 167 136 139 167 136 71 71 182 148 108 102 131 87 138 K 617 516 633 382 440 617 716 497 382 543 415 836 617 757 478 547 451 657 149 418 565 845 603 239 557 659 340 552 501 346 668 192 805 810 422 689 314 574 507 La 11653 11030 10323 11095 11158 10540 10124 11192 7892 9391 10119 10638 10535 11249 11321 11227 11149 11072 12252 12590 14264 14230 13396 13471 13854 11929 12276 11314 11222 11593 11114 10961 10463 10408 11312 11659 12395 10399 10990 205 Mg 1151 1228 1198 1223 1114 1150 1080 1178 814 1113 1139 1132 1341 1242 1198 1269 1218 1155 1238 1182 1195 1229 1207 1090 1146 1160 1225 1140 1228 1177 1135 1087 1022 1125 1086 1175 1142 894 1196 Mn 0 0 11 51 15 0 84 21 0 37 0 11 44 31 40 18 7 52 67 43 12 37 38 0 0 45 27 4 0 46 0 42 30 0 0 0 0 24 12 1083 0 484 0 17 1425 729 328 0 313 0 0 932 769 852 1490 61 0 782 1265 0 1493 0 0 1097 0 1552 782 0 0 310 0 483 1365 1034 1222 1143 1014 106 Mo Depth Hg I (cm) 397 278 397.5 311 398 274 398.5 191 399 579 399.5 301 400 250 400.5 353 401 433 401.5 247 402 321 402.5 295 403 274 403.5 502 404 410 404.5 437 405 506 405.5 344 406 206 406.5 216 407 301 407.5 214 408 519 408.5 520 409 374 409.5 627 410 184 410.5 283 411 633 411.5 242 412 243 412.5 295 413 376 413.5 202 414 235 414.5 370 415 291 415.5 136 416 185 Ir 159 159 110 136 175 149 167 105 164 108 144 76 153 167 159 159 83 165 183 94 186 164 145 59 121 114 125 43 112 174 46 20 0 196 82 48 51 117 148 K 548 417 518 528 504 476 550 693 193 608 529 361 578 543 615 348 611 242 296 388 325 348 397 489 547 660 514 732 658 752 304 560 391 553 472 250 482 434 517 La 11192 11689 12383 12198 13001 13016 13511 13881 13046 11819 12658 13219 13299 13421 13809 14244 17972 15229 14708 14304 14255 15519 15216 15587 15374 15879 15458 16368 16145 15651 16062 16876 15681 15550 15775 13255 12083 12794 15841 206 Mg 1155 1060 1016 874 1114 1088 1221 1098 1103 1251 1108 1146 1195 1111 1133 1122 963 1021 1116 1085 1281 1105 1389 1089 1154 1174 1135 1177 1249 1086 1182 1242 1197 1102 1043 850 866 944 1054 Mn 0 7 67 43 0 29 25 33 35 69 18 0 44 41 53 27 44 83 7 14 0 41 52 30 0 11 33 36 22 42 35 43 97 44 42 29 34 0 52 1637 0 0 456 823 909 342 944 328 444 0 255 826 78 0 705 594 0 1550 0 40 0 0 1064 0 0 457 0 0 0 230 578 902 413 924 703 1416 89 0 Mo Depth Hg I (cm) 416.5 38 417 457 417.5 32 418 269 418.5 489 419 289 419.5 348 420 272 420.5 588 421 382 421.5 199 422 300 422.5 475 423 329 423.5 258 424 590 424.5 429 425 416 425.5 145 426 298 426.5 592 427 602 427.5 437 428 298 428.5 213 429 121 429.5 297 430 210 430.5 263 431 235 Ir 175 144 84 198 94 176 79 207 246 200 132 239 245 104 129 58 82 151 197 136 71 218 117 130 80 134 120 91 64 62 K 409 791 260 411 646 502 505 510 371 552 579 595 468 556 662 299 555 331 695 480 528 397 376 628 374 279 140 367 373 271 La 16140 15640 15267 15207 16195 16320 15057 16079 16322 16437 17055 17124 18184 17106 17208 16966 17269 16860 16803 18046 17374 17260 17585 16443 16585 14148 13605 12419 14294 8867 207 Mg 1130 1191 1151 1101 1199 1192 1175 1154 1087 1178 1206 1136 1105 1052 1164 1195 1106 1066 1114 1203 1066 1166 1034 1169 1268 822 763 695 754 487 Mn 26 14 18 49 5 7 0 5 30 0 0 73 0 52 18 14 10 11 0 120 41 0 96 37 59 0 0 39 10 19 0 1763 17 1540 55 290 613 715 930 0 1565 0 0 1572 308 861 1344 922 0 1068 457 1754 369 1294 0 729 1062 0 1172 1138 Mo Table A 2.4 Cuobu XRF Geochemistry Ni – Rb Depth Ni P (cm) 27 221 27.5 857 28 1325 28.5 1337 29 1185 29.5 928 30 1171 30.5 1256 31 1095 31.5 1119 32 1189 32.5 1253 33 907 33.5 1232 34 1031 34.5 1176 35 1357 35.5 1106 36 1093 36.5 1284 37 1117 37.5 1116 38 1317 38.5 1129 39 1168 39.5 1006 40 1216 40.5 1188 41 1055 41.5 1159 42 1007 42.5 1294 43 1091 43.5 985 44 1183 44.5 1070 45 954 45.5 1197 Pb 0 59 6 55 23 57 67 68 65 59 84 22 0 0 36 67 34 39 67 76 13 27 101 39 51 28 15 33 0 64 93 25 0 42 46 65 0 39 Pd Pm 19 92 93 71 79 124 75 73 59 58 121 99 79 133 75 125 139 94 93 81 16 61 88 101 59 87 111 157 88 109 109 171 50 44 120 42 21 119 208 3337 3150 10947 11470 10958 10007 10944 10370 11221 11200 11046 11600 11645 10866 9174 10621 11831 11101 10781 10020 9778 11334 9708 10590 10324 10513 9749 11545 10751 11603 10580 10815 10532 10527 9047 10558 9074 9486 Pr Pt 1950 452 1081 1129 1297 892 975 1259 926 1091 1207 899 886 977 1069 1058 995 1186 1097 1081 1026 1143 958 989 1317 1259 997 1354 1114 1066 1155 1141 1190 926 1220 1036 984 881 Rb 662 836 1041 1233 1007 928 1227 797 1024 1413 1000 1131 1179 1493 1596 971 1307 917 1283 1068 1276 1247 650 896 969 1132 1098 1205 1425 1066 1024 1209 949 1351 1230 874 1191 1017 370 427 908 1704 996 871 771 974 1116 1172 1031 964 761 924 995 924 782 834 894 1201 1106 1003 1094 974 920 981 680 575 1096 1293 484 1134 939 866 1520 1324 1051 1252 Depth Ni P (cm) 46 988 46.5 1136 47 1049 47.5 1075 48 1062 48.5 1208 49 1207 49.5 1123 50 1143 50.5 1018 51 1186 51.5 1186 52 1193 52.5 1151 53 995 53.5 947 54 1169 54.5 1257 55 1321 55.5 991 56 1162 56.5 1130 57 1276 57.5 1277 58 1226 58.5 1083 59 742 59.5 1073 60 1176 60.5 1084 61 1122 61.5 1115 62 1160 62.5 1002 63 929 63.5 1066 64 1096 64.5 1246 65 1242 Pb 94 31 22 28 64 0 69 18 7 58 20 62 88 59 27 47 53 51 65 43 28 5 0 34 69 21 47 65 72 52 60 10 54 36 0 77 0 23 80 Pd Pm 83 90 55 72 73 29 128 72 65 97 135 84 42 92 38 0 137 127 75 124 69 69 110 80 61 50 59 57 46 64 41 82 68 101 10 155 48 117 53 209 8840 9866 9256 7732 8320 9950 10276 9626 10798 10221 9586 9066 9613 10888 9966 9072 9287 11072 10238 9566 10073 8397 10271 8924 10700 9112 7907 10179 8603 9532 9468 10218 10016 8570 8761 9810 9675 9586 9763 Pr Pt 1143 1089 913 936 1115 1184 1021 1060 1081 1385 931 981 1016 1021 931 1026 886 956 1263 975 897 1184 886 1018 971 927 949 1028 990 1226 1037 1126 1035 943 967 921 890 1090 1245 Rb 1178 1089 1426 1207 1318 1068 1206 1017 1157 910 1005 1206 1110 1268 1176 1130 894 1035 1374 1401 1196 943 1014 879 991 1170 1149 995 1262 1021 1227 928 1140 1382 1042 1338 1286 1087 1205 1229 1361 831 1033 944 1084 794 1118 957 1570 1045 568 1081 1263 1156 1322 696 1447 1061 1264 1047 1125 1110 1400 1377 1119 1234 1063 999 1099 1137 1195 1011 1429 1016 1009 1003 863 1124 Depth Ni P (cm) 65.5 933 66 990 66.5 1034 67 1090 67.5 1087 68 1071 68.5 926 69 1097 69.5 1106 70 986 70.5 1189 71 1135 71.5 1188 72 1065 72.5 1205 73 1108 73.5 948 74 849 74.5 689 75 770 75.5 739 76 1200 76.5 1047 77 962 77.5 1250 78 1033 78.5 1238 79 1190 79.5 929 80 929 80.5 1180 81 1135 81.5 1124 82 1134 82.5 1088 83 1114 83.5 511 84 717 84.5 738 Pb 0 62 27 55 71 48 35 44 0 0 29 66 102 80 27 53 0 63 55 5 7 40 33 9 62 65 57 52 17 37 65 0 9 34 29 15 28 58 7 Pd Pm 72 73 47 35 37 99 67 117 144 69 27 12 99 116 92 76 98 100 58 0 0 7 44 132 94 44 73 41 84 93 108 107 69 123 28 10 0 0 0 210 9442 8821 7467 9168 10738 10076 9697 11031 9658 9475 8947 9268 10364 10137 9542 8395 10369 5087 1604 2157 5670 7810 8977 9506 9298 8846 10055 9919 8963 9871 10744 9110 9272 9326 10277 8608 1853 2626 3549 Pr Pt 1032 1175 1094 1147 1196 1228 1038 1220 1079 932 946 1267 1334 1260 1219 1304 1030 856 387 480 662 967 1227 1101 1063 1042 1213 1155 1171 988 915 1082 856 995 908 846 489 660 611 Rb 1104 1061 1136 1092 1115 1148 1040 612 936 915 1217 1177 1203 1412 1313 778 1131 1091 342 818 1010 729 862 998 1119 1170 989 1113 1049 1203 1069 1407 816 914 1064 787 546 888 617 1473 993 1128 1026 1360 1179 1445 1246 1173 1502 1272 1599 1313 1434 1908 1132 1530 1396 1227 975 773 1172 1361 1209 1597 1303 1456 1606 2014 1817 1784 1545 1380 1257 1725 1407 919 563 471 Depth Ni P (cm) 85 725 85.5 723 86 671 86.5 692 87 886 87.5 941 88 913 88.5 888 89 842 89.5 724 90 706 90.5 649 91 729 91.5 1048 92 989 92.5 802 93 956 93.5 931 94 857 94.5 791 95 842 95.5 701 96 894 96.5 838 97 595 97.5 782 98 804 98.5 610 99 734 99.5 682 100 568 100.5 670 101 570 101.5 420 102 504 102.5 667 103 585 103.5 528 104 836 Pb 0 12 27 0 6 5 0 34 11 13 10 44 0 0 0 15 0 0 0 5 0 37 0 0 0 0 0 63 10 0 0 39 11 0 17 0 0 0 35 Pd Pm 0 0 0 0 0 0 0 27 0 44 0 0 0 0 0 14 8 0 0 9 0 25 0 0 11 14 11 30 79 51 0 0 25 0 49 69 38 0 11 211 2955 2782 3968 3772 3229 3797 4407 4345 4141 3136 2766 2901 3815 3807 5903 4918 4753 4806 6568 5703 7157 5172 6268 5072 6240 6155 6822 6543 6335 7373 5289 5820 5950 7486 7034 8400 8323 7813 8895 Pr Pt 716 687 629 765 729 785 766 652 762 658 677 658 541 757 742 699 784 857 757 1003 760 734 922 809 775 930 666 966 825 853 866 865 1032 899 1029 1069 982 1011 925 Rb 769 811 973 569 380 654 642 485 584 902 531 362 473 882 884 551 797 949 615 781 616 807 651 906 802 917 685 766 828 651 612 983 779 723 838 811 883 802 1053 561 704 900 629 675 593 780 903 567 1212 655 1120 622 768 699 1191 1146 1099 1073 807 953 1077 851 868 1210 896 535 812 852 725 947 1036 709 891 1142 772 492 969 930 Depth Ni P (cm) 104.5 551 105 352 105.5 457 106 304 106.5 462 107 417 107.5 720 108 567 108.5 361 109 675 109.5 605 110 619 110.5 398 111 416 111.5 321 112 410 112.5 480 113 445 113.5 575 114 435 114.5 492 115 458 115.5 493 116 608 116.5 432 117 321 117.5 553 118 437 118.5 493 119 376 119.5 534 120 629 120.5 489 121 571 121.5 526 122 621 122.5 622 123 815 123.5 790 Pb 49 7 6 0 0 0 0 33 12 0 45 0 27 0 8 0 18 0 10 23 0 16 0 45 35 39 19 0 0 0 0 31 0 14 28 0 0 0 16 Pd Pm 38 7 39 43 54 16 14 20 47 51 9 39 26 38 53 5 47 35 66 60 49 0 0 34 56 62 33 0 6 0 0 0 0 37 0 0 27 80 0 212 8119 7746 8793 8521 8157 9334 6927 8354 8975 8864 8075 8807 7429 7981 6951 6316 6425 7788 7415 7697 8280 7566 8183 8545 7179 8302 6816 3760 4760 5467 7058 8549 7501 8052 6882 6798 7288 7801 7129 Pr Pt 1158 1181 1000 1059 1042 968 921 1017 1049 953 1207 942 873 1071 1097 1067 1189 1138 871 970 1065 1069 1162 836 941 1067 837 828 747 757 883 940 1015 856 1037 985 875 889 1009 Rb 1070 663 882 920 854 1039 865 781 783 671 782 808 876 903 1021 868 840 866 702 742 842 786 1068 969 821 1064 713 586 843 719 626 759 593 939 962 986 1063 598 821 905 581 871 822 1040 1032 905 755 810 1102 1018 864 1049 1120 1185 882 810 952 1051 991 1282 1192 1044 753 1052 1007 899 689 827 762 810 1175 1312 1642 1402 1436 1420 1052 1058 Depth Ni P (cm) 124 646 124.5 593 125 692 125.5 689 126 743 126.5 792 127 713 127.5 711 128 846 128.5 745 129 727 129.5 425 130 451 130.5 615 131 728 131.5 860 132 755 132.5 688 133 692 133.5 693 134 716 134.5 710 135 735 135.5 649 136 645 136.5 576 137 235 137.5 469 138 565 138.5 481 139 514 139.5 599 140 670 140.5 557 141 655 141.5 418 142 565 142.5 567 143 524 Pb 0 75 0 61 0 13 0 0 0 0 34 6 29 38 0 0 0 63 0 0 11 0 18 0 0 0 0 0 54 59 53 0 0 0 0 0 18 9 13 Pd Pm 26 66 0 21 53 0 22 44 35 8 9 0 31 0 0 24 0 21 7 28 0 0 36 0 19 69 39 0 0 0 0 16 0 28 4 38 34 0 0 213 7089 7447 7340 6669 7322 7517 7879 7032 7743 6907 7787 7993 6979 7099 8207 8252 7546 8348 8048 8083 6632 7373 9090 9036 6690 8306 7880 8452 550 839 902 6028 7934 6891 7504 6414 7707 8597 8234 Pr Pt 1125 1096 896 1045 1287 1003 1031 1027 1012 855 1220 1073 961 974 1048 1086 964 1040 927 1122 1083 1094 997 1228 998 935 1074 1031 437 299 219 896 941 949 1168 957 1057 964 945 Rb 671 713 953 844 806 805 907 814 853 870 1162 925 854 794 763 870 922 721 705 792 969 1027 652 710 637 809 666 760 607 534 433 708 1096 721 1174 802 684 912 644 1124 1108 943 754 1232 914 1097 916 819 887 698 670 844 1013 1036 1213 1023 1015 742 1353 919 1180 670 904 1113 986 1115 806 781 628 426 971 1213 1119 991 1150 1028 874 1202 Depth Ni P (cm) 143.5 462 144 731 144.5 655 145 712 145.5 691 146 585 146.5 544 147 629 147.5 664 148 657 148.5 805 149 897 149.5 876 150 645 150.5 481 151 704 151.5 749 152 692 152.5 714 153 706 153.5 794 154 880 154.5 827 155 741 155.5 750 156 865 156.5 778 157 852 157.5 644 158 768 158.5 649 159 710 159.5 762 160 626 160.5 822 161 838 161.5 979 162 887 162.5 900 Pb 0 0 0 0 0 0 0 0 47 19 8 29 0 0 37 9 0 0 0 14 0 0 8 12 14 27 0 0 16 0 0 22 0 54 24 14 27 7 14 Pd Pm 14 30 58 15 47 40 54 18 54 53 19 24 0 0 0 0 0 51 0 46 258 244 389 118 71 84 177 187 236 331 325 206 269 185 226 215 298 74 341 214 7799 6559 7367 7527 7540 8891 8351 7287 7833 7813 8639 7255 7715 4808 2938 3446 3954 6793 7322 8147 935 1076 967 1104 1084 1089 1052 1104 900 889 914 757 991 904 964 897 976 922 1047 Pr Pt 1033 839 1039 966 1008 1046 1133 1040 1054 954 1015 1059 886 812 525 596 664 969 1110 906 1313 1302 1392 1284 1336 1108 1298 1257 1290 1162 1178 1268 1267 1299 1304 1348 1259 1358 1268 Rb 762 615 740 874 956 956 999 735 690 818 1023 1005 698 706 502 585 542 922 878 787 328 354 705 319 357 353 489 306 553 533 400 302 366 582 487 610 656 499 503 999 820 844 827 913 1137 491 648 720 1077 1111 903 696 833 683 584 625 570 583 410 851 748 431 618 538 838 860 806 676 249 558 443 778 679 298 757 791 406 839 Depth Ni P (cm) 163 788 163.5 710 164 665 164.5 757 165 799 165.5 748 166 784 166.5 890 167 779 167.5 885 168 820 168.5 715 169 643 169.5 655 170 629 170.5 712 171 671 171.5 770 172 682 172.5 630 173 621 173.5 602 174 730 174.5 604 175 763 175.5 803 176 830 176.5 773 177 859 177.5 640 178 711 178.5 891 179 760 179.5 688 180 668 180.5 896 181 949 181.5 879 182 900 Pb 31 15 0 0 36 20 0 0 0 0 34 34 46 6 25 0 0 0 29 19 74 0 0 0 6 0 0 34 0 0 0 56 0 9 35 0 0 0 9 Pd 336 413 316 243 239 284 406 345 329 46 197 170 302 282 255 365 391 488 510 496 402 477 287 270 490 266 224 380 118 252 201 219 515 126 174 408 273 385 274 Pm 1067 1030 1134 902 1062 1008 1137 1165 960 626 709 439 248 504 1023 932 1071 1106 1009 967 1072 959 1167 1019 1070 1117 1089 1074 811 794 1054 913 828 902 1058 1033 1108 936 1052 215 Pr Pt 1243 1403 1212 1357 1277 1323 1298 1278 1247 1289 590 485 627 943 1257 1414 1366 1206 1124 1243 1335 1394 1321 1351 1273 1374 1316 1294 1363 1339 1303 1229 1432 1258 1288 1334 1344 1330 1296 Rb 953 574 669 419 466 638 555 773 335 465 478 145 435 175 246 614 240 793 389 420 194 747 365 628 432 581 503 329 416 774 392 539 617 571 434 528 417 618 593 467 742 412 611 610 170 438 635 746 559 823 518 365 543 553 794 546 648 471 269 574 430 232 178 625 622 469 570 758 631 639 745 373 411 763 697 553 376 499 Depth Ni P (cm) 182.5 889 183 830 183.5 829 184 779 184.5 863 185 845 185.5 869 186 784 186.5 674 187 797 187.5 692 188 696 188.5 707 189 634 189.5 738 190 814 190.5 824 191 925 191.5 798 192 719 192.5 766 193 842 193.5 648 194 671 194.5 669 195 638 195.5 592 196 990 196.5 1015 197 877 197.5 927 198 917 198.5 854 199 1077 199.5 861 200 793 200.5 859 201 642 201.5 814 Pb 10 0 0 0 25 50 0 0 15 0 0 5 0 32 4 64 0 0 0 0 25 0 27 4 28 24 15 0 0 22 0 0 0 22 0 0 0 15 0 Pd 455 130 201 533 396 369 224 107 268 378 152 406 401 48 75 342 233 296 401 122 293 434 282 343 666 461 439 206 397 47 287 87 295 295 275 233 187 213 408 Pm 941 772 990 787 989 1026 735 953 769 918 1050 1038 957 849 1004 1141 668 1020 920 1113 1091 1093 1150 1031 1049 795 1019 1119 1080 885 1189 938 1059 1041 1025 949 1260 953 987 216 Pr Pt 1349 1319 1297 1376 1285 1331 1304 1261 1209 1315 1354 1319 1263 1278 1348 1274 1362 1266 1229 1342 1327 1377 1407 1348 1346 1428 1331 1219 1368 1427 1317 1401 1437 1429 1398 1386 1390 1403 1239 Rb 404 293 569 922 495 713 474 600 479 591 295 526 523 326 346 761 421 399 706 287 674 517 349 12 680 453 652 685 471 431 497 577 591 550 252 589 430 593 454 437 305 366 493 424 530 628 604 747 482 461 957 752 411 532 823 400 408 604 862 437 1223 553 508 719 468 485 518 778 682 778 835 802 691 793 542 978 500 993 Depth Ni P (cm) 202 823 202.5 890 203 733 203.5 798 204 560 204.5 654 205 813 205.5 738 206 869 206.5 735 207 814 207.5 844 208 729 208.5 844 209 788 209.5 960 210 824 210.5 1009 211 728 211.5 864 212 801 212.5 836 213 718 213.5 826 214 715 214.5 913 215 704 215.5 642 216 574 216.5 661 217 663 217.5 591 218 607 218.5 787 219 832 219.5 849 220 937 220.5 841 221 885 Pb 0 0 14 27 15 0 39 0 0 11 23 33 7 14 47 28 33 0 0 0 57 6 10 0 24 5 0 34 0 0 0 55 39 43 0 0 34 0 50 Pd 431 153 181 83 0 83 407 337 306 370 312 122 558 360 440 227 245 231 200 343 226 454 242 234 362 195 412 176 368 365 428 375 430 420 186 177 341 154 140 Pm 1027 1001 478 497 387 648 1150 950 997 741 974 1047 1208 868 1093 1046 1191 983 923 1033 926 963 938 1144 752 733 859 789 1017 1061 1017 955 1096 1045 911 930 813 827 892 217 Pr Pt 1491 1133 536 555 592 1162 1251 1410 1345 1326 1394 1414 1399 1436 1346 1382 1293 1247 1387 1379 1542 1452 1565 1313 1182 1384 1406 1380 1447 1363 1384 1449 1289 1421 1340 1306 1387 1272 1357 Rb 718 441 328 388 238 335 613 597 375 517 673 497 815 821 667 511 341 771 447 636 525 354 528 85 287 380 528 241 689 409 317 794 525 414 390 515 562 615 359 757 324 567 581 167 441 787 653 525 688 727 680 389 456 185 736 965 845 363 788 644 672 591 370 537 933 976 853 714 515 699 677 657 724 792 708 908 773 364 Depth Ni P (cm) 221.5 904 222 900 222.5 844 223 849 223.5 895 224 811 224.5 822 225 886 225.5 1037 226 941 226.5 950 227 980 227.5 726 228 863 228.5 1009 229 945 229.5 900 230 826 230.5 917 231 761 231.5 933 232 957 232.5 950 233 886 233.5 843 234 973 234.5 887 235 735 235.5 877 236 839 236.5 829 237 823 237.5 835 238 784 238.5 817 239 709 239.5 981 240 922 240.5 992 Pb 0 7 20 71 14 50 0 0 0 50 11 0 0 13 52 20 12 0 63 12 0 0 46 0 0 30 14 25 14 0 12 0 24 28 25 0 0 0 14 Pd Pm 238 231 462 444 62 236 104 355 348 185 359 527 198 144 113 272 140 348 375 391 79 73 31 0 16 37 51 22 16 9 35 32 77 76 4 52 0 0 7 218 800 774 818 971 873 587 955 878 891 757 701 940 899 905 1040 844 820 841 841 882 6290 6139 6386 4762 3141 6444 6448 6168 7490 5673 5623 6329 7113 6391 6446 5549 5161 5448 5877 Pr Pt 1303 1369 1407 1399 1339 945 1238 1396 1316 1346 1195 1378 1298 1210 1229 1430 1286 1339 1287 1203 1050 958 972 826 635 916 1002 948 888 942 883 1034 1083 803 742 1063 899 674 921 Rb 642 715 574 793 579 307 248 599 738 294 345 529 614 240 408 447 465 614 367 622 803 1146 888 668 579 980 1023 1018 986 1162 1169 903 915 821 1179 1142 937 808 848 671 424 488 591 586 507 816 597 750 595 593 0 805 559 748 862 572 711 392 564 625 693 825 604 812 959 858 833 725 793 1026 1026 1076 1147 725 1089 621 623 1028 Depth Ni P (cm) 241 698 241.5 785 242 810 242.5 841 243 808 243.5 745 244 753 244.5 774 245 787 245.5 860 246 784 246.5 799 247 826 247.5 818 248 936 248.5 913 249 826 249.5 917 250 913 250.5 687 251 748 251.5 744 252 695 252.5 836 253 934 253.5 721 254 708 254.5 693 255 618 255.5 790 256 646 256.5 791 257 832 257.5 967 258 767 258.5 680 259 757 259.5 868 260 792 Pb 0 43 15 0 43 71 21 30 6 0 0 4 0 0 56 31 4 0 0 25 49 0 29 26 42 39 5 0 0 0 22 52 16 0 7 0 14 0 0 Pd Pm 26 45 50 19 44 28 0 0 0 27 4 26 0 35 11 29 16 34 68 0 11 16 10 57 0 29 24 60 12 0 0 44 30 24 28 19 12 42 17 219 5593 6868 5467 7037 4848 4013 2691 2961 2954 4477 5078 5111 6927 5892 5792 5715 6149 6971 6345 6369 7032 5480 5989 6688 6185 6060 4791 7058 6975 6109 5293 5356 6555 6693 5938 6164 5953 5452 6422 Pr Pt 659 835 1006 857 796 736 547 663 575 830 1017 810 953 1035 1033 848 906 905 999 875 1018 662 800 1001 818 776 908 937 1002 953 900 982 890 912 932 827 806 921 846 Rb 1009 949 966 989 963 882 729 780 424 1244 988 920 1065 1152 1368 1026 1335 1215 1198 899 801 1005 850 1027 753 1322 1081 780 1058 870 877 1227 617 1377 908 1104 888 1170 1064 659 818 889 1270 855 633 359 634 623 421 802 650 597 870 556 324 836 402 573 741 777 754 776 941 982 1045 925 1029 759 903 676 703 548 840 816 843 868 1077 704 Depth Ni P (cm) 260.5 772 261 973 261.5 972 262 923 262.5 847 263 719 263.5 981 264 932 264.5 1045 265 1075 265.5 752 266 875 266.5 963 267 858 267.5 809 268 883 268.5 909 269 727 269.5 868 270 908 270.5 719 271 1042 271.5 880 272 701 272.5 933 273 625 273.5 787 274 929 274.5 1005 275 877 275.5 1098 276 1082 276.5 948 277 1034 277.5 929 278 898 278.5 1004 279 971 279.5 1075 Pb 17 5 0 0 0 25 0 54 30 0 47 27 0 0 8 0 20 35 22 5 0 36 0 22 14 11 0 17 0 18 23 33 0 0 47 0 0 55 0 Pd Pm 0 30 0 0 23 7 26 12 46 0 20 0 0 0 32 0 0 55 0 0 0 17 36 6 0 0 21 0 0 0 0 0 0 0 0 11 0 30 0 220 7135 7623 6673 7109 8873 8648 7845 7469 6822 6886 7437 7578 7735 5911 6281 5962 6292 6704 6831 5664 7800 7546 7733 6329 7078 7598 7170 7509 8092 8065 7341 6873 8396 7771 7219 8000 6699 6816 6636 Pr Pt 932 1251 1219 1229 995 1541 1031 1117 1075 1211 1214 1107 1240 965 1113 686 1083 1052 1282 1025 1180 1142 1137 1237 1084 1157 1275 1298 1539 1198 1348 1024 1294 1127 1384 1233 1155 1191 1277 Rb 1082 822 770 910 1403 1180 1065 964 937 1044 899 1101 1086 1133 1043 804 980 1038 812 704 1063 846 861 824 952 1101 905 1163 1208 1001 1081 717 623 1140 1213 1115 891 1056 753 1173 918 663 783 507 675 694 925 863 468 519 708 795 687 661 677 816 681 947 932 857 542 539 738 737 431 802 1003 624 743 482 694 811 610 644 702 886 935 591 Depth Ni P (cm) 280 992 280.5 872 281 1008 281.5 1209 282 1059 282.5 921 283 953 283.5 1023 284 967 284.5 851 285 907 285.5 909 286 909 286.5 630 287 556 287.5 481 288 658 288.5 869 289 1038 289.5 807 290 1041 290.5 1076 291 1010 291.5 955 292 984 292.5 1100 293 859 293.5 832 294 862 294.5 1062 295 929 295.5 907 296 623 296.5 582 297 682 297.5 883 298 987 298.5 1057 299 807 Pb 10 37 0 0 0 28 75 22 8 0 0 0 0 43 6 35 0 0 19 0 7 13 0 23 5 0 27 0 25 0 16 0 43 0 16 84 0 0 0 Pd Pm 7 0 27 0 0 0 0 12 0 0 32 7 0 0 0 0 0 0 0 0 0 0 0 0 7 15 0 0 11 0 0 0 0 0 0 0 0 0 0 221 5962 6864 7116 7644 7698 7651 8584 6966 7954 6878 8524 7761 6616 3150 1990 2514 5459 7151 7591 6488 7336 7144 5998 6626 7125 7450 6901 6344 6835 7868 7571 6121 2949 2395 2780 3443 6710 6630 7171 Pr Pt 1087 1383 1365 1174 1404 1417 1277 1095 1284 1435 1375 1246 1120 751 561 598 835 1259 1285 1243 1293 1332 1260 1057 1209 1166 1310 1271 1050 1492 1387 1129 899 576 486 676 1332 1188 987 Rb 911 947 768 794 1158 1017 1201 931 839 953 805 870 1024 641 404 482 1001 976 988 1054 1091 1127 909 879 624 834 725 722 623 762 745 922 947 624 520 644 851 842 1036 668 795 431 933 929 931 423 700 646 1219 821 934 915 478 462 478 743 462 872 604 651 466 544 378 922 377 1061 620 658 684 767 1053 542 585 615 361 699 541 545 Depth Ni P (cm) 299.5 1058 300 796 300.5 983 301 930 301.5 1005 302 865 302.5 926 303 807 303.5 824 304 860 304.5 995 305 838 305.5 908 306 1036 306.5 1080 307 903 307.5 676 308 946 308.5 856 309 756 309.5 752 310 963 310.5 772 311 830 311.5 620 312 925 312.5 688 313 744 313.5 578 314 761 314.5 586 315 706 315.5 657 316 546 316.5 741 317 602 317.5 601 318 692 318.5 526 Pb 0 0 0 0 14 0 37 56 35 24 0 9 0 55 59 32 0 35 22 0 40 0 16 0 0 13 0 0 11 9 0 6 0 4 8 0 46 0 45 Pd Pm 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 183 115 430 50 311 324 385 314 178 571 305 531 398 180 384 0 482 55 442 162 241 258 0 222 7030 6188 6579 5792 6330 7223 5524 5126 6711 4866 4992 4577 3860 4476 4400 4180 0 0 322 0 0 230 0 0 0 115 94 403 0 670 250 180 0 0 0 0 744 0 0 Pr Pt 1262 1144 1277 983 1106 1235 1108 801 1098 1152 1162 907 1093 861 964 878 994 1000 1046 1023 1088 1004 1058 877 909 960 925 1040 1007 1023 905 966 931 1012 965 871 965 835 930 Rb 1255 714 882 847 926 816 642 689 700 881 632 702 857 857 977 756 1160 1149 858 978 1133 1052 1277 1101 974 1021 1064 908 1244 1052 1109 1051 1264 969 1257 1051 1295 1223 871 817 603 611 544 676 435 665 607 677 373 452 479 851 551 384 621 714 1050 1065 815 1258 1066 949 955 1033 642 958 1031 350 705 959 383 1024 685 706 1053 559 852 1038 Depth Ni P (cm) 319 589 319.5 739 320 596 320.5 619 321 476 321.5 773 322 656 322.5 645 323 474 323.5 561 324 415 324.5 616 325 748 325.5 763 326 654 326.5 824 327 742 327.5 968 328 882 328.5 724 329 563 329.5 870 330 697 330.5 867 331 940 331.5 776 332 818 332.5 740 333 827 333.5 774 334 820 334.5 776 335 1152 335.5 843 336 767 336.5 662 337 718 337.5 830 338 795 Pb 0 0 0 32 0 26 20 0 0 19 38 0 0 0 16 20 0 0 0 13 11 13 35 60 63 0 22 37 17 0 0 18 27 50 82 45 76 0 15 Pd 300 385 93 397 512 460 304 249 355 356 556 0 0 138 467 515 432 543 322 23 366 12 188 389 238 377 199 93 58 316 470 245 58 0 0 0 0 348 200 Pm Pr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 273 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 223 Pt 844 760 849 1054 1176 813 971 973 894 1023 976 880 1123 820 916 1044 875 1007 948 956 802 925 906 896 1062 938 970 1048 913 740 1089 864 779 195 99 57 688 1110 818 Rb 1014 1159 661 1133 1017 1136 1138 1043 803 923 1199 678 901 785 1213 881 973 1033 1074 1057 786 858 1064 968 1370 702 1015 933 739 1061 937 836 902 367 255 274 801 1198 814 721 972 603 718 1081 764 983 1370 1083 580 1259 992 839 855 1043 667 1163 922 1174 505 987 786 888 764 673 858 590 761 865 813 746 740 800 535 305 370 616 1087 1234 Depth Ni P (cm) 338.5 742 339 837 339.5 639 340 714 340.5 803 341 730 341.5 808 342 863 342.5 707 343 639 343.5 749 344 690 344.5 850 345 674 345.5 815 346 909 346.5 882 347 750 347.5 640 348 803 348.5 715 349 907 349.5 847 350 712 350.5 829 351 745 351.5 728 352 763 352.5 786 353 791 353.5 659 354 564 354.5 510 355 709 355.5 857 356 805 356.5 517 357 799 357.5 799 Pb 7 0 0 50 0 43 69 0 0 0 55 0 0 0 0 69 16 22 13 31 0 24 0 61 66 13 0 43 21 5 45 98 45 0 0 24 42 0 39 Pd 335 0 16 17 160 300 36 0 474 98 181 160 57 229 0 181 115 8 127 0 0 0 0 61 104 0 0 214 0 0 0 21 0 0 0 0 90 0 98 Pm Pr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 224 Pt 795 1016 690 813 1060 849 996 906 857 959 815 1091 756 801 725 805 693 852 793 661 682 821 675 624 667 813 525 576 675 470 221 173 322 850 919 544 767 708 783 Rb 824 862 639 757 893 958 863 880 1009 611 863 828 605 826 697 765 641 645 944 803 800 926 680 790 862 529 556 728 933 862 634 556 322 1135 735 581 746 746 673 847 886 766 917 1175 968 708 957 491 844 526 755 564 831 544 683 1097 867 651 500 726 674 767 372 251 392 768 715 930 638 91 521 491 774 1140 524 496 683 839 Depth Ni P (cm) 358 775 358.5 760 359 708 359.5 690 360 781 360.5 810 361 776 361.5 788 362 660 362.5 718 363 818 363.5 817 364 947 364.5 820 365 907 365.5 789 366 814 366.5 735 367 820 367.5 786 368 850 368.5 411 369 617 369.5 700 370 362 370.5 694 371 522 371.5 822 372 639 372.5 601 373 489 373.5 777 374 634 374.5 453 375 560 375.5 629 376 629 376.5 706 377 798 Pb 34 0 50 72 35 19 60 27 36 43 16 0 12 36 30 74 32 41 38 54 54 0 0 0 0 27 0 42 8 8 0 0 75 59 19 30 0 9 0 Pd Pm 0 0 0 0 0 223 120 0 0 0 11 412 377 0 102 0 0 91 0 72 0 0 0 0 11 20 0 39 91 0 53 30 0 0 0 0 0 0 0 225 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3355 3926 2834 4277 3015 3988 3243 4382 3341 3049 2642 2304 2059 3726 3396 2851 3304 2722 Pr Pt 701 653 221 379 193 403 334 475 389 509 661 486 646 754 646 738 809 888 636 705 469 892 1220 1059 1227 1157 1132 1086 1282 1111 1162 1150 1180 942 961 795 1250 1176 1010 Rb 952 754 583 837 695 815 688 882 556 360 769 854 705 718 700 920 547 601 854 548 857 877 722 1023 988 856 932 1033 791 705 657 1173 917 535 614 1042 1054 822 766 628 553 810 417 615 772 473 620 719 472 334 673 889 694 926 710 699 824 350 449 557 689 586 700 777 784 552 987 730 681 876 694 665 596 818 468 1261 1017 837 Depth Ni P (cm) 377.5 775 378 918 378.5 807 379 718 379.5 889 380 695 380.5 877 381 728 381.5 814 382 836 382.5 753 383 794 383.5 783 384 798 384.5 737 385 897 385.5 800 386 844 386.5 754 387 867 387.5 772 388 837 388.5 742 389 762 389.5 779 390 784 390.5 834 391 797 391.5 856 392 673 392.5 827 393 667 393.5 819 394 872 394.5 901 395 792 395.5 694 396 854 396.5 917 Pb 7 0 28 49 0 51 42 24 69 20 10 16 0 0 25 27 31 28 0 0 10 14 0 32 36 39 0 5 48 0 9 8 30 26 15 34 61 0 25 Pd Pm 0 0 0 0 0 57 21 0 0 15 0 9 0 0 43 0 20 5 5 0 0 0 0 0 0 0 0 0 38 0 0 0 0 0 0 0 0 0 0 226 2570 2811 3752 2579 2662 2923 2616 3226 2067 3213 2727 2207 3609 3145 2765 3359 3186 2921 2522 3206 2590 3187 2240 2638 3218 2925 2680 2605 2239 1566 2375 2492 2293 3216 3206 2680 2759 2295 1920 Pr Pt 1181 1043 963 1125 1069 1166 1033 962 1038 1094 954 1128 931 1055 1191 1074 1122 1245 1234 1231 1264 1346 1092 1238 1220 1200 959 1022 946 964 987 998 790 1167 1027 1031 844 1093 800 Rb 923 955 1216 655 1336 723 1106 812 570 814 954 1283 936 1005 852 791 703 1103 840 977 822 910 762 979 684 889 895 830 599 723 1103 652 900 1012 926 927 731 902 777 797 1270 856 1143 972 818 1037 844 504 1098 787 1025 873 860 675 957 658 730 1185 952 790 749 841 1163 1012 675 1055 870 844 965 971 1101 996 1182 706 942 970 797 726 Depth Ni P (cm) 397 779 397.5 812 398 739 398.5 908 399 730 399.5 790 400 774 400.5 800 401 702 401.5 651 402 743 402.5 734 403 970 403.5 725 404 740 404.5 691 405 721 405.5 724 406 741 406.5 790 407 825 407.5 763 408 872 408.5 775 409 874 409.5 971 410 1022 410.5 871 411 817 411.5 843 412 789 412.5 797 413 890 413.5 509 414 684 414.5 754 415 753 415.5 613 416 785 Pb Pd 0 37 74 0 0 6 35 32 0 0 46 0 0 8 0 0 0 46 9 24 18 0 34 0 0 51 21 0 0 0 23 0 13 41 26 0 0 15 33 Pm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 227 2629 1289 1930 3368 2985 2912 1656 2389 2438 2054 2731 2371 2563 2051 2125 3324 3138 409 3668 3237 2890 2832 2682 3837 3030 3135 3176 2465 2967 2105 1993 3437 2864 2093 2198 1440 1393 2066 1995 Pr Pt 1043 1243 1078 1151 1016 1244 905 1019 1051 1142 965 1064 1115 1130 978 996 1053 1038 1021 1076 1238 1074 845 1057 1105 1241 977 1252 1084 1245 1182 1204 1049 1140 1022 901 790 904 1044 Rb 559 743 1016 754 643 697 905 682 872 959 885 736 906 726 1014 769 766 554 648 754 753 531 1072 642 827 767 791 914 768 972 568 671 668 590 664 588 873 855 707 936 1307 587 917 1086 1235 1211 1333 885 1151 1189 996 1011 1161 1062 1042 1216 879 1296 919 1250 1134 1375 1165 1189 1774 1226 1295 1473 1344 1434 1348 1347 1165 1058 928 1184 798 1217 Depth Ni P (cm) 416.5 768 417 902 417.5 771 418 909 418.5 817 419 835 419.5 955 420 812 420.5 823 421 746 421.5 756 422 677 422.5 773 423 694 423.5 932 424 816 424.5 787 425 697 425.5 860 426 879 426.5 855 427 779 427.5 879 428 872 428.5 876 429 655 429.5 653 430 525 430.5 603 431 438 Pb 39 27 0 18 16 15 0 0 0 54 0 0 27 0 26 25 0 11 16 26 0 0 20 38 24 20 0 5 0 56 Pd Pm 0 0 0 5 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 228 2854 2663 1887 2806 2204 3333 2986 3187 3595 3144 3499 2255 2859 3029 3021 2997 3712 2434 2029 3387 2652 2992 2469 2911 2388 1393 1032 810 1831 11 Pr Pt 1067 1076 1049 1261 1204 1019 1184 1167 1225 1240 1050 1168 1035 1016 1111 1120 1267 1070 1048 1056 1059 1135 1223 1014 998 888 903 671 828 540 Rb 528 946 788 823 939 525 1022 727 599 719 835 796 829 611 800 1050 877 785 942 575 774 764 910 850 505 688 725 464 706 885 1193 1212 1133 924 1295 1452 1670 837 1184 1518 1376 1572 1221 1192 1469 1444 1360 1018 1034 1292 1364 1419 1625 1428 1643 1216 952 957 981 1244 Table A 2.5 Cuobu XRF Geochemistry S – Tb Depth S Sb Sc Se Si Sr Ta Tb (cm) 27 115 507 442 0 36 699 1436 688 27.5 287 119 106 0 251 1232 1481 98 28 558 262 499 147 510 1094 2522 864 28.5 585 321 360 15 505 1265 2931 850 29 777 314 357 478 633 1225 3197 854 29.5 598 223 359 349 535 776 3154 701 30 584 268 329 74 483 1273 2750 755 30.5 549 351 320 134 465 1132 2854 734 31 658 312 256 381 558 879 2821 786 31.5 658 229 303 536 493 1068 3201 651 32 688 257 379 343 517 1055 3098 775 32.5 725 275 286 489 628 1635 2771 873 33 617 241 338 308 465 1520 2455 756 33.5 610 251 329 0 569 1162 2838 637 34 656 328 354 4 537 1514 2498 869 34.5 702 323 308 107 497 1231 2646 750 35 849 339 387 94 721 858 2545 840 35.5 648 279 311 20 562 1177 2845 829 36 778 303 276 270 599 888 2765 854 36.5 751 232 333 89 619 1458 2996 821 37 877 255 385 621 843 1371 2779 754 37.5 763 334 323 623 628 1076 2641 786 38 838 251 324 272 723 1187 2957 700 38.5 853 267 318 401 780 1163 2623 810 39 1031 234 357 352 852 1140 3017 771 39.5 882 282 371 376 829 963 2925 895 40 832 241 292 282 674 1107 2933 852 40.5 1043 382 345 186 890 1528 2940 804 41 1066 290 346 0 936 1236 2719 802 41.5 1008 286 458 263 903 1172 2715 976 42 934 349 295 279 822 1007 2773 830 42.5 863 295 376 0 764 1168 2558 867 43 892 269 260 280 688 1563 2782 927 43.5 971 374 319 34 828 1315 2528 782 44 927 271 217 114 844 1441 2318 672 44.5 943 344 405 521 775 1373 2329 870 45 943 274 260 491 816 1533 2518 654 45.5 763 223 260 737 784 1232 2790 598 229 Depth S Sb Sc Se Si Sr Ta Tb (cm) 46 953 323 197 411 885 928 2528 610 46.5 823 296 238 226 787 1447 2387 770 47 886 226 277 0 872 1045 2487 644 47.5 891 340 225 173 747 1066 2369 732 48 805 242 266 308 720 1433 2577 738 48.5 967 267 278 229 780 1261 2689 755 49 856 380 298 0 917 1144 2569 701 49.5 747 349 292 357 737 981 2561 814 50 1008 277 355 303 961 1321 2741 862 50.5 1122 308 354 402 1173 1208 2622 944 51 991 305 248 434 970 1046 2376 856 51.5 1010 273 369 513 896 1491 2551 620 52 985 306 283 0 843 1441 2493 682 52.5 1058 209 262 0 872 1472 2146 624 53 1019 246 311 0 859 883 2791 642 53.5 1328 332 312 327 1091 1330 2734 809 54 847 205 218 261 656 1578 2520 718 54.5 836 239 320 234 807 1225 2644 592 55 1240 334 322 0 1386 1064 2567 747 55.5 1058 234 309 443 1051 825 2587 672 56 949 225 340 162 939 1347 2626 842 56.5 972 250 291 287 911 1273 2555 817 57 1075 257 351 91 1007 967 2638 750 57.5 830 286 254 0 875 1147 2785 754 58 822 338 279 0 906 1283 2460 752 58.5 1102 212 255 0 944 1211 2834 628 59 1107 314 261 128 1028 1590 2898 798 59.5 972 290 298 256 962 998 2492 624 60 1004 283 273 135 1174 1139 2844 903 60.5 1097 361 291 152 924 1727 2669 831 61 826 258 262 299 764 1793 2844 649 61.5 863 324 282 557 900 1169 2636 687 62 1173 310 332 268 1094 1412 2464 740 62.5 913 220 283 154 899 1226 2488 744 63 897 243 288 80 813 990 2483 700 63.5 981 181 353 217 994 1004 2876 692 64 964 315 241 55 952 1480 2546 706 64.5 1034 400 346 238 959 1565 2681 902 65 1063 369 318 90 1085 998 2491 765 230 Depth S Sb Sc Se Si Sr Ta Tb (cm) 65.5 1140 294 224 220 1043 1055 2499 686 66 1121 277 237 0 1143 1126 2498 663 66.5 956 329 269 0 1113 1274 2325 695 67 926 327 233 136 1059 1060 2192 707 67.5 1012 332 213 232 1209 1473 2584 635 68 1056 305 377 281 1218 1609 2458 918 68.5 972 333 321 382 1030 1049 2722 857 69 1001 303 336 807 1198 1237 2675 791 69.5 849 272 305 238 931 1224 2522 793 70 1064 323 288 156 1184 1580 2598 753 70.5 806 222 240 133 963 1709 2377 591 71 897 310 281 0 1082 1378 2463 700 71.5 1034 365 325 255 1183 1567 2304 960 72 1041 354 384 0 1302 1332 2794 824 72.5 1001 331 213 36 1496 1074 2280 663 73 1128 294 351 142 1466 1464 2578 840 73.5 1146 413 295 248 1625 1297 2693 877 74 937 392 231 0 1435 1564 2337 541 74.5 451 156 77 82 568 1329 1357 0 75 443 188 89 68 589 850 1442 0 75.5 608 213 173 0 732 526 1690 354 76 836 255 300 174 929 1162 2162 508 76.5 782 293 307 0 1041 1408 2773 572 77 844 241 334 213 1129 1028 2028 713 77.5 814 289 241 586 1050 1676 2263 787 78 811 278 212 498 1034 1587 2477 698 78.5 882 355 325 16 1124 1355 2619 735 79 936 325 344 103 1292 1336 2417 896 79.5 815 389 329 9 1066 1604 2225 902 80 950 379 307 348 1617 1515 2639 734 80.5 914 328 322 277 1203 1199 2617 840 81 789 249 282 0 1188 1239 2698 714 81.5 709 244 310 45 1242 962 2634 706 82 766 320 236 0 1156 1573 2396 724 82.5 848 311 250 82 1150 1771 2762 622 83 951 289 236 149 1710 1405 2519 646 83.5 930 154 162 0 308 932 1073 676 84 1097 184 128 45 343 1020 1128 676 84.5 1095 172 210 115 420 731 1296 639 231 Depth S Sb Sc Se Si Sr Ta Tb (cm) 85 1121 187 142 0 505 649 1464 522 85.5 1137 146 110 146 474 809 1195 700 86 1202 158 146 126 445 936 1315 434 86.5 1222 166 258 95 425 1018 1316 724 87 1206 206 257 143 408 949 1651 729 87.5 1061 198 244 318 478 743 1437 510 88 1146 222 223 151 518 1072 1329 552 88.5 1156 251 219 287 495 1237 1653 605 89 1219 179 195 151 533 681 1603 533 89.5 986 234 154 0 455 1052 1408 278 90 972 197 158 46 427 746 1243 295 90.5 858 249 132 48 425 539 1240 149 91 993 132 152 57 433 717 1324 298 91.5 1067 120 232 0 497 889 1688 621 92 1324 271 260 0 521 1053 1562 583 92.5 1343 281 215 99 612 509 1847 686 93 1329 236 262 259 609 965 1647 575 93.5 1350 248 217 20 571 743 1469 744 94 1302 222 330 25 471 1030 1863 697 94.5 1324 121 194 103 556 1334 1418 752 95 1367 293 179 22 510 1117 1545 792 95.5 1349 185 199 36 514 1018 1677 844 96 1467 202 240 224 424 532 1689 737 96.5 1211 182 177 14 470 963 1481 605 97 1657 234 188 0 521 644 1511 1023 97.5 1658 223 294 298 451 1177 1669 1059 98 1767 195 260 415 411 811 1466 1027 98.5 1837 304 148 253 519 655 1588 1086 99 1646 290 299 0 468 915 1719 985 99.5 1504 374 213 360 508 1036 1663 1040 100 1376 227 255 57 504 1191 1460 830 100.5 1516 237 213 0 532 732 1394 742 101 1703 287 269 112 392 400 1290 1208 101.5 1938 265 298 0 481 497 1598 1249 102 1989 337 340 211 495 657 1759 1215 102.5 1951 304 277 0 391 653 1527 1463 103 1880 241 234 671 351 865 1690 1244 103.5 1806 366 226 49 340 1023 1831 1276 104 1996 307 248 236 316 743 1691 1466 232 Depth S Sb Sc Se Si Sr Ta Tb (cm) 104.5 2238 249 212 149 490 1100 1514 1439 105 2295 255 293 0 458 668 1446 1626 105.5 2178 259 205 139 321 836 1484 1608 106 2271 256 235 302 528 981 1627 1340 106.5 2241 265 278 615 470 676 1859 1428 107 2194 320 275 445 420 565 1692 1333 107.5 1937 203 311 165 387 1347 1742 1476 108 2291 370 153 162 409 837 1635 1506 108.5 2417 314 258 161 451 595 1334 1620 109 1976 392 256 230 481 994 1832 1470 109.5 2043 329 293 304 755 1169 1745 1369 110 2023 224 263 101 445 1166 1671 1335 110.5 1952 329 171 242 445 793 1390 1273 111 1732 245 254 0 338 1158 1507 1241 111.5 1777 206 259 0 454 1112 1581 1475 112 1888 259 244 0 569 668 1583 1042 112.5 1948 272 273 78 684 706 1378 1352 113 1783 199 156 185 539 944 1583 1057 113.5 1656 293 279 84 484 1331 1580 1085 114 2173 376 263 0 554 1215 1462 1557 114.5 2122 321 296 118 524 430 1661 1626 115 2192 318 311 196 553 856 1458 1836 115.5 2284 256 281 0 532 633 1616 1651 116 1714 302 260 88 400 781 1565 1523 116.5 2010 292 236 425 539 1230 1354 1623 117 1994 374 232 153 492 1149 1500 1545 117.5 1668 279 277 337 537 1380 1498 1240 118 1505 220 151 80 512 623 1071 398 118.5 1672 203 202 0 464 921 1100 860 119 1508 374 213 0 540 981 1272 1013 119.5 1576 283 216 110 486 907 1531 1282 120 1711 300 273 0 575 1272 1582 1151 120.5 1688 203 253 144 636 1295 1462 1322 121 1799 236 313 195 772 1467 1462 998 121.5 1630 223 242 0 654 1034 1496 1186 122 1714 292 183 132 624 1162 1668 1240 122.5 1704 322 379 0 711 1047 1537 1271 123 1489 365 359 531 687 752 1730 1086 123.5 1461 231 287 257 663 1020 1697 1152 233 Depth S Sb Sc Se Si Sr Ta Tb (cm) 124 1508 261 269 221 564 1383 1842 1123 124.5 1585 403 261 592 614 1168 1778 1269 125 1467 279 308 524 701 1089 1530 892 125.5 1847 333 286 103 746 982 1601 1427 126 1667 281 265 251 721 1173 1888 1249 126.5 1539 340 202 184 611 540 1524 933 127 1479 266 266 257 513 757 1891 1216 127.5 1540 264 287 330 815 1160 1924 955 128 1503 233 266 0 666 865 1943 1118 128.5 1870 357 307 297 671 1200 1906 1175 129 1836 312 214 159 729 1200 1923 1243 129.5 1926 238 289 127 668 440 2010 1447 130 1819 271 252 300 687 878 1705 1440 130.5 1705 259 269 202 536 886 1636 1214 131 1656 289 313 188 706 992 2046 1193 131.5 1931 324 301 230 781 854 1964 1425 132 1772 249 253 162 875 838 1926 1444 132.5 1899 302 286 319 749 981 2033 1420 133 2132 303 303 209 831 960 1820 1493 133.5 2131 308 328 73 853 1191 1748 1434 134 1816 314 247 43 816 749 1618 1308 134.5 2192 316 244 61 858 675 1781 1420 135 2281 322 275 282 813 750 1779 1446 135.5 2439 344 236 419 854 975 1673 1512 136 1992 180 256 310 903 875 1672 1629 136.5 2584 300 321 229 809 706 1667 1674 137 2411 281 172 0 779 517 1672 2015 137.5 2361 258 314 49 918 587 1698 1787 138 1047 173 141 0 582 907 996 25 138.5 768 187 77 0 447 553 852 0 139 537 176 105 0 184 634 681 42 139.5 1677 249 283 0 569 497 1410 1176 140 2402 200 388 0 731 613 1550 1492 140.5 2334 325 242 191 831 1138 1826 1400 141 2049 282 227 0 707 1082 1569 1426 141.5 2178 268 195 339 716 1168 1743 1733 142 1946 402 250 0 744 998 1636 1355 142.5 2123 297 263 0 706 961 1333 1386 143 2128 245 174 7 1022 792 1455 1553 234 Depth S Sb Sc Se Si Sr Ta Tb (cm) 143.5 1998 353 304 0 718 831 1730 1672 144 1947 187 330 466 812 965 1762 1800 144.5 1980 296 291 454 696 672 1913 1361 145 1945 252 344 0 799 1356 1782 1608 145.5 1961 368 348 17 758 856 1661 1528 146 2168 315 222 81 785 871 1811 1497 146.5 2323 262 315 59 771 467 1866 1784 147 2236 233 337 73 714 863 1812 1533 147.5 2559 310 324 0 713 852 1554 1642 148 2262 292 243 216 726 1129 1809 1571 148.5 2110 311 212 0 721 988 1723 1548 149 1933 314 402 130 724 725 1631 1400 149.5 1618 253 351 291 734 820 1885 1037 150 1247 165 230 383 754 1036 1494 911 150.5 949 186 187 331 452 1072 1567 373 151 978 156 194 56 558 710 1367 365 151.5 873 189 162 435 428 805 1344 640 152 1785 238 235 148 760 654 1766 1306 152.5 2188 326 231 536 721 953 1761 1617 153 2486 320 326 11 743 463 1826 1865 153.5 1757 287 210 1002 703 83 2613 154 1728 181 241 845 1011 268 2705 154.5 1481 249 276 833 779 229 2140 155 1644 269 69 860 1103 303 2536 155.5 1579 303 0 700 519 299 2740 156 1419 355 155 823 1010 343 2411 156.5 1504 278 266 743 758 253 2139 157 1824 275 154 660 622 208 2683 157.5 2099 324 248 651 552 215 3422 158 2289 212 128 560 860 301 3296 158.5 1952 244 10 465 405 142 3273 159 1779 275 283 503 724 257 2956 159.5 1800 297 297 475 573 259 2528 160 1703 275 291 514 698 210 3702 160.5 1442 215 108 462 383 317 3500 161 1560 282 0 585 555 109 2931 161.5 1417 280 271 548 445 290 2274 162 1300 280 153 618 742 188 2161 162.5 1450 289 0 580 851 402 3088 235 Depth S Sb (cm) 163 1637 163.5 1633 164 1444 164.5 1536 165 1403 165.5 1458 166 1434 166.5 1556 167 1330 167.5 1376 168 1028 168.5 623 169 852 169.5 1241 170 1882 170.5 1942 171 1766 171.5 1692 172 1862 172.5 1972 173 2373 173.5 2299 174 2451 174.5 2176 175 1989 175.5 2141 176 2047 176.5 2090 177 1901 177.5 1814 178 1841 178.5 1509 179 1628 179.5 1556 180 1644 180.5 1565 181 1445 181.5 1419 182 1406 Sc Se 194 211 378 318 313 259 269 226 386 245 272 130 188 193 241 299 255 197 296 320 267 271 328 229 267 266 321 388 372 283 327 221 271 221 234 311 269 213 314 Si 369 222 151 149 196 33 179 580 85 461 282 0 108 0 305 201 381 91 144 168 337 432 369 469 67 331 412 402 66 198 87 296 231 217 454 354 0 383 196 236 Sr 607 594 555 673 636 642 680 531 606 567 353 121 230 303 490 557 507 494 480 398 548 509 629 537 554 669 670 551 546 556 632 592 520 535 546 501 611 597 404 Ta 525 523 562 884 813 840 867 983 663 689 956 410 852 416 868 748 871 759 833 542 1016 707 675 822 570 288 641 675 732 566 610 769 647 161 614 769 914 444 812 Tb 362 241 316 293 217 288 352 123 124 268 167 71 44 194 174 152 277 163 94 256 292 99 205 249 258 246 250 377 282 187 231 309 259 186 214 290 164 388 307 3054 4045 3484 3185 2339 2242 3383 3149 2674 2222 671 236 1029 1943 3088 3349 3119 2378 3143 4034 3739 3554 3656 3668 3490 3134 2697 3240 2776 2845 3293 2340 2675 2517 2635 2969 2254 2558 2674 Depth S Sb (cm) 182.5 1516 183 1592 183.5 1771 184 1883 184.5 1967 185 1981 185.5 1666 186 1723 186.5 1531 187 1939 187.5 2173 188 2342 188.5 2038 189 1692 189.5 1585 190 2096 190.5 1459 191 1710 191.5 1669 192 1762 192.5 2027 193 1781 193.5 1962 194 1956 194.5 3549 195 3286 195.5 2351 196 1717 196.5 1746 197 1685 197.5 1634 198 1620 198.5 1659 199 1593 199.5 1765 200 1893 200.5 1915 201 2052 201.5 1689 Sc Se 220 186 330 304 398 263 233 313 199 297 289 340 297 320 314 298 210 315 275 323 167 319 347 292 190 238 330 332 263 216 301 251 222 204 355 338 455 306 399 Si 692 207 122 283 365 243 283 470 207 250 115 328 651 193 383 290 137 151 407 82 50 82 510 210 66 193 360 137 209 532 369 393 0 348 381 19 22 281 294 237 Sr 574 545 486 608 496 576 411 460 537 421 494 413 391 456 451 531 404 629 786 779 859 616 607 491 473 529 691 824 843 846 1008 788 871 712 824 858 765 640 493 Ta 457 784 502 852 496 395 865 832 972 1187 346 775 842 451 623 722 442 757 811 815 576 727 950 495 461 717 472 847 1024 906 718 651 637 924 744 893 1101 1062 836 Tb 313 234 146 298 326 347 249 301 96 190 206 126 124 213 159 407 373 205 219 90 179 241 235 180 246 347 192 289 275 234 415 200 203 377 225 170 242 236 406 2378 2405 2627 3022 2918 2587 2844 2353 2026 3007 3077 3337 3025 3886 2316 3044 2437 2497 2636 2721 2272 3788 3770 3338 4685 3597 3452 2250 2394 2171 2558 2205 2888 1761 2340 2384 1642 2508 2429 Depth S Sb (cm) 202 1963 202.5 1565 203 893 203.5 804 204 602 204.5 1425 205 1753 205.5 1831 206 1957 206.5 2348 207 2147 207.5 1726 208 1610 208.5 2187 209 2202 209.5 1817 210 1642 210.5 1614 211 1935 211.5 1629 212 1797 212.5 1974 213 2156 213.5 1871 214 1601 214.5 1705 215 1955 215.5 1849 216 2173 216.5 2738 217 2701 217.5 2719 218 2053 218.5 2038 219 1915 219.5 1762 220 1615 220.5 1501 221 1520 Sc Se 357 268 145 181 92 191 305 251 259 217 258 333 299 329 286 460 338 292 380 242 301 254 291 269 299 282 332 253 388 238 401 351 296 361 226 265 259 225 197 Si 291 60 15 0 187 153 178 175 562 406 472 244 196 393 95 303 191 179 197 166 207 139 136 243 0 172 409 358 336 321 23 218 278 248 314 438 287 255 131 238 Sr 572 424 211 227 248 431 584 605 584 490 716 678 430 508 520 680 679 594 486 593 598 416 512 260 289 249 346 448 448 454 461 391 336 230 400 411 405 346 305 Ta 797 847 665 362 610 1041 935 710 666 979 721 957 604 705 1029 574 704 900 278 922 840 962 1040 692 616 637 781 881 723 796 738 833 704 897 883 854 870 852 791 Tb 384 143 19 79 124 35 300 189 428 238 225 234 395 269 233 374 336 98 208 465 328 313 244 315 401 337 226 284 302 322 331 183 310 212 366 416 460 299 404 3563 1863 255 449 482 2007 2814 3004 2913 2299 2250 2991 3182 2709 2714 2729 2380 2554 3462 2384 2089 3271 2967 3172 3123 3140 3639 2938 3123 3851 3670 2886 3203 3118 3094 2930 2563 2239 2631 Depth S Sb Sc Se Si Sr Ta Tb (cm) 221.5 1704 335 449 387 1202 297 2809 222 1564 346 9 331 879 332 2231 222.5 1958 239 280 429 1032 327 3019 223 1999 285 456 432 795 339 2300 223.5 1871 340 56 384 913 366 2162 224 1284 265 160 357 610 289 1613 224.5 1515 278 465 176 860 260 2204 225 1648 287 597 362 681 292 2721 225.5 1325 263 85 407 794 240 1931 226 1453 290 344 447 595 273 2352 226.5 1209 289 97 341 483 291 2393 227 1313 242 152 320 410 328 2579 227.5 1287 317 382 295 718 306 2333 228 1296 269 275 303 825 211 1885 228.5 1281 268 98 350 507 347 1862 229 1376 360 0 343 800 328 2568 229.5 1309 209 0 319 649 249 2094 230 1298 252 142 292 417 329 1847 230.5 1467 384 291 392 761 169 1655 231 1703 337 76 451 965 106 1764 231.5 187 146 298 250 69 753 2267 378 232 184 272 296 185 12 1017 2202 492 232.5 215 215 303 236 0 926 2005 476 233 204 76 283 0 23 352 2103 424 233.5 175 114 190 145 67 525 1345 234 234 214 193 239 231 25 1175 2223 417 234.5 219 159 351 287 13 885 1962 449 235 203 185 228 192 35 1145 2053 428 235.5 179 113 238 156 0 986 1803 197 236 192 95 188 113 52 790 2021 375 236.5 179 92 270 336 40 1079 2041 369 237 292 165 319 132 57 1016 2240 545 237.5 226 166 261 119 0 799 2039 506 238 251 170 250 378 0 868 2062 364 238.5 183 113 269 308 0 1030 1768 143 239 176 158 266 252 59 1002 1936 156 239.5 256 113 266 210 36 621 1728 397 240 233 83 274 5 10 928 1725 406 240.5 218 160 273 252 43 910 1879 561 239 Depth S (cm) 241 241.5 242 242.5 243 243.5 244 244.5 245 245.5 246 246.5 247 247.5 248 248.5 249 249.5 250 250.5 251 251.5 252 252.5 253 253.5 254 254.5 255 255.5 256 256.5 257 257.5 258 258.5 259 259.5 260 Sb 193 212 151 137 158 105 83 63 56 136 162 171 133 111 177 148 93 66 166 127 147 114 131 117 129 127 131 98 124 152 149 161 140 142 107 133 113 173 241 Sc 150 199 199 140 148 86 41 71 85 118 144 97 107 85 119 109 160 80 110 62 115 120 66 176 28 65 84 107 142 115 115 133 157 178 106 125 106 161 133 Se 186 291 259 313 223 226 137 98 206 220 201 252 249 319 282 225 201 260 208 244 239 218 210 142 304 291 209 304 233 178 280 262 311 249 179 194 285 241 205 Si 0 228 277 453 351 61 244 167 18 434 23 350 77 178 494 304 195 286 261 238 631 316 371 464 578 192 343 212 312 268 114 224 681 302 141 423 136 178 182 240 Sr 20 7 12 36 15 20 30 0 0 22 19 0 0 0 12 32 0 26 40 0 52 29 8 26 0 17 25 100 0 23 28 4 0 0 46 14 27 58 54 Ta 1161 1360 1251 861 912 922 620 551 458 754 673 1016 613 1039 556 762 1247 604 1003 970 1375 1001 1200 1160 772 656 1514 1051 758 910 915 771 672 973 789 802 722 900 858 Tb 2024 2016 1958 2177 1776 1738 1502 1608 1383 1870 2099 2363 2165 2065 1955 2206 2070 2204 1978 2092 1849 1841 1911 2052 2058 1730 1870 2028 1654 2133 2060 1981 2333 1932 1957 2087 1982 2022 2019 431 486 475 350 61 0 0 58 138 225 520 476 448 404 258 244 308 304 311 377 317 299 240 215 237 233 244 354 461 336 459 380 352 290 219 365 353 122 248 Depth S Sb Sc Se Si Sr Ta Tb (cm) 260.5 407 130 321 433 105 739 2336 175 261 620 140 222 642 174 943 2285 422 261.5 949 180 248 520 372 858 2050 350 262 909 235 209 310 478 948 2154 316 262.5 1232 292 305 94 391 968 1828 554 263 1468 295 390 104 420 1156 1816 442 263.5 1258 220 311 226 531 1086 1940 616 264 1131 292 280 550 537 865 2281 571 264.5 1109 288 320 290 512 632 2061 400 265 942 238 324 102 502 689 2266 375 265.5 1033 189 369 369 405 782 1880 498 266 843 193 313 495 415 613 2178 477 266.5 912 239 293 322 462 762 2457 207 267 937 206 236 131 370 576 2015 383 267.5 952 207 355 201 307 834 1798 536 268 733 196 237 203 220 803 1496 274 268.5 838 183 236 318 336 610 2248 378 269 847 248 249 363 338 936 2239 332 269.5 1035 241 290 362 546 746 2347 452 270 963 192 288 298 397 998 2064 497 270.5 1082 283 354 394 369 1189 2057 375 271 880 228 342 421 336 1005 2424 611 271.5 936 220 293 420 348 933 2211 609 272 1017 166 344 189 377 1317 1946 623 272.5 1492 314 365 536 313 659 1965 797 273 1453 256 274 226 354 927 2078 417 273.5 1468 270 313 115 446 933 2004 634 274 1520 327 327 197 353 677 2052 680 274.5 1138 329 318 200 291 721 2511 428 275 1291 240 405 478 369 1014 2499 560 275.5 1279 342 440 321 454 925 2299 728 276 1000 300 387 79 433 650 2245 730 276.5 1073 276 451 367 362 845 2546 618 277 1039 322 310 322 352 969 2164 714 277.5 1192 213 347 207 448 805 2123 647 278 1162 270 353 172 431 926 2180 712 278.5 1082 280 346 609 324 1138 1974 634 279 1109 261 350 115 361 1035 2288 627 279.5 910 229 381 380 436 933 2225 671 241 Depth S Sb Sc Se Si Sr Ta Tb (cm) 280 996 247 315 499 381 1210 2215 599 280.5 929 208 377 0 407 616 2193 544 281 1112 286 443 356 387 789 2217 734 281.5 1096 314 393 575 545 1072 2367 692 282 1127 260 372 302 584 1131 2086 681 282.5 1227 287 452 358 590 857 2254 749 283 1413 366 337 181 564 686 2069 707 283.5 1321 345 328 343 564 1165 2122 830 284 1227 382 298 198 548 643 2084 728 284.5 1124 280 357 197 532 553 2068 865 285 1183 304 396 473 542 698 2192 662 285.5 1184 222 415 92 371 888 2030 869 286 1585 300 253 317 395 938 2329 897 286.5 774 218 176 184 341 902 1059 49 287 575 203 121 79 265 814 1117 0 287.5 459 154 156 178 156 666 720 168 288 787 235 230 0 231 992 1483 460 288.5 1278 287 413 154 380 1084 1981 860 289 1059 247 395 274 494 922 2301 620 289.5 996 196 369 131 466 796 1984 837 290 907 286 343 145 393 692 2199 651 290.5 945 246 301 81 408 672 1764 837 291 739 198 364 41 469 880 2075 742 291.5 1006 227 398 9 460 815 2198 855 292 895 297 419 234 404 423 2234 731 292.5 1025 233 358 411 460 818 2180 722 293 1328 231 392 291 528 543 1807 680 293.5 1455 318 369 139 681 556 1901 626 294 1112 263 388 352 488 947 1958 578 294.5 988 234 359 354 581 1123 2144 565 295 1068 223 345 37 549 971 1971 633 295.5 1341 265 328 81 608 781 1894 731 296 1100 179 200 339 521 855 1323 221 296.5 715 199 187 0 532 889 1242 146 297 569 227 166 0 446 520 1175 35 297.5 532 149 136 155 511 504 1352 103 298 1029 225 375 227 691 915 2213 436 298.5 886 241 298 42 549 515 2238 494 299 1149 261 290 0 639 844 1843 393 242 Depth S Sb Sc Se Si Sr Ta Tb (cm) 299.5 1217 235 306 372 613 833 1958 716 300 1666 185 331 310 768 1220 1950 628 300.5 1541 240 360 14 658 872 1812 538 301 1141 243 309 315 494 927 2121 460 301.5 1273 255 377 303 561 535 1785 553 302 1808 281 278 180 473 650 1870 550 302.5 1322 208 249 224 633 909 1780 448 303 1069 119 315 395 311 991 1764 392 303.5 1636 206 217 291 356 734 1816 507 304 1192 191 286 268 392 738 1709 567 304.5 999 184 244 239 397 530 1804 488 305 908 180 275 338 369 1057 1568 330 305.5 1074 95 276 180 342 1051 1665 389 306 854 189 301 332 337 1211 1782 383 306.5 1015 257 195 7 416 631 1698 381 307 823 207 152 155 368 1051 1704 346 307.5 1073 250 314 249 675 598 1923 1390 308 1082 272 339 166 630 745 2217 1248 308.5 1104 140 227 286 631 1300 2163 1148 309 1166 223 227 219 650 467 2159 1348 309.5 1233 231 281 387 515 607 1898 1411 310 1138 235 257 73 496 1526 2190 1471 310.5 1125 247 182 227 792 1009 2153 1276 311 1249 310 364 356 878 867 2017 1432 311.5 1091 249 315 178 817 1068 1870 1470 312 1072 214 300 630 763 977 2235 1481 312.5 1007 142 209 421 558 892 1811 1135 313 1152 193 242 434 530 1187 2262 1385 313.5 1291 216 219 485 528 750 1681 1648 314 1225 260 279 108 570 944 1681 1122 314.5 1147 186 222 180 562 868 1802 1548 315 1063 237 285 220 526 987 2190 1466 315.5 1255 252 349 482 594 1124 1831 1836 316 1207 213 303 351 540 772 1642 1893 316.5 1226 160 252 296 622 1253 1976 1450 317 1387 230 263 210 599 837 1712 1717 317.5 1398 317 295 241 615 919 1925 1549 318 1710 210 200 496 705 1281 1853 1427 318.5 1385 244 333 287 677 513 1933 1761 243 Depth S Sb Sc Se Si Sr Ta Tb (cm) 319 1598 213 308 151 661 874 1885 1464 319.5 1779 265 381 0 555 1111 1688 1900 320 1657 267 292 239 645 719 1881 1904 320.5 1528 206 270 229 689 672 1770 1822 321 1529 415 304 245 626 835 1900 1657 321.5 1460 235 244 511 502 1318 1811 1578 322 1508 232 388 385 605 919 1782 1968 322.5 1418 239 340 325 491 1035 1883 1861 323 1495 226 399 487 594 997 2044 1938 323.5 1396 238 335 446 594 1034 1865 2157 324 1401 291 276 21 604 847 1940 1998 324.5 1590 227 266 506 644 851 1784 1926 325 1470 221 334 107 694 670 1937 1923 325.5 1205 207 189 508 843 927 2112 1558 326 1314 226 363 317 828 1036 1881 1615 326.5 1044 183 332 364 724 749 1853 1419 327 951 175 281 264 695 1038 1984 1437 327.5 940 234 323 505 699 1094 2082 1097 328 927 268 386 465 771 713 2168 1230 328.5 1160 133 311 195 778 763 1934 1508 329 1166 320 402 362 738 659 1877 1804 329.5 1090 265 290 119 570 638 2013 1756 330 1264 297 317 184 569 801 1647 1736 330.5 1355 223 224 485 679 1074 1725 1513 331 1135 226 357 616 827 904 1881 1271 331.5 1114 172 227 459 800 985 2074 1379 332 1421 252 217 386 844 825 1888 1749 332.5 1222 230 311 0 786 867 1600 1476 333 1076 286 338 134 746 782 2083 1262 333.5 1289 281 368 499 840 948 1917 1779 334 1091 211 258 302 825 919 1869 1591 334.5 1073 250 404 656 796 648 1752 1586 335 1219 240 344 291 1051 1034 1848 1315 335.5 325 199 128 0 188 623 613 23 336 119 201 94 0 18 705 238 0 336.5 113 182 84 45 59 544 211 17 337 726 220 207 377 558 1011 1400 902 337.5 1342 240 318 290 1033 1182 1796 1585 338 1168 279 394 320 848 766 1757 1449 244 Depth S Sb Sc Se Si Sr Ta Tb (cm) 338.5 1324 267 294 108 786 964 1807 1560 339 1235 170 299 240 832 748 1534 2002 339.5 1374 229 336 0 851 914 1864 1518 340 1568 293 282 172 715 722 1614 1605 340.5 1311 296 366 0 878 1063 1888 1835 341 1323 259 337 500 922 667 1580 1442 341.5 1312 336 352 181 833 1026 1839 1318 342 1307 248 354 256 819 1096 1723 1341 342.5 1199 230 358 0 892 1199 1398 1451 343 1450 134 225 140 666 1029 1745 1858 343.5 1264 246 305 160 759 643 1600 1677 344 1451 281 320 174 683 761 1414 1705 344.5 1440 180 306 12 818 843 1684 1467 345 1429 221 241 69 719 810 1653 1518 345.5 1280 250 128 297 725 752 1567 1437 346 1159 198 346 617 855 749 1687 1174 346.5 1089 259 336 65 794 865 1619 1093 347 1235 330 346 521 754 661 2010 1352 347.5 1394 256 297 0 702 1016 1649 1714 348 1165 266 345 115 643 819 1498 1316 348.5 1062 147 337 192 730 954 1425 1103 349 1039 223 215 170 722 739 1319 1125 349.5 1149 192 210 297 673 607 1490 1148 350 1504 242 309 40 586 578 1404 1433 350.5 1561 236 236 140 595 750 1456 1604 351 1044 294 342 386 701 1023 1588 1151 351.5 959 190 268 560 548 1043 1342 1391 352 1050 222 249 184 561 710 1528 1336 352.5 1055 211 226 85 535 677 1453 1576 353 561 214 222 51 365 841 968 445 353.5 556 194 76 0 253 628 597 373 354 594 175 151 194 322 597 788 416 354.5 652 194 192 53 490 116 672 805 355 961 92 240 0 771 750 1532 1272 355.5 1127 236 284 106 763 818 1806 1553 356 1010 236 305 527 559 1055 1479 1107 356.5 1356 218 327 147 577 605 1203 1502 357 975 114 232 78 576 670 1400 1187 357.5 853 213 281 162 564 1039 1402 1214 245 Depth S Sb Sc Se Si Sr Ta Tb (cm) 358 1028 190 269 50 596 576 1379 1320 358.5 847 221 156 234 486 596 1404 1236 359 632 122 170 95 392 397 1118 1098 359.5 770 186 235 0 383 769 961 1295 360 853 157 150 94 271 808 1143 1145 360.5 621 127 246 41 402 1184 1033 643 361 682 120 187 0 408 700 1421 1119 361.5 891 192 262 81 352 888 1186 1338 362 763 174 248 256 472 864 1217 1238 362.5 992 142 198 453 398 937 1368 1313 363 937 187 108 274 513 858 1413 1007 363.5 813 100 119 0 571 977 1473 925 364 783 155 168 359 583 954 1429 947 364.5 840 199 305 207 598 910 1361 853 365 900 131 283 224 553 716 1539 1274 365.5 1051 284 254 44 532 875 1351 1158 366 1009 248 245 51 636 876 1247 1121 366.5 1007 128 266 604 699 1009 1329 1170 367 766 228 292 33 396 703 1201 980 367.5 755 223 211 80 446 609 1251 841 368 718 209 314 114 529 773 1395 865 368.5 1959 294 321 278 834 883 1593 2195 369 1666 214 305 197 901 930 1960 1761 369.5 1639 240 353 113 844 1063 1657 1663 370 2220 271 351 619 861 974 1655 2462 370.5 1896 332 334 403 926 853 2213 1725 371 2118 245 298 141 878 878 1801 1706 371.5 1833 297 399 399 1027 1459 1809 1334 372 2059 282 351 0 896 1066 1620 2263 372.5 2126 288 334 259 822 761 1483 2116 373 1799 243 370 223 916 1041 1852 1760 373.5 1740 290 393 389 875 981 1877 1358 374 2139 274 314 157 831 1033 1964 1757 374.5 1576 208 357 231 798 929 1676 1524 375 2023 222 336 258 900 736 1713 2013 375.5 1836 242 242 56 862 762 1501 1760 376 1695 228 288 418 927 1242 1822 1529 376.5 1738 315 352 93 1019 1235 2004 1605 377 1555 326 301 645 1099 1220 1984 1325 246 Depth S Sb Sc Se Si Sr Ta Tb (cm) 377.5 1511 193 360 377 1032 858 2016 1117 378 1435 159 312 304 1026 1051 1975 1096 378.5 1343 150 335 141 955 953 1872 1176 379 1290 193 351 197 936 857 2098 1034 379.5 1226 221 325 67 997 1193 2225 1031 380 1184 267 316 292 987 1201 2044 971 380.5 1244 275 341 294 1025 1293 1991 994 381 1365 257 261 184 1109 1215 2016 1084 381.5 977 176 219 418 772 683 1795 790 382 1364 240 381 416 1013 1001 2107 825 382.5 1420 244 443 502 962 889 1769 1169 383 1446 223 306 0 1012 881 2047 1155 383.5 1543 247 369 133 1068 851 2286 977 384 1520 248 302 482 1110 1123 2304 1104 384.5 1452 275 314 159 1013 1007 2058 1256 385 1441 281 387 307 1033 667 2184 1043 385.5 1491 278 268 284 951 1181 1962 1103 386 1562 279 342 28 1065 1010 1880 1339 386.5 1572 326 417 266 1006 1299 1940 1333 387 1599 296 417 126 1114 1114 2106 1010 387.5 1541 290 356 348 1253 965 2317 1264 388 1551 252 325 0 1167 1036 2112 1091 388.5 1576 241 294 244 1075 1074 2009 1164 389 1571 291 324 51 1111 1092 1964 1140 389.5 1680 185 320 174 1472 871 2032 1199 390 1425 277 376 366 1211 1517 1916 931 390.5 1520 210 307 523 1049 1029 1693 988 391 1532 200 363 264 932 1196 1793 996 391.5 1564 283 331 291 1114 882 1794 1113 392 1488 269 206 637 1043 898 1787 929 392.5 1462 266 356 262 1051 1273 2013 1046 393 1501 285 286 166 1082 1059 1851 947 393.5 1372 130 280 0 1013 952 1883 875 394 1278 259 383 301 1058 800 1919 825 394.5 1373 234 394 272 1138 727 1959 792 395 1370 230 281 229 1060 959 1930 879 395.5 1489 172 352 409 1232 1039 1804 890 396 1273 227 368 311 970 1030 1899 731 396.5 1445 203 304 77 1121 681 1900 1025 247 Depth S Sb Sc Se Si Sr Ta Tb (cm) 397 1451 250 346 109 1033 1022 1702 1025 397.5 1571 292 273 504 1072 1027 1935 980 398 1544 233 302 220 971 1267 1785 834 398.5 1314 270 286 170 966 1388 1725 1073 399 1430 221 304 591 981 1148 1819 1150 399.5 1678 252 317 298 1017 1159 1944 1046 400 1823 280 326 360 1061 1455 1733 949 400.5 1876 237 378 464 980 1286 1934 1067 401 1568 242 271 233 1043 1011 1814 1207 401.5 1392 306 338 127 941 953 2014 1179 402 1468 192 307 322 1021 929 1799 998 402.5 1619 211 349 391 1143 840 1744 951 403 1610 276 315 26 1177 742 1826 1007 403.5 1589 244 396 283 1174 1128 1835 1076 404 1434 348 358 412 1195 1506 1593 997 404.5 1559 225 346 151 1177 1543 1744 1321 405 1890 277 310 0 1893 1371 1759 1295 405.5 1680 298 324 542 1934 1190 1736 1291 406 1345 181 287 473 1479 1175 1816 865 406.5 1335 255 358 520 1464 1412 1843 1120 407 1558 235 369 0 1441 1259 2029 1154 407.5 1538 227 346 436 1476 1183 2046 1012 408 1630 292 360 0 1620 1126 1456 991 408.5 1745 326 288 267 1646 1201 1903 958 409 1697 260 324 129 1707 1340 2001 948 409.5 1865 284 381 534 1676 1631 1880 1272 410 1776 271 363 406 1558 1409 1993 1062 410.5 1744 321 245 254 1654 1084 1918 983 411 1888 271 366 430 1809 1058 2172 1143 411.5 1950 286 261 308 1692 1181 1613 1240 412 1721 249 356 420 1644 1279 1954 1272 412.5 1914 357 313 80 1687 1492 1858 1110 413 2068 378 278 242 1671 1229 1930 1059 413.5 1827 219 397 325 1629 1427 1804 1136 414 1879 316 210 31 1728 971 1852 1032 414.5 1467 267 278 271 1436 1097 1452 686 415 1362 267 301 0 1260 1014 1366 648 415.5 1360 272 293 157 1493 934 1158 732 416 1846 236 387 331 1668 1072 1697 1187 248 Depth S Sb Sc Se Si Sr Ta Tb (cm) 416.5 1859 308 374 599 1638 934 1847 999 417 1824 333 447 240 1676 1051 1862 1104 417.5 1763 298 261 399 1577 1364 1807 1160 418 1776 278 321 305 1528 942 1908 1277 418.5 1813 312 346 400 1566 975 1985 1135 419 1870 275 335 310 1526 1080 1976 1111 419.5 1798 368 384 213 1544 980 2013 1135 420 2105 224 368 188 1525 1357 1834 1226 420.5 1813 257 346 357 1550 844 1771 1116 421 1814 229 363 260 1631 1164 1941 1178 421.5 1965 242 365 484 1660 1126 1945 1212 422 1836 263 293 244 1555 1504 1774 1155 422.5 1978 346 382 323 1642 1204 1887 1340 423 1821 282 311 331 1736 1108 1735 974 423.5 1945 323 358 276 1750 1286 1909 1035 424 2008 367 294 39 1748 1531 1841 1148 424.5 2098 328 352 494 1794 1011 1910 1031 425 2135 299 414 92 1886 950 2028 969 425.5 2014 185 367 6 1789 912 1875 1023 426 1731 330 345 340 1877 1158 1737 1198 426.5 1692 273 393 457 1815 1393 1749 1063 427 1801 251 307 260 1865 1196 1811 1195 427.5 1821 271 367 308 1837 1210 1602 1183 428 1928 324 372 183 1870 1314 1675 1042 428.5 1998 387 344 510 1861 1375 1777 1191 429 1589 293 276 39 1724 1378 1365 926 429.5 1667 281 209 0 1528 1169 1228 742 430 1406 207 252 383 1431 771 1176 791 430.5 1654 189 205 385 1917 1075 1290 701 431 1007 154 203 148 989 872 970 522 249 Table A 2.6 Cuobu XRF geochemistry Te – Zn Depth Te (cm) 27 27.5 28 28.5 29 29.5 30 30.5 31 31.5 32 32.5 33 33.5 34 34.5 35 35.5 36 36.5 37 37.5 38 38.5 39 39.5 40 40.5 41 41.5 42 42.5 43 43.5 44 44.5 45 45.5 Tl Tm 88 40 180 0 398 295 217 175 478 573 369 221 111 398 292 115 52 93 269 169 253 333 80 66 91 675 447 259 188 88 193 177 182 374 333 265 215 354 V 185 69 609 699 440 427 528 649 637 571 691 540 514 425 693 554 649 705 542 537 414 867 522 689 542 841 589 622 511 542 670 538 704 481 545 496 439 319 W 529 1389 2712 2730 2590 2617 2735 2552 2735 2684 2577 2785 2620 2620 2583 2642 2705 2619 2677 2705 2703 2726 2608 2833 2627 2821 2592 2574 2761 2886 2712 2769 2844 2556 2464 2432 2323 2461 250 Y 1782 2138 4291 4369 4479 4130 4278 4327 4197 4569 4336 4118 3941 4102 3917 4160 4294 4257 4443 4071 4224 4130 4258 4114 4286 4368 4160 4184 4115 4275 4401 4360 3927 4078 4155 3980 3914 3946 Zn 0 486 181 0 363 98 291 90 113 0 214 159 565 95 179 0 323 246 513 0 472 242 183 419 91 239 272 606 324 86 666 861 157 651 425 0 20 0 18635 30 224 65 156 135 295 0 0 474 22 72 156 15 103 0 123 40 281 85 18 60 221 117 81 328 202 133 223 199 108 284 429 49 112 190 58 141 Depth Te (cm) 46 46.5 47 47.5 48 48.5 49 49.5 50 50.5 51 51.5 52 52.5 53 53.5 54 54.5 55 55.5 56 56.5 57 57.5 58 58.5 59 59.5 60 60.5 61 61.5 62 62.5 63 63.5 64 64.5 65 Tl Tm 394 85 255 195 259 213 226 0 36 417 549 122 399 227 54 402 207 610 179 420 0 166 188 183 5 351 327 354 489 557 180 433 169 289 83 286 438 188 302 V 504 517 436 472 517 541 463 735 567 612 644 479 407 560 480 418 514 289 539 618 409 582 548 296 646 506 320 518 446 706 397 588 607 460 415 546 411 524 627 W 2329 2503 2336 2249 2271 2437 2555 2782 2723 2410 2810 2410 2380 2548 2708 2487 2594 2660 2498 2537 2784 2348 2704 2455 2727 2517 2620 2375 2474 2454 2404 2487 2781 2477 2386 2770 2456 2644 2442 251 Y 3924 3943 3961 3936 4013 4062 3993 3954 4056 4262 4110 3894 3945 4094 4070 4018 3910 4385 4454 4218 4077 4028 4091 4194 4094 4159 4056 4092 4131 4162 3925 4097 3990 4055 3780 3876 3930 3877 4055 Zn 191 180 0 0 414 0 50 0 484 288 203 543 0 321 738 504 261 203 0 225 292 0 402 313 169 164 345 312 0 206 107 0 360 450 266 329 431 145 614 57 178 132 17 25 0 60 110 143 207 171 0 0 379 41 0 0 256 120 349 159 80 0 133 0 270 83 271 214 322 45 219 166 79 0 0 244 106 17 Depth Te (cm) 65.5 66 66.5 67 67.5 68 68.5 69 69.5 70 70.5 71 71.5 72 72.5 73 73.5 74 74.5 75 75.5 76 76.5 77 77.5 78 78.5 79 79.5 80 80.5 81 81.5 82 82.5 83 83.5 84 84.5 Tl Tm 149 216 0 104 24 263 229 224 398 353 199 449 334 308 97 433 109 69 12 157 390 0 263 182 226 500 122 134 163 231 407 218 68 288 277 122 0 21 0 V 510 497 429 443 312 620 513 457 373 588 508 469 683 629 628 527 560 215 0 0 417 368 407 635 512 511 476 766 714 481 513 505 607 512 479 557 574 405 437 W 2727 2457 2372 2517 2418 2442 2564 2403 2606 2582 2439 2401 2597 2611 2306 2404 2707 2272 1232 1359 1786 2048 2331 2413 2628 2397 2371 2502 2574 2483 2520 2501 2500 2532 2520 2561 1321 1304 1589 252 Y 4077 3897 3668 4116 4115 4240 3959 4135 3937 3687 3948 4007 3994 4184 4317 3901 4285 3452 1983 2111 2716 3459 3968 3914 4009 3957 4099 4165 4078 4347 4099 3805 3979 4004 4268 3725 1973 1802 2109 Zn 108 0 370 359 417 187 345 0 432 139 156 0 535 587 86 97 74 232 327 28 208 410 247 308 264 349 0 420 593 326 736 451 79 0 74 0 487 80 178 0 0 17 157 114 214 91 35 145 4 222 279 53 193 436 363 464 36 0 96 322 215 192 161 368 231 149 127 129 183 113 373 223 358 342 447 33 344 270 Depth Te (cm) 85 85.5 86 86.5 87 87.5 88 88.5 89 89.5 90 90.5 91 91.5 92 92.5 93 93.5 94 94.5 95 95.5 96 96.5 97 97.5 98 98.5 99 99.5 100 100.5 101 101.5 102 102.5 103 103.5 104 Tl Tm 0 0 13 84 0 0 73 0 0 25 0 52 0 0 0 118 0 203 69 183 0 26 0 167 17 199 100 88 0 131 152 350 129 136 253 54 117 424 406 V 501 603 463 482 390 669 538 575 530 177 380 199 425 645 519 510 688 782 599 929 673 787 722 730 622 807 865 802 980 804 697 586 959 976 695 909 797 799 876 W 1536 1614 1793 1674 1621 1584 1587 1648 1555 1286 1172 1181 1412 1540 1850 1763 1814 1769 2075 1696 1776 1937 1912 1562 2182 2076 2358 2198 2148 2132 1785 1803 2059 2185 2459 2222 2275 2303 2482 253 Y 2234 2166 2222 2168 2387 2277 2308 2339 2403 2287 1977 1949 1979 2318 2750 2804 2741 2595 2782 2574 2486 2790 2666 2400 2539 2513 2605 2819 2869 2916 2447 2454 2404 2573 2700 2756 2931 2973 2827 Zn 289 179 468 293 0 169 136 359 377 553 408 406 226 215 156 181 0 91 667 332 76 496 398 176 167 680 19 128 463 88 275 88 203 188 0 207 219 342 39 267 281 120 280 149 94 392 302 356 184 266 94 0 242 295 530 217 395 342 264 169 372 327 240 99 345 309 433 235 215 131 270 164 278 195 61 165 104 194 Depth Te (cm) 104.5 105 105.5 106 106.5 107 107.5 108 108.5 109 109.5 110 110.5 111 111.5 112 112.5 113 113.5 114 114.5 115 115.5 116 116.5 117 117.5 118 118.5 119 119.5 120 120.5 121 121.5 122 122.5 123 123.5 Tl Tm 339 432 345 203 589 570 449 369 233 412 436 293 402 422 277 373 42 113 52 189 323 393 341 292 180 325 408 38 190 58 135 159 273 137 51 151 76 165 192 733 825 786 631 825 875 910 858 1068 863 775 792 750 796 973 744 872 485 899 1008 812 852 835 947 885 928 844 311 559 749 782 881 825 717 692 929 957 767 815 V W 2293 2387 2508 2459 2575 2767 2705 3019 3101 2775 2378 2504 2751 2661 2604 2451 2432 2346 2546 2866 2751 2854 2841 2844 2632 2729 2305 1772 2125 2160 2558 2719 2733 2848 2639 2618 2798 2333 2300 254 Y 2718 2526 2435 2721 2781 2801 2815 2748 2624 2854 2904 2805 2730 2582 2675 2577 2427 2587 2865 2870 2798 2583 2512 2870 2574 2775 2637 1973 1968 2020 2627 2768 2573 2707 2800 2685 2730 2948 3105 Zn 0 201 328 216 0 326 277 201 39 0 219 343 127 0 61 10 0 159 197 189 0 277 0 121 121 142 245 0 230 119 202 0 0 72 54 271 94 553 166 170 109 34 183 359 314 136 206 109 356 473 122 207 156 110 195 62 312 235 250 162 377 98 242 26 387 482 232 233 498 412 273 247 463 0 90 167 283 375 Depth Te (cm) 124 124.5 125 125.5 126 126.5 127 127.5 128 128.5 129 129.5 130 130.5 131 131.5 132 132.5 133 133.5 134 134.5 135 135.5 136 136.5 137 137.5 138 138.5 139 139.5 140 140.5 141 141.5 142 142.5 143 Tl Tm 335 453 328 176 211 19 123 252 359 290 324 219 301 251 296 246 364 310 410 71 60 178 243 264 274 223 13 226 0 0 37 98 479 337 384 291 0 0 388 690 907 785 986 769 804 682 855 778 766 968 831 890 781 612 899 834 770 858 881 797 848 853 785 987 732 753 914 0 0 46 666 1022 761 721 765 759 925 1004 V W 2124 2272 2192 2122 2189 2197 2133 2109 2229 2339 2348 2438 2270 2263 2237 2292 2404 2302 2449 2365 2336 2590 2760 2543 2572 2681 2693 2798 1063 918 822 2061 2882 3020 2989 2836 2726 2631 2656 255 Y 2855 2953 3111 2848 2983 3050 2947 3046 2902 2898 3002 3017 2915 2763 2932 2819 2955 2946 2933 2892 3027 2923 2613 2950 2756 2635 2709 2777 1505 1201 976 2516 2864 2784 2637 2841 2609 2638 2718 Zn 56 390 394 427 210 54 110 203 0 0 0 0 199 228 320 148 178 0 173 140 391 0 0 0 288 103 66 352 264 593 249 0 568 0 331 403 0 386 59 297 380 365 415 116 127 254 323 250 114 276 347 165 130 148 225 268 422 312 62 311 201 171 218 252 136 236 212 71 0 20 369 338 204 353 488 0 201 212 Depth Te Tl Tm V W Y Zn (cm) 143.5 280 983 2606 2819 236 357 144 309 756 2439 3047 374 338 144.5 278 844 2325 2872 0 338 145 209 849 2370 2869 559 158 145.5 390 910 2684 2797 537 131 146 299 929 2613 2844 91 163 146.5 409 943 2748 2976 126 456 147 153 929 2682 2788 40 0 147.5 244 1056 2829 2763 0 167 148 500 948 2910 2922 422 375 148.5 316 992 2575 2884 0 386 149 130 902 2403 2877 267 229 149.5 119 771 2218 2830 200 252 150 117 651 1747 2521 327 156 150.5 270 170 1337 1992 377 0 151 118 444 1259 2102 396 247 151.5 96 560 1353 2158 395 170 152 368 926 2317 3065 677 139 152.5 347 1111 2540 3118 432 327 153 122 979 2793 2836 31 330 153.5 222 384 1446 1822 1874 286 55 154 264 554 1494 1854 1812 102 195 154.5 267 344 1083 1749 1690 195 89 155 218 216 1353 1624 1892 126 74 155.5 171 336 1329 1600 1899 0 73 156 256 502 1158 1650 1917 269 133 156.5 180 274 1354 1682 2041 0 178 157 284 466 1277 1803 1894 261 268 157.5 210 355 1717 1799 1711 260 106 158 196 669 1813 2026 1506 376 355 158.5 293 159 1837 1926 1757 182 124 159 142 562 1821 2157 1741 357 0 159.5 183 466 1691 1940 1784 68 162 160 212 594 1639 1947 2005 0 0 160.5 290 410 1338 1718 2024 76 160 161 303 472 1318 1964 1935 120 149 161.5 255 896 1106 1780 1842 0 115 162 148 292 1104 1716 2114 309 112 162.5 162 263 1270 1791 2018 140 169 256 Depth Te Tl Tm V W Y Zn (cm) 163 250 604 1627 1933 1842 61 311 163.5 232 173 1643 1772 2108 414 68 164 301 203 1673 1883 2236 0 0 164.5 180 514 1605 1948 2144 147 176 165 172 199 1460 1751 1974 183 99 165.5 304 175 1223 1700 2055 72 153 166 249 277 1460 1889 2106 149 265 166.5 253 611 1587 1918 2186 536 104 167 252 301 1240 1766 2088 641 0 167.5 154 447 1258 1803 2000 434 235 168 170 534 542 1022 1385 494 85 168.5 149 84 275 744 882 182 151 169 180 570 443 1060 1110 173 96 169.5 211 383 1032 1388 1391 351 41 170 125 677 1890 2088 1879 396 0 170.5 209 272 1719 1798 2088 492 121 171 320 656 1786 1811 2004 467 132 171.5 213 565 1658 1775 1931 402 32 172 200 332 1732 1902 1606 107 50 172.5 197 623 2169 2049 1864 217 217 173 182 515 2280 2077 1971 131 0 173.5 266 795 2032 1963 1889 0 0 174 196 589 2045 1960 1907 76 0 174.5 195 712 1902 2207 2077 0 97 175 239 449 1668 2020 2211 219 37 175.5 247 784 1790 1967 2051 84 77 176 249 476 1497 1996 1895 82 182 176.5 292 583 1973 2073 2095 520 228 177 193 594 1797 2142 1946 208 0 177.5 206 498 1741 2022 2083 190 70 178 356 523 1844 2018 2061 312 0 178.5 174 754 1400 1804 2057 325 187 179 242 454 1662 1916 2077 108 98 179.5 218 410 1635 1846 2015 90 103 180 177 798 1702 1897 1862 153 0 180.5 209 566 1473 1867 2004 257 0 181 198 510 1262 1558 1676 177 336 181.5 127 121 1403 1849 2162 192 0 182 176 495 1378 1940 2113 0 224 257 Depth Te Tl Tm V W Y Zn (cm) 182.5 149 622 1466 1705 2021 0 13 183 254 291 1578 2020 2016 287 17 183.5 240 647 1489 2017 2099 231 125 184 180 443 1656 1668 2122 25 346 184.5 194 626 1779 1975 2156 298 173 185 174 676 1436 1969 1986 163 304 185.5 237 567 1688 2085 1846 95 80 186 241 597 1613 1830 2101 561 86 186.5 83 625 1365 1630 1905 426 13 187 181 532 1706 1743 1832 472 107 187.5 226 343 1858 1908 1851 224 0 188 159 652 2053 2097 2039 175 0 188.5 253 589 1799 2195 1818 504 113 189 222 392 1927 2150 2132 79 0 189.5 218 515 1576 1901 1763 437 0 190 248 897 1583 1900 1988 342 233 190.5 244 327 1431 2197 1857 82 43 191 280 379 1754 2103 2243 71 0 191.5 185 511 1501 1908 1775 322 136 192 191 397 1383 1843 1984 104 0 192.5 279 300 1347 2020 2101 267 170 193 184 658 1910 1972 1987 0 133 193.5 274 983 2111 2137 2028 268 352 194 255 427 2309 2393 1782 0 0 194.5 196 788 2838 2856 2030 200 440 195 216 695 2354 2688 2140 239 346 195.5 140 643 1839 2361 2192 175 166 196 288 711 1222 1922 2207 395 45 196.5 259 223 1183 1812 2325 16 67 197 134 548 1221 1778 2205 131 0 197.5 278 879 1457 1942 2239 626 251 198 216 634 1201 1889 2033 389 107 198.5 342 456 1453 1829 2176 391 28 199 276 879 1126 1774 1935 104 155 199.5 298 480 1424 1932 2204 212 46 200 209 390 1720 2137 1894 0 74 200.5 345 614 1435 1796 2050 172 179 201 240 291 1840 2189 2191 242 52 201.5 221 549 1758 1989 1887 378 190 258 Depth Te Tl Tm V W Y Zn (cm) 202 218 822 1798 2045 2129 211 146 202.5 243 30 1429 1620 1797 387 35 203 160 367 588 961 1043 785 194 203.5 106 292 437 864 1160 344 70 204 130 0 512 881 921 467 11 204.5 266 490 1241 1804 1833 401 0 205 288 385 1647 2084 1981 200 0 205.5 180 768 1761 2055 2035 80 249 206 213 473 1887 2071 2243 139 0 206.5 184 564 1795 2452 2221 0 27 207 208 479 1840 2174 2282 495 141 207.5 245 395 1605 1997 2103 21 48 208 303 563 1930 2028 2357 174 279 208.5 298 591 2096 2340 1973 420 263 209 201 670 1854 2093 2109 351 213 209.5 263 522 1568 1957 1857 46 267 210 291 662 1387 1773 2074 0 224 210.5 287 384 1374 1930 2034 31 106 211 202 742 2206 2268 1859 289 17 211.5 280 347 1636 1801 1998 208 211 212 375 540 1504 1865 2386 327 0 212.5 211 413 1924 2047 1974 152 145 213 168 384 1925 2224 2168 352 125 213.5 255 669 1929 1944 1840 63 9 214 276 306 1871 2004 1635 423 98 214.5 262 587 2113 2048 1929 144 243 215 276 540 2158 1960 1930 200 120 215.5 270 607 1972 1885 1963 10 185 216 298 593 2503 2240 1904 132 165 216.5 194 519 2730 2119 1808 0 189 217 284 773 2612 2216 1770 250 294 217.5 265 587 2881 2428 1783 78 134 218 219 498 2387 2188 2211 85 188 218.5 308 665 2213 2024 2177 303 317 219 301 378 1873 2074 2081 429 148 219.5 347 452 1505 1798 2141 317 153 220 174 690 1536 1861 1877 57 336 220.5 286 489 1566 1975 2037 46 81 221 156 586 1619 1963 1898 267 258 259 Depth Te Tl Tm V W Y Zn (cm) 221.5 286 740 1553 2178 1952 463 13 222 391 469 1506 1997 1983 582 174 222.5 114 671 1812 2168 2125 314 223 223 175 448 1620 1960 1990 562 352 223.5 312 431 1544 1853 2018 74 241 224 246 343 1054 1217 1339 0 75 224.5 52 176 1562 1660 1955 346 0 225 308 329 1539 1808 2123 0 6 225.5 214 376 1242 1744 2014 150 250 226 267 411 1353 1773 2159 276 0 226.5 195 499 1198 1703 1881 398 201 227 169 242 1382 1649 2024 121 145 227.5 228 425 1579 1802 1995 195 7 228 151 348 1324 1958 1959 279 0 228.5 277 111 1232 1558 1936 0 97 229 206 514 1374 1704 2009 338 0 229.5 184 536 1460 1781 1878 49 0 230 192 555 1305 1766 2011 73 206 230.5 188 349 1257 1459 2077 0 0 231 252 447 1274 1589 2003 351 95 231.5 285 483 1277 3118 247 289 232 358 316 1188 3042 202 0 232.5 248 636 1253 3102 408 293 233 43 468 1138 2618 257 155 233.5 125 308 851 2111 325 144 234 337 488 1358 2940 197 318 234.5 332 585 1206 2959 0 187 235 130 543 1494 3040 153 0 235.5 498 475 1344 2878 0 205 236 413 596 1366 3049 213 141 236.5 356 382 1243 2906 0 6 237 552 594 1440 3049 0 405 237.5 589 665 1305 2938 232 147 238 163 492 1283 3047 174 159 238.5 416 448 1116 2732 151 79 239 304 360 926 2894 148 217 239.5 264 528 1163 2840 77 368 240 25 429 1375 2533 130 154 240.5 340 800 1484 2883 104 70 260 Depth Te (cm) 241 241.5 242 242.5 243 243.5 244 244.5 245 245.5 246 246.5 247 247.5 248 248.5 249 249.5 250 250.5 251 251.5 252 252.5 253 253.5 254 254.5 255 255.5 256 256.5 257 257.5 258 258.5 259 259.5 260 Tl Tm 219 191 344 462 156 166 276 226 24 418 416 436 285 445 583 201 506 398 447 367 425 596 232 563 375 432 290 231 160 375 369 535 81 502 395 313 63 527 256 V 415 558 616 273 375 188 268 221 249 387 489 461 436 454 494 431 364 370 468 394 514 260 289 386 347 364 587 401 312 412 505 377 498 392 247 383 412 227 381 W 1427 1584 1278 1206 1045 807 888 921 810 1129 1182 1332 1224 1265 1017 1260 1121 1219 1184 1111 981 1144 1099 946 1163 1094 1218 1254 1147 1164 1217 1305 1242 1382 1251 1347 1216 1007 1317 261 Y 2719 2965 2812 2955 2653 2422 2258 2094 1862 2834 3114 2852 2798 2753 2751 2994 2997 3044 2871 2994 2876 2789 2706 3034 2847 2633 2912 2956 2692 2970 2804 2908 2874 3067 3084 2757 2845 2793 3024 Zn 230 548 161 0 393 51 143 635 108 256 336 0 109 575 15 0 213 179 67 82 224 269 198 0 0 104 395 0 279 58 61 85 0 0 295 408 27 0 0 0 211 0 160 229 243 93 71 15 271 146 0 108 54 193 0 80 267 118 0 0 98 0 97 196 0 93 0 0 214 0 226 0 150 0 24 0 316 96 Depth Te (cm) 260.5 261 261.5 262 262.5 263 263.5 264 264.5 265 265.5 266 266.5 267 267.5 268 268.5 269 269.5 270 270.5 271 271.5 272 272.5 273 273.5 274 274.5 275 275.5 276 276.5 277 277.5 278 278.5 279 279.5 Tl Tm 547 555 561 288 361 486 449 422 294 340 426 255 328 280 273 331 629 367 548 393 507 454 388 322 603 416 393 431 483 395 326 391 232 230 347 362 244 335 206 V 358 453 553 367 737 842 724 569 586 497 688 381 282 479 410 335 547 369 379 386 372 391 615 410 536 279 468 679 392 471 520 628 449 650 696 736 667 584 575 W 1424 1386 1265 1253 1797 1663 1683 1556 1526 1452 1634 1531 1336 1502 1518 1544 1376 1431 1567 1537 1627 1547 1703 1474 2067 1673 1769 1957 1415 1732 1820 1770 1689 1776 1450 1607 1731 1500 1715 262 Y 2990 3131 2978 3060 2965 3118 3021 3218 3014 3128 2929 2918 3133 2833 2806 2443 2639 2960 3250 2963 3133 2989 3125 2794 2924 2933 3058 3192 3214 3339 3405 3141 3143 3040 3305 3301 3083 3293 3396 Zn 437 173 0 62 177 0 191 41 29 0 566 139 225 0 0 60 304 407 0 149 395 231 169 49 266 205 468 0 205 95 265 184 0 132 206 0 0 167 115 111 377 192 101 236 108 336 102 393 287 131 108 85 216 0 134 168 0 47 41 0 292 120 0 242 169 0 196 26 9 341 327 81 74 209 46 181 274 192 Depth Te (cm) 280 280.5 281 281.5 282 282.5 283 283.5 284 284.5 285 285.5 286 286.5 287 287.5 288 288.5 289 289.5 290 290.5 291 291.5 292 292.5 293 293.5 294 294.5 295 295.5 296 296.5 297 297.5 298 298.5 299 Tl Tm 416 132 261 337 406 13 372 288 191 498 331 377 322 0 89 243 257 243 265 39 188 279 4 197 202 372 226 111 192 286 145 33 66 0 0 0 369 567 284 V 576 532 777 579 536 713 619 595 439 653 607 767 608 230 63 151 288 717 473 585 618 609 645 664 573 514 842 716 642 649 547 728 296 198 137 242 424 501 714 W 1733 1553 1697 1696 1498 1874 1861 1951 1592 1764 1839 1757 2059 980 712 764 1280 1847 1630 1690 1834 1504 1766 1869 1840 2058 2025 1885 1779 1574 1816 1795 1183 1057 996 987 1340 1496 1869 263 Y 3221 3086 3132 3337 3069 3287 3379 3340 2957 3078 3190 3179 3037 1752 1564 1237 2407 3053 3160 2731 3171 2794 2957 3013 3137 2939 2868 2719 3072 3198 3017 2747 2224 1842 1653 2038 3060 3197 2649 Zn 241 169 403 0 110 0 0 229 65 0 126 272 342 448 310 140 339 416 0 242 217 250 209 32 0 372 78 285 439 0 196 279 455 222 460 190 325 376 263 359 34 92 164 28 294 153 168 71 191 237 278 301 0 0 31 194 288 274 88 161 344 0 93 190 397 81 64 115 281 110 158 113 0 0 106 187 204 137 Depth Te Tl Tm V W Y Zn (cm) 299.5 243 731 1836 2959 158 194 300 141 735 1781 2930 352 78 300.5 261 665 1838 2795 350 197 301 134 603 1767 2861 274 0 301.5 240 672 1914 2730 306 338 302 254 634 2107 2689 200 352 302.5 215 367 1246 2522 388 204 303 264 421 1566 2428 322 198 303.5 0 618 2006 2556 153 236 304 237 584 1705 2761 98 86 304.5 38 506 1340 2564 96 128 305 0 430 1613 2387 525 77 305.5 0 477 1415 2375 283 286 306 204 416 1450 2483 438 179 306.5 271 513 1466 2350 257 349 307 0 290 1560 2289 266 26 307.5 66 297 538 1673 2987 76 161 308 150 473 532 1641 3107 39 71 308.5 147 487 273 1794 2889 419 175 309 133 567 490 1672 3044 290 53 309.5 70 474 479 1698 2810 0 254 310 93 353 284 2005 3022 263 0 310.5 167 383 409 1982 2897 0 186 311 79 293 503 2125 3047 0 55 311.5 37 144 407 1855 2735 285 53 312 163 536 589 2028 3062 109 269 312.5 219 566 507 1728 2978 134 0 313 178 624 362 1807 2908 161 183 313.5 178 375 577 1933 2753 0 0 314 166 468 520 1819 2893 55 283 314.5 230 689 643 2060 2689 200 163 315 185 598 442 2120 2841 233 317 315.5 116 424 541 2177 2757 255 174 316 108 401 616 2179 2496 169 297 316.5 212 336 415 1973 2931 173 122 317 170 392 388 2140 2718 45 67 317.5 118 522 338 2014 2782 0 309 318 225 517 567 2101 2545 401 198 318.5 187 414 372 1993 3105 144 92 264 Depth Te Tl Tm V W Y Zn (cm) 319 156 336 385 2201 2702 0 190 319.5 181 582 515 2306 2759 379 431 320 0 265 559 2313 2440 0 26 320.5 126 375 417 2218 2806 312 224 321 86 391 393 1933 2735 0 0 321.5 235 386 465 1886 2768 160 122 322 66 572 448 2125 2461 389 266 322.5 103 692 452 2047 2427 421 249 323 70 642 301 1985 2734 232 121 323.5 76 446 425 1812 2728 101 0 324 59 465 421 1899 2734 0 33 324.5 141 551 520 2002 2809 204 37 325 135 184 368 1831 2568 0 108 325.5 154 253 510 1759 2808 48 24 326 42 426 436 1739 2740 129 156 326.5 151 89 712 1690 2731 339 50 327 168 249 502 1728 2807 0 66 327.5 83 278 517 1572 2930 0 280 328 90 319 330 1691 2889 168 51 328.5 54 269 520 1769 2602 73 50 329 0 303 448 1995 2479 151 0 329.5 144 436 453 1726 2661 13 90 330 117 343 466 1927 2627 146 176 330.5 315 551 392 2074 2810 198 438 331 19 198 467 1926 3190 0 76 331.5 132 227 375 2069 2936 53 140 332 241 556 483 2386 2856 440 389 332.5 133 247 572 1916 2550 197 0 333 41 302 522 1741 2511 235 101 333.5 0 385 500 2096 2687 409 136 334 151 358 675 2074 2662 316 469 334.5 38 240 580 2241 2677 0 208 335 75 74 464 2005 2826 486 153 335.5 6 0 31 507 813 566 22 336 71 0 0 250 420 768 13 336.5 54 0 0 293 468 382 5 337 51 86 357 1380 2100 148 12 337.5 108 368 376 1994 2890 21 228 338 0 280 543 2326 2657 400 165 265 Depth Te Tl Tm V W Y Zn (cm) 338.5 184 362 398 2318 2606 183 0 339 165 316 540 2020 2489 182 294 339.5 57 396 426 2188 2414 230 129 340 126 336 509 1866 2255 344 287 340.5 42 302 538 2130 2645 365 281 341 96 97 532 2005 2384 0 88 341.5 96 365 544 2039 2483 72 177 342 83 270 471 2093 2386 146 197 342.5 56 219 550 1706 2351 358 42 343 211 360 452 1969 2486 231 187 343.5 148 189 453 1748 2408 132 90 344 11 196 490 2127 2236 378 0 344.5 0 46 478 2179 2516 271 247 345 131 30 446 2177 2211 266 212 345.5 131 52 441 2065 2234 189 175 346 82 156 555 1798 2456 118 313 346.5 78 0 384 1662 2285 346 0 347 0 240 341 1825 2521 203 107 347.5 11 85 331 2129 2154 0 178 348 15 146 480 1866 2318 0 154 348.5 115 84 547 1731 2222 166 54 349 68 0 351 1633 2240 82 0 349.5 77 0 367 1829 2102 0 0 350 11 97 316 2094 2178 0 86 350.5 74 323 478 2113 2247 358 230 351 10 22 336 1699 1950 409 113 351.5 24 0 364 1849 2061 264 55 352 100 245 494 1874 2319 321 298 352.5 95 0 587 1779 2140 302 79 353 0 0 47 846 1532 492 172 353.5 141 0 128 815 1146 501 122 354 8 34 137 988 1158 14 61 354.5 96 61 307 1041 1247 195 0 355 120 79 527 1449 2452 0 195 355.5 104 263 323 1846 2706 374 81 356 20 138 494 1797 2076 267 210 356.5 0 144 233 1707 2027 171 211 357 147 0 410 1524 2046 155 139 357.5 26 66 366 1530 2012 488 24 266 Depth Te Tl Tm V W Y Zn (cm) 358 0 73 445 1578 2105 251 73 358.5 17 0 221 1453 1856 241 118 359 59 0 274 1418 1743 204 24 359.5 0 12 365 1396 1760 455 72 360 35 0 161 1496 1659 110 151 360.5 46 0 242 1009 1646 601 51 361 81 43 373 1380 1692 627 208 361.5 47 86 308 1350 1841 485 265 362 51 0 429 1545 1706 226 140 362.5 169 144 390 1400 1898 592 226 363 173 125 353 1527 2061 122 105 363.5 164 67 187 1402 1887 305 129 364 100 143 424 1379 2105 397 192 364.5 19 0 369 1230 2130 280 219 365 125 0 420 1421 1944 324 89 365.5 59 106 469 1832 1994 82 238 366 49 27 361 1781 1924 244 100 366.5 79 0 334 1442 2122 0 0 367 0 0 401 1334 1865 532 190 367.5 18 0 155 1259 1813 526 31 368 12 101 392 1438 1909 13 49 368.5 286 786 2277 2671 495 80 369 141 486 2158 2645 208 119 369.5 202 413 2093 2753 245 122 370 0 281 2566 2406 175 0 370.5 201 230 2263 2914 358 375 371 189 365 2592 2696 30 386 371.5 122 511 2297 2783 264 305 372 20 481 2067 2474 440 167 372.5 118 477 2126 2670 174 206 373 0 404 2282 2940 0 88 373.5 180 161 2192 2695 0 283 374 159 235 2339 2821 193 449 374.5 220 229 2064 2275 249 7 375 278 185 2216 2445 298 168 375.5 354 234 2098 2345 10 331 376 258 274 1906 2558 297 333 376.5 305 101 2307 2880 0 353 377 100 308 2060 2834 416 337 267 Depth Te (cm) 377.5 378 378.5 379 379.5 380 380.5 381 381.5 382 382.5 383 383.5 384 384.5 385 385.5 386 386.5 387 387.5 388 388.5 389 389.5 390 390.5 391 391.5 392 392.5 393 393.5 394 394.5 395 395.5 396 396.5 Tl Tm 308 183 69 205 184 0 277 94 0 117 286 200 272 217 235 40 90 245 29 232 274 16 0 135 303 36 91 34 184 9 352 51 229 155 135 190 96 0 240 V 409 363 278 308 98 336 280 380 254 276 276 289 211 276 270 267 414 392 346 212 178 142 368 325 314 435 310 354 368 324 371 213 293 311 282 277 203 152 210 W 1824 1974 2008 1608 1871 1644 1704 1656 1444 1613 2154 1746 1998 1829 2031 2067 1858 1969 1822 1769 1796 1603 1677 1496 1772 1567 1797 1695 1797 1647 1554 1601 1663 1499 1628 1603 1914 1475 1772 268 Y 3046 2911 2905 2778 3013 2978 2831 2878 2529 2795 2881 2840 2892 2943 3047 3040 2919 2988 2942 3016 3098 3057 2745 3055 2772 2596 2786 2760 2797 2850 2918 2779 2656 2599 2732 2792 2506 2711 2868 Zn 118 203 344 252 384 192 341 15 328 155 303 0 393 105 388 331 238 13 231 588 0 303 460 249 175 191 11 491 232 582 248 68 291 126 342 112 161 223 460 388 433 117 147 402 0 247 224 99 332 126 430 258 287 223 403 153 201 421 252 401 432 205 496 448 159 157 309 232 364 370 0 158 270 204 239 168 204 278 Depth Te (cm) 397 397.5 398 398.5 399 399.5 400 400.5 401 401.5 402 402.5 403 403.5 404 404.5 405 405.5 406 406.5 407 407.5 408 408.5 409 409.5 410 410.5 411 411.5 412 412.5 413 413.5 414 414.5 415 415.5 416 Tl Tm 0 89 25 48 151 135 56 31 0 263 65 0 248 18 260 57 21 167 9 167 221 233 28 0 203 322 334 83 261 140 190 226 0 0 0 0 0 0 0 V 314 363 270 408 193 168 360 302 421 213 133 193 368 401 403 151 237 334 192 208 293 283 316 286 238 331 329 276 253 340 368 299 345 220 355 277 201 297 393 W 1632 1463 1771 1878 1891 1414 1683 1711 1871 1755 1792 1655 1571 1350 1884 1914 2291 1463 1811 1840 1855 1921 1788 1899 1709 1700 1743 1582 1805 1628 1627 1405 1729 1594 1592 1412 1438 1404 1762 269 Y 2630 2637 2820 2709 2732 2504 2835 2671 2723 2705 2705 2521 2948 2693 2795 2557 2805 2339 2693 3109 2894 2966 3052 2823 2897 2972 2968 3016 2994 2707 2917 2702 2605 2738 2801 2384 2188 2277 2663 Zn 366 226 399 450 185 109 387 281 353 202 0 0 35 439 131 258 189 566 0 364 362 141 55 131 0 305 174 105 0 275 306 471 129 0 168 302 201 391 0 58 328 375 155 334 0 137 156 481 349 197 153 161 412 452 202 356 200 245 304 240 353 486 268 259 636 527 377 480 411 513 487 287 347 161 403 284 292 130 Depth Te (cm) 416.5 417 417.5 418 418.5 419 419.5 420 420.5 421 421.5 422 422.5 423 423.5 424 424.5 425 425.5 426 426.5 427 427.5 428 428.5 429 429.5 430 430.5 431 Tl Tm 0 167 59 75 287 334 384 121 0 252 141 247 114 152 159 156 85 0 126 14 114 48 172 105 49 0 42 186 163 0 V 457 327 333 192 312 251 353 210 215 271 279 387 258 482 394 268 274 161 333 351 221 187 299 267 358 276 264 308 270 125 W 1836 1632 1896 1820 1594 1804 1801 1903 1858 1960 1778 1934 1918 1785 1736 1670 1562 1622 1822 1860 1731 1930 1669 1718 1700 1358 1346 1312 1213 951 270 Y 2829 2758 2811 2900 3045 2808 2875 2935 2773 2935 2642 2846 2933 2752 3081 3102 2931 2767 2821 2925 2852 2834 2919 2871 2840 2354 2091 1711 1978 1841 Zn 142 0 84 167 409 193 509 278 0 312 0 270 369 262 316 342 69 402 344 309 357 187 122 76 746 590 379 188 47 500 302 298 232 497 452 545 416 343 313 456 441 422 362 587 345 451 545 551 481 530 388 538 595 447 410 367 286 271 280 203 Appendix 3: Galang Co age model produced by Bacon® with composite depths vs. mean age. Table A 3.1: Galang Co Depth vs. Mean Age (BP) for composite core. Depth (cm) Mean Age Depth (cm) Mean Age (BP) (BP) 1 -62.9 35 141.9 2 -60.8 36 210.3 3 -58.6 37 277.2 4 -56.5 38 344 5 -54.4 39 410.7 6 -52.6 40 477.8 7 -50.9 41 540.5 8 -49.2 42 604.3 9 -47.4 43 667.8 10 -45.7 44 731 11 -44.1 45 792.7 12 -42.5 46 856.8 13 -40.9 47 920.6 14 -39.2 48 984.3 15 -37.6 49 1047.6 16 -33.5 50 1110.8 17 -29.4 51 1178.4 18 -25.4 52 1246.3 19 -21.3 53 1313.6 20 -17.3 54 1381.2 21 -9.3 55 1448.7 22 -1.3 56 1516 23 6.7 57 1584.8 24 14.7 58 1653 25 22.6 59 1721.1 26 33.9 60 1789.4 27 45 61 1855.3 28 55.9 62 1922.1 29 66.9 63 1988.6 30 77.8 64 2054.9 31 90.9 65 2121 32 103.8 66 2179.8 33 116.4 67 2238.3 34 129.2 68 2297.4 271 Depth (cm) 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 Mean Age (BP) 2355.9 2414.3 2485.8 2556.9 2628.8 2700.7 2772.8 2836.3 2900.3 2964.5 3028.6 3091.5 3150.8 3210.9 3271.8 3332.9 3393.6 3433.5 3472.5 3511.3 3550.2 3588.5 3629.3 3669.8 3710.2 3750.5 3791.5 3831.1 3870.6 3910.4 3950.3 3989.9 4036.2 4082.1 4128.2 4172.5 4216.8 4261.9 4306 Depth (cm) 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 272 Mean Age (BP) 4351.9 4397.1 4442.2 4485.7 4529.3 4572.7 4616.2 4659.4 4700.6 4741.6 4783 4824.7 4865.5 4905.5 4945.4 4986.1 5026.4 5067.7 5115.2 5163.4 5211 5259 5306.3 5349.4 5392.4 5436.3 5479.9 5524.2 5565.8 5608.4 5650.8 5694.1 5737.4 5764.3 5791.3 5818.2 5845.5 5872.4 5903.2 Depth (cm) 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 Mean Age (BP) 5934.8 5966.3 5997.9 6029.6 6081.2 6132.7 6184.2 6235.8 6287.3 6338.1 6389.4 6440.5 6491.5 6542.5 6583.7 6625.9 6667.8 6709.5 6750.9 6781.5 6812.4 6843.3 6873.4 6904.4 6933.1 6961.9 6991.1 7020 7048.5 7075.9 7103.7 7131.1 7158.7 7185.8 7202.6 7219.1 7235.8 7252.6 7269 Depth (cm) 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 273 Mean Age (BP) 7285.5 7302.3 7319.1 7335.6 7352.2 7369 7385.9 7402.7 7419.7 7436.7 7453 7469.8 7487.2 7504.6 7521.9 7537.9 7553.9 7569.7 7585.6 7601.5 7616.5 7631.3 7646.2 7661.1 7676.2 7691 7705.9 7720.8 7735.6 7750.4 7765 7779.9 7794.8 7809.6 7824.4 7840 7855.6 7871.4 7886.3 Depth (cm) 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 Mean Age (BP) 7901 7917.7 7934.3 7949.6 7964.4 7979.2 8013.5 8047.9 8082.1 8115.8 8148.2 8230.7 8313.5 8393.8 8474 8554.5 8649.3 8743.7 8838.4 8932.7 9027.2 9127.9 9229.7 9332 9433.7 9536.1 9624.1 9713 9801.9 9891.1 9979.8 10072.8 10166.3 10259.6 10352.5 10446.4 Depth (cm) 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 274 Mean Age (BP) 10536.9 10629.3 10721.3 10813.7 10904.9 10993.9 11084.6 11176.4 11268.2 11358.6 11422.3 11485.7 11548.9 11610.6 11671.1 11721.9 11772.3 11819.8 11865.6 11671.1 11721.9 11772.3 11819.8 11865.6 11911.7 11958.3 12004.1 12050.3 12096 12141.9 12189.6 12234.2 12279.5 12326.3 12374.4 Appendix 4: Galang Co XRF Geochemistry Table A 4.1 Galang Co XRF Geochemistry Al – Br Depth Al Ag (cm) 14.25 85 14.75 57 15.25 126 15.75 85 16.25 77 16.75 87 17.25 106 17.75 114 18.25 104 18.75 112 19.25 116 19.75 75 20.25 119 20.75 153 21.25 115 21.75 110 22.25 97 22.75 108 23.25 120 23.75 102 24.25 116 24.75 122 25.25 74 25.75 124 26.25 118 26.75 117 27.25 159 27.75 150 28.25 132 28.75 157 29.25 140 29.75 132 30.25 94 30.75 125 31.25 87 31.75 112 Ar 15491 11980 4181 4350 5519 7979 8086 7361 6597 4813 4437 4040 3913 4623 4632 4676 4905 4260 4100 5041 5515 4496 5041 4530 4755 5269 5164 4972 5964 5569 4498 4799 5557 5153 5753 5620 As Au 0 0 95 312 463 230 423 321 536 422 405 419 291 473 773 488 358 544 410 548 708 458 483 405 459 716 513 96 112 371 380 445 281 503 316 702 275 Ba 209 215 637 627 681 578 532 692 505 649 671 676 593 464 514 693 561 541 571 857 578 619 732 574 656 620 653 480 570 533 376 507 595 516 431 642 Bi Br 0 0 351 315 392 118 303 563 366 315 681 351 337 314 640 483 264 249 416 449 468 482 389 194 279 436 369 169 162 293 379 417 480 359 468 383 350 241 865 291 320 550 162 519 447 727 271 387 0 411 150 309 501 373 378 343 413 566 671 270 0 301 467 539 429 545 268 320 636 648 437 581 Depth Al Ag (cm) 32.25 110 32.75 112 33.25 143 33.75 144 34.25 53 34.75 86 35.25 103 35.75 138 36.25 112 36.75 76 37.25 103 37.75 155 38.25 116 38.75 141 39.25 146 39.75 175 40.25 100 40.75 77 41.25 104 41.75 129 42.25 137 42.75 47 43.25 164 43.75 173 44.25 116 44.75 149 45.25 136 45.75 126 46.25 171 46.75 108 47.25 105 47.75 132 48.25 98 48.75 131 49.25 95 49.75 128 50.25 141 50.75 69 51.25 116 Ar As 4908 4697 4799 5173 5015 4576 5035 5010 5339 5565 5850 5444 5323 5645 5205 5000 5215 5305 5249 5443 5513 5167 5652 5569 5518 6250 6187 6166 6112 5946 6451 6459 5967 6295 6345 6115 5963 6323 6233 Au 242 656 340 390 333 436 216 497 431 510 615 570 409 502 531 611 395 384 434 379 567 488 724 730 460 258 625 470 357 347 622 735 580 349 290 589 489 564 408 276 Ba 518 432 366 596 471 665 533 489 596 537 628 728 509 652 698 578 715 395 486 474 548 545 446 653 709 733 442 484 544 374 349 630 370 565 535 514 408 360 411 Bi Br 335 377 436 347 306 426 103 400 463 331 295 594 516 663 285 424 473 333 273 306 160 271 224 770 191 263 479 280 362 412 599 464 540 340 232 344 556 256 358 165 295 389 507 265 520 67 523 0 640 635 673 322 372 453 299 396 276 223 260 412 205 797 60 338 494 337 68 576 119 75 451 373 661 449 298 259 322 83 Depth Al Ag (cm) 51.75 113 52.25 134 52.75 111 53.25 203 53.75 173 54.25 182 54.75 131 55.25 141 55.75 158 56.25 108 56.75 165 57.25 166 57.75 114 58.25 119 58.75 66 59.25 163 59.75 110 60.25 125 60.75 97 61.25 99 61.75 234 62.25 136 62.75 117 63.25 149 63.75 118 64.25 80 64.75 160 65.25 107 65.75 125 66.25 127 66.75 96 67.25 134 67.75 164 68.25 84 68.75 78 69.25 145 69.75 161 70.25 114 70.75 124 Ar As 6192 6770 6969 6155 7030 7195 6945 7585 7306 7473 7375 7736 7265 7535 7814 7585 7234 7886 7052 7689 7488 7539 7731 8161 8120 8395 7835 8595 8234 8452 8677 8644 8744 8983 9003 8628 9013 8571 8589 Au 330 633 364 183 217 334 274 31 210 349 431 557 248 542 586 296 442 575 563 453 694 346 579 630 339 535 489 691 619 482 409 488 426 306 540 364 362 110 260 277 Ba 496 548 270 227 511 216 396 386 219 659 377 401 483 555 265 429 407 281 517 406 785 408 545 481 448 401 628 180 384 232 684 462 420 484 448 449 285 668 473 Bi Br 145 208 305 225 175 348 286 325 133 275 171 484 311 455 506 369 187 522 338 259 487 281 351 392 68 337 442 407 443 296 175 486 322 556 410 222 108 201 325 365 245 475 468 240 633 287 233 673 805 492 636 378 357 226 425 324 271 171 0 280 117 213 0 50 26 72 99 253 0 112 158 14 0 161 0 102 285 0 Depth Al Ag Ar As Au Ba Bi Br (cm) 71.25 132 8833 407 312 117 0 71.75 134 8936 127 342 328 309 72.25 107 8899 31 587 7 177 72.75 172 9206 316 311 190 469 73.25 113 9240 279 330 204 418 73.75 151 9024 274 448 263 512 74.25 168 9305 436 623 340 447 74.75 116 9359 127 449 262 723 75.25 122 9331 139 726 261 419 75.75 122 9208 185 234 241 465 76.25 134 9267 365 504 134 434 76.75 167 9672 235 560 127 532 77.25 42 9562 156 395 291 577 77.75 86 9439 312 419 60 250 78.25 127 9092 0 508 0 311 78.75 130 9453 197 477 249 420 79.25 127 0 8084 245 347 41 282 180 79.75 135 12 8532 535 429 0 133 514 80.25 131 43 9321 508 502 0 265 435 80.75 87 0 9258 138 317 87 80 459 81.25 121 47 9306 289 452 184 267 353 81.75 158 0 9989 425 602 0 89 896 82.25 90 25 8978 330 580 233 324 639 82.75 175 52 7361 587 516 0 588 506 83.25 142 61 7949 372 737 81 223 499 83.75 158 14 7751 475 531 37 316 718 84.25 171 0 8704 213 538 220 380 983 84.75 151 0 8104 333 404 0 433 712 85.25 119 7 7485 542 568 435 438 713 85.75 158 96 8129 365 554 154 472 584 86.25 131 0 7851 311 542 0 363 593 86.75 106 0 8383 430 377 163 310 518 87.25 145 0 8838 220 496 0 297 551 87.75 176 0 9070 303 377 270 338 834 88.25 103 0 9327 490 551 0 448 914 88.75 167 0 9185 428 215 122 233 809 89.25 71 72 8996 917 623 145 341 720 89.75 175 0 8804 812 835 0 355 844 90.25 159 138 8500 929 536 124 288 321 278 Depth Al Ag Ar As Au Ba Bi Br (cm) 90.75 139 103 8982 745 523 0 210 144 91.25 182 420 7904 0 228 162 0 75 91.75 253 503 7902 0 0 0 0 0 92.25 221 372 8107 386 217 0 0 0 92.75 156 420 8353 346 331 58 0 0 93.25 170 219 8695 1005 402 0 134 140 93.75 159 83 8345 785 552 40 237 0 94.25 122 35 8266 784 731 158 424 239 94.75 123 0 8352 953 647 0 548 280 95.25 91 7 8327 521 564 0 126 408 95.75 145 0 8785 572 523 0 492 356 96.25 185 0 9174 553 655 156 284 567 96.75 116 0 8929 689 489 350 421 419 97.25 188 118 8623 344 413 231 388 310 97.75 120 71 8735 620 546 608 562 144 98.25 150 22 8839 429 564 324 368 274 98.75 233 0 8891 307 619 0 395 558 99.25 109 0 8277 620 442 221 221 249 99.75 155 0 7594 404 694 170 360 242 100.25 149 0 7789 641 694 91 302 85 100.75 165 7 7595 701 482 0 408 283 101.25 130 4 7575 758 570 101 572 249 101.75 180 45 7465 585 593 102 416 230 102.25 161 82 7188 408 216 34 219 454 102.75 166 0 7429 448 597 306 237 62 103.25 111 31 7839 332 546 537 186 509 103.75 87 21 7622 632 429 584 237 813 104.25 168 0 7510 389 586 0 359 682 104.75 123 30 7921 175 463 557 187 675 105.25 138 0 8042 497 344 516 249 602 105.75 124 82 7609 195 637 0 497 859 106.25 148 0 8033 213 539 96 356 581 106.75 136 0 8554 408 435 32 427 472 107.25 141 29 8322 357 372 131 270 754 107.75 138 0 7726 333 777 214 369 950 108.25 138 34 8619 462 554 0 151 925 108.75 111 0 8275 95 501 97 225 581 109.25 129 0 8384 289 521 73 241 868 109.75 101 0 8577 619 602 333 372 948 279 Depth Al Ag Ar As Au Ba Bi Br (cm) 110.25 127 0 8464 308 413 129 299 679 110.75 122 0 8457 323 363 0 230 525 111.25 125 0 8341 486 670 184 453 880 111.75 129 0 8036 524 525 194 537 1048 112.25 78 50 8546 440 665 571 563 644 112.75 102 0 8426 532 439 559 208 540 113.25 142 0 8584 180 612 0 420 909 113.75 118 0 8537 410 368 188 303 686 114.25 140 17 8328 424 523 436 529 653 114.75 120 25 8655 306 484 627 344 752 115.25 190 0 8610 550 542 499 402 690 115.75 156 0 8212 490 466 308 54 605 116.25 201 0 8412 591 502 234 494 607 116.75 182 31 8082 293 533 0 573 817 117.25 137 0 7746 681 455 68 306 1025 117.75 153 0 8096 440 667 0 357 713 118.25 145 0 7440 582 463 201 276 458 118.75 220 0 7222 402 630 348 399 545 119.25 80 52 7776 382 463 0 275 1057 119.75 99 59 7291 554 487 215 532 883 120.25 123 0 11395 112 423 0 0 1018 120.75 93 0 14257 0 384 0 0 494 121.25 24 0 14437 0 204 6 0 377 121.75 65 0 14991 0 271 49 0 501 122.25 106 0 6721 255 483 19 101 599 122.75 140 0 6396 542 487 255 547 972 123.25 153 0 7544 346 500 163 454 691 123.75 155 30 7278 468 597 186 480 598 124.25 127 0 7757 490 579 1010 278 562 124.75 121 0 8323 405 280 741 309 127 125.25 136 0 8110 366 589 74 5 532 125.75 142 0 7837 303 474 134 334 413 126.25 123 0 8191 292 395 674 148 397 126.75 121 0 8321 557 325 171 440 468 127.25 157 0 8169 636 383 793 285 179 127.75 151 0 8137 517 601 9 444 198 128.25 111 0 9040 518 459 814 307 345 128.75 192 0 8365 188 503 1251 284 97 129.25 147 0 8504 380 288 356 501 759 280 Depth Al Ag Ar As Au Ba Bi Br (cm) 129.75 143 0 8225 592 464 235 377 601 130.25 117 0 8085 708 343 825 448 603 130.75 137 0 8379 742 411 490 267 877 131.25 121 0 8701 754 288 144 432 445 131.75 120 0 8445 709 405 214 482 636 132.25 170 0 8372 673 446 0 275 767 132.75 156 0 8802 703 469 539 134 567 133.25 105 0 9230 479 508 0 215 834 133.75 140 85 9277 512 638 0 346 549 134.25 104 0 9598 422 396 226 459 814 134.75 166 0 9645 643 537 0 387 907 135.25 110 151 9421 821 590 0 461 533 135.75 160 6 9310 659 447 392 367 996 136.25 129 25 9194 690 635 122 320 776 136.75 100 0 9463 426 513 0 505 678 137.25 122 0 9880 728 476 0 353 662 137.75 143 25 9409 515 782 0 293 383 138.25 162 150 9334 634 576 0 250 719 138.75 122 0 10042 1044 638 0 348 756 139.25 109 13 9977 847 569 0 208 572 139.75 205 15 9828 584 466 86 219 1176 140.25 146 0 10248 920 537 0 177 917 140.75 156 29 10168 681 654 13 119 486 141.25 131 0 10190 720 592 0 32 784 141.75 179 0 10589 417 509 371 106 379 142.25 99 0 10256 566 730 426 33 429 142.75 172 0 9939 473 346 34 306 543 143.25 100 0 9979 594 395 0 617 305 143.75 131 0 9965 1067 603 54 188 657 144.25 113 0 9898 1205 447 0 539 0 144.75 176 0 9726 1174 517 484 321 119 145.25 196 0 10289 706 684 1122 416 0 145.75 321 0 10038 503 558 2853 221 125 146.25 329 0 10243 724 530 2199 440 18 146.75 310 0 10430 265 466 1987 350 0 147.25 345 0 10445 532 610 2455 450 0 147.75 217 0 10068 746 667 1633 251 460 148.25 137 20 8976 474 353 183 240 879 148.75 113 0 8875 581 446 142 319 1157 281 Depth Al Ag Ar As Au Ba Bi Br (cm) 149.25 125 59 8637 711 533 0 24 784 149.75 106 0 8518 737 616 0 524 992 150.25 157 0 8518 424 727 0 513 833 150.75 157 0 8619 721 715 170 393 909 151.25 167 0 8494 503 522 0 358 667 151.75 178 22 8182 723 327 153 459 510 152.25 232 0 8254 715 665 0 473 591 152.75 193 0 8607 760 642 471 273 100 153.25 171 0 8369 975 551 951 528 615 153.75 163 21 8459 743 608 0 441 438 154.25 108 27 8716 838 563 0 586 350 154.75 138 0 10199 450 374 0 269 30 155.25 112 44 12803 0 388 378 0 134 155.75 49 0 14433 0 203 269 0 178 156.25 53 0 16089 0 133 109 0 41 156.75 89 18 15579 0 292 204 0 129 157.25 125 104 7000 392 375 373 120 491 157.75 159 86 6814 465 784 296 539 378 158.25 130 88 7490 348 578 549 589 548 158.75 168 50 7845 313 699 511 346 633 159.25 140 81 7847 214 399 1097 70 102 159.75 107 0 8034 497 592 131 345 502 160.25 111 6 7666 179 481 492 131 203 160.75 158 60 7724 626 618 132 303 517 161.25 137 77 7366 910 631 44 471 323 161.75 108 195 7126 317 516 411 339 155 162.25 150 27 7250 625 430 254 372 570 162.75 176 116 6927 363 874 0 337 354 163.25 149 0 7226 447 746 0 713 339 163.75 127 114 6798 394 845 375 142 949 164.25 99 66 6146 640 791 166 387 95 164.75 157 94 6276 780 893 175 428 52 165.25 107 120 5409 570 723 0 598 602 165.75 127 268 7407 0 542 0 0 1085 166.25 49 66 17079 0 241 0 0 362 166.75 91 57 12136 0 311 79 0 17 167.25 131 48 7229 128 946 132 42 506 167.75 101 43 7506 481 948 57 299 378 168.25 146 83 7119 654 730 65 305 431 282 Depth Al Ag Ar As Au Ba Bi Br (cm) 168.75 146 98 7402 601 581 788 576 480 169.25 183 83 7476 536 718 2098 366 318 169.75 131 0 7715 491 564 818 330 0 170.25 140 93 7044 521 358 2028 412 116 170.75 176 35 7016 200 432 4144 385 214 171.25 186 152 7410 575 764 2324 346 398 171.75 118 86 7459 240 663 2114 176 242 172.25 145 0 8776 350 646 1041 451 586 172.75 163 13 9678 435 459 1721 163 427 173.25 128 0 11152 224 324 707 144 369 173.75 113 0 14220 141 444 476 87 69 174.25 112 0 11520 380 449 298 0 0 174.75 156 4 7502 36 614 154 96 396 175.25 170 8191 676 567 727 190 175.75 116 7965 478 599 483 361 176.25 118 7595 798 573 389 226 176.75 117 7172 389 556 409 138 177.25 148 7441 649 630 382 345 177.75 161 7168 712 538 307 446 178.25 131 9396 434 511 308 242 178.75 121 12739 0 440 0 0 179.25 90 13100 13 451 0 0 179.75 53 15612 0 226 0 99 180.25 102 6170 378 680 242 176 180.75 185 7054 345 496 433 362 181.25 174 7373 319 616 696 193 181.75 134 6711 883 870 643 785 182.25 143 6959 272 774 492 658 182.75 117 7283 9 804 493 978 183.25 91 6276 522 707 528 783 183.75 140 7197 216 698 547 866 184.25 85 7201 242 910 716 656 184.75 147 7188 367 836 267 442 185.25 147 6754 486 604 354 804 185.75 133 5652 330 624 207 877 186.25 134 6567 378 850 554 836 186.75 117 6581 800 699 422 268 187.25 100 6365 730 492 435 331 187.75 106 6858 523 576 531 419 283 Depth Al Ag (cm) 188.25 204 188.75 151 189.25 104 189.75 71 190.25 137 190.75 134 191.25 124 191.75 145 192.25 165 192.75 85 193.25 178 193.75 134 194.25 135 194.75 127 195.25 158 195.75 169 196.25 162 196.75 183 197.25 63 197.75 126 198.25 153 198.75 141 199.25 66 199.75 124 200.25 154 200.75 162 201.25 156 201.75 83 202.25 83 202.75 62 203.25 87 203.75 101 204.25 156 204.75 106 205.25 122 205.75 163 206.25 121 206.75 149 207.25 163 Ar 7192 7641 8306 8208 8093 8154 9021 8544 8509 8729 8322 7523 7768 7116 7000 7026 6540 6945 7955 7511 8229 9549 8970 9166 9180 7914 8747 11506 16158 15322 14281 7301 7476 7260 6558 7980 8852 8593 7985 As Au 826 740 332 446 506 731 361 593 853 418 701 464 663 358 611 493 493 321 365 377 657 402 438 496 321 558 287 260 0 0 54 573 423 333 493 496 530 438 782 284 Ba 714 753 524 569 420 707 522 463 583 492 583 416 755 739 625 792 761 559 766 644 414 651 632 376 439 645 659 416 337 90 585 400 491 343 866 616 506 690 690 Bi Br 316 504 419 512 143 562 410 460 492 592 411 438 399 299 717 95 387 295 331 619 625 336 382 321 231 638 398 0 0 0 27 329 376 529 489 414 250 200 528 482 136 154 630 765 554 965 548 284 415 452 153 378 208 304 583 428 662 591 493 764 441 599 206 164 162 121 19 0 0 235 102 273 120 73 164 700 63 450 Depth Al Ag (cm) 207.75 179 208.25 159 208.75 90 209.25 117 209.75 105 210.25 174 210.75 114 211.25 144 211.75 112 212.25 123 212.75 166 213.25 88 213.75 123 214.25 119 214.75 135 215.25 101 215.75 104 216.25 131 216.75 142 217.25 137 217.75 149 218.25 150 218.75 138 219.25 179 219.75 162 220.25 74 220.75 178 221.25 137 221.75 126 222.25 96 222.75 122 223.25 200 223.75 132 224.25 145 224.75 182 225.25 70 225.75 170 226.25 129 226.75 196 Ar 9387 9016 8042 7945 7688 8170 8374 9302 9038 8792 8672 8385 9034 8820 8227 7870 7543 8375 7798 7758 7953 8205 7208 6864 7179 6489 8079 8490 8764 10227 8008 7022 6597 6221 5884 6117 6716 6274 7045 As 525 744 572 891 489 499 237 642 151 423 603 211 442 406 143 415 331 265 331 427 218 570 827 664 9 663 361 402 499 396 324 687 1244 1232 823 512 413 369 240 285 Au Ba 320 613 680 746 691 624 621 526 463 642 469 461 461 629 677 608 649 916 733 672 789 621 534 856 503 838 660 612 563 546 497 478 421 883 898 612 678 507 733 Bi Br 288 308 454 539 320 156 291 186 127 464 378 274 429 436 352 264 370 114 634 425 636 265 531 503 410 364 243 736 354 301 462 106 334 463 651 448 538 266 217 56 98 350 434 219 146 317 483 503 421 461 415 209 422 594 521 0 167 479 318 253 294 315 269 638 0 484 930 264 43 145 286 310 197 173 539 135 112 723 Depth Al Ag Ar As Au Ba Bi Br (cm) 227.25 122 8567 403 884 268 529 227.75 122 8495 290 850 236 432 228.25 153 8047 829 455 460 288 228.75 180 8509 462 768 496 266 229.25 180 8862 596 493 313 224 229.75 118 8738 545 406 511 0 230.25 120 12550 189 483 0 0 230.75 53 15756 0 317 0 0 231.25 22 15447 0 139 0 0 231.75 117 10948 187 442 371 513 232.25 103 8185 320 590 373 0 232.75 176 8104 515 679 263 205 233.25 129 8507 301 601 161 427 233.75 118 8783 531 500 684 403 234.25 196 7880 845 581 577 438 234.75 144 9105 496 575 389 467 235.25 168 8899 524 529 482 312 235.75 104 7391 488 348 357 0 236.25 163 8349 441 364 412 207 236.75 193 7972 256 451 177 183 237.25 129 8797 216 419 206 217 237.75 115 8379 464 406 525 662 238.25 137 8280 613 649 473 368 238.75 137 8231 390 665 350 0 239.25 125 8026 477 472 463 107 239.75 181 7347 465 783 454 276 240.25 124 8653 453 438 539 485 240.75 133 7822 223 419 214 311 241.25 71 6341 542 585 265 147 241.75 163 6007 482 817 78 831 242.25 58 6016 401 761 401 957 242.75 174 0 7982 307 374 940 496 95 243.25 140 0 7290 304 676 304 254 0 243.75 131 0 8477 303 518 854 393 213 244.25 162 0 8646 0 537 871 507 33 244.75 186 55 8758 689 524 750 210 25 245.25 165 0 8260 852 627 812 401 0 245.75 163 28 7297 33 610 1067 526 0 246.25 133 0 9310 421 456 758 507 299 286 Depth Al Ag Ar As Au Ba Bi Br (cm) 246.75 145 0 8164 706 626 551 581 402 247.25 124 0 8870 1002 514 286 641 116 247.75 138 0 8145 402 381 718 681 200 248.25 204 0 8091 523 355 498 532 45 248.75 121 0 8529 770 571 653 611 132 249.25 111 0 9046 776 368 1036 376 180 249.75 157 0 9628 244 445 682 546 331 250.25 151 0 9404 582 475 705 314 223 250.75 155 0 9020 560 427 743 410 12 251.25 205 189 8424 520 591 661 648 427 251.75 125 175 8193 858 208 657 385 86 252.25 154 298 8013 1230 587 520 695 502 252.75 190 19 8123 1400 574 675 568 148 253.25 149 248 7929 1333 509 744 732 512 253.75 151 260 7686 1061 633 754 644 147 254.25 86 229 7721 616 820 496 592 151 254.75 122 194 7645 1158 520 182 710 496 255.25 141 225 8131 1230 389 478 496 294 255.75 168 293 8070 856 429 598 416 13 256.25 95 472 8087 1102 514 338 884 304 256.75 124 129 9422 861 647 467 442 187 257.25 210 33 10616 356 399 413 375 230 257.75 114 46 10800 449 487 577 392 247 258.25 96 0 9379 715 446 28 446 143 258.75 139 0 8444 628 855 484 484 22 259.25 134 0 9689 988 659 221 427 0 259.75 108 0 9145 463 548 356 437 0 260.25 140 0 9971 269 793 332 509 248 260.75 167 0 7399 521 552 499 396 744 261.25 167 0 8925 614 294 627 487 170 261.75 93 0 8993 534 331 898 232 120 262.25 129 269 8562 788 506 555 467 0 262.75 112 161 8100 722 821 630 638 291 263.25 175 288 7211 942 620 369 673 213 263.75 121 203 6600 1159 617 0 520 145 264.25 144 46 7470 662 736 610 676 0 264.75 144 347 7362 1030 637 599 649 143 265.25 131 21 7458 436 499 545 454 0 265.75 118 16 7279 697 596 547 720 237 287 Depth Al Ag Ar As Au Ba Bi Br (cm) 266.25 163 226 7529 805 519 264 545 95 266.75 185 260 7768 517 563 342 584 74 267.25 186 33 7947 549 634 796 455 152 267.75 159 0 8020 295 541 367 483 405 268.25 147 0 8595 777 492 779 406 218 268.75 142 0 8566 567 482 506 470 134 269.25 142 0 8072 108 562 766 477 0 269.75 149 0 9326 117 198 1009 198 71 270.25 152 0 8880 0 0 1671 0 155 270.75 137 107 9208 0 239 1241 40 85 271.25 168 269 8476 0 0 710 0 539 271.75 221 404 7598 0 0 655 0 537 272.25 196 484 7930 0 0 596 0 207 272.75 261 617 7694 0 0 578 0 518 273.25 162 272 8413 0 68 487 0 565 273.75 146 299 8441 0 568 548 328 858 274.25 108 414 8391 790 708 285 251 649 274.75 141 0 12651 1013 918 268 331 514 275.25 128 0 12798 310 369 0 15 0 275.75 98 0 13529 644 492 0 142 0 276.25 92 0 12166 405 613 19 57 146 276.75 111 36 9913 1102 405 82 336 0 277.25 126 545 6856 947 649 176 490 19 277.75 142 356 7129 796 858 272 625 410 278.25 178 517 7433 699 607 145 560 163 278.75 147 171 7664 937 724 387 663 273 279.25 185 52 7929 765 739 385 741 251 279.75 156 0 7756 1316 804 359 466 483 280.25 97 0 7130 1249 606 248 491 0 280.75 93 246 7060 1254 606 7 434 89 281.25 154 110 6860 1072 829 0 571 44 281.75 125 148 5992 1206 985 99 420 256 282.25 123 8 6958 1064 792 182 634 460 282.75 173 141 7026 1001 756 62 578 443 283.25 124 270 7497 1111 814 69 800 595 283.75 139 508 6019 1255 726 115 646 0 284.25 168 816 6173 1095 714 136 758 311 284.75 115 823 6635 740 661 132 522 120 285.25 136 397 7143 801 661 0 559 298 288 Depth Al Ag Ar As Au Ba Bi Br (cm) 285.75 139 7 7156 762 637 147 486 0 286.25 147 44 7938 1177 550 0 380 574 286.75 145 0 7261 475 896 318 288 385 287.25 166 153 7688 0 308 517 136 633 287.75 266 628 7209 0 0 453 0 484 288.25 190 227 7765 0 0 1291 0 163 288.75 145 0 8521 430 375 1845 131 324 289.25 184 0 8865 527 234 2139 402 418 289.75 128 41 8690 543 419 1863 481 195 290.25 157 0 9378 227 425 766 490 126 290.75 183 0 6279 419 279 1172 359 121 291.25 155 0 8574 348 501 1785 534 475 291.75 159 0 8647 205 450 1406 315 330 292.25 173 0 8377 0 329 1136 461 235 292.75 232 0 9701 113 277 1513 239 359 293.25 137 0 10173 249 413 1198 266 260 293.75 199 46 10271 147 249 1465 384 12 289 Table A 4.2 Galang Co XRF Geochemistry Ca – Hf Depth Ca Cl Co Cu Eu Ga Ge Hf (cm) 14.25 18937 103 517 328 61 400 143 154 14.75 26260 45 361 450 927 472 233 186 15.25 45327 116 851 525 2313 441 476 177 15.75 48633 74 819 640 3657 383 113 177 16.25 56344 19 1282 646 3494 410 87 204 16.75 51547 66 1108 541 3376 210 172 211 17.25 43389 106 1201 637 2891 322 173 207 17.75 44202 37 964 601 3202 587 26 159 18.25 42918 57 1184 762 2077 684 300 181 18.75 46318 90 1025 630 3047 525 368 239 19.25 43096 56 1057 526 3555 785 264 105 19.75 44064 0 1218 629 3281 378 0 217 20.25 44929 90 987 395 4035 647 369 116 20.75 46652 15 1522 460 3129 575 133 162 21.25 46213 55 1304 596 3855 531 6 167 21.75 43905 57 1216 585 3239 596 200 251 22.25 45489 66 1340 617 3846 265 552 164 22.75 43730 18 1239 407 2871 605 239 241 23.25 43602 16 1131 550 3505 609 577 100 23.75 49754 43 1436 497 3863 642 352 317 24.25 47903 95 1575 456 3709 647 429 230 24.75 51304 49 1387 511 3784 551 313 270 25.25 54481 81 1593 488 3402 565 307 188 25.75 52322 49 1439 504 3357 353 286 88 26.25 54949 59 1480 543 3526 480 162 212 26.75 56879 68 1446 651 3880 627 258 211 27.25 56899 63 1392 674 3366 815 155 278 27.75 57889 66 1138 540 3162 606 340 249 28.25 59036 40 1245 375 3105 368 209 277 28.75 54239 56 1046 559 2656 134 98 221 29.25 53139 5 756 589 2284 472 526 247 29.75 55598 38 826 630 2462 541 267 139 30.25 51123 104 788 781 2666 666 447 259 30.75 52365 54 942 790 2605 762 339 229 31.25 54830 53 913 516 2913 357 262 126 31.75 52610 48 1269 686 2692 259 140 398 32.25 54221 63 1126 689 3149 491 263 140 32.75 53089 18 799 741 3277 349 441 182 290 Depth Ca Cl (cm) 33.25 53297 33.75 50688 34.25 44459 34.75 46340 35.25 46711 35.75 42804 36.25 45971 36.75 44031 37.25 45213 37.75 44970 38.25 47409 38.75 51414 39.25 52535 39.75 55706 40.25 58763 40.75 60557 41.25 61740 41.75 61526 42.25 56731 42.75 57867 43.25 55396 43.75 53853 44.25 57956 44.75 60781 45.25 61936 45.75 63916 46.25 63609 46.75 64640 47.25 70552 47.75 68747 48.25 65910 48.75 66637 49.25 64400 49.75 63898 50.25 62835 50.75 69343 51.25 69394 51.75 72924 52.25 75811 Co 47 24 15 12 57 13 26 55 35 25 0 14 25 23 52 62 52 77 60 64 38 10 21 85 75 24 47 63 82 82 44 50 29 77 53 47 74 55 81 918 712 793 793 700 912 846 645 1014 1207 1106 1256 1326 1441 1776 1728 1483 1330 1358 1230 1144 1037 947 797 1081 1096 1004 1324 1155 1540 1227 1157 1100 1109 1149 1482 1238 1353 1320 Cu Eu 343 695 554 700 718 829 760 742 749 524 549 860 682 371 522 540 664 571 706 661 951 592 728 721 598 721 537 609 643 803 708 786 690 765 792 466 428 726 498 291 2872 2873 2492 2813 2867 2319 2226 2853 2345 3204 3625 3659 3459 3640 3427 3564 3194 2796 3273 2807 2360 2107 2539 3288 2850 2748 3362 1965 3223 2600 2763 2684 2588 3380 2869 2976 2694 3020 3150 Ga Ge 450 716 531 613 236 427 624 262 535 387 216 383 577 578 479 420 383 341 151 593 717 709 545 342 520 503 80 203 396 515 637 708 488 636 322 287 602 409 380 Hf 336 589 539 509 317 550 356 396 339 210 281 0 339 505 108 353 157 286 419 276 537 91 229 17 429 262 478 384 113 422 530 606 426 397 152 365 510 381 106 188 76 325 251 141 205 330 170 307 194 136 53 213 233 219 128 130 266 278 90 299 215 201 233 212 277 246 223 178 267 243 196 260 247 194 249 312 234 238 Depth Ca Cl (cm) 52.75 89138 53.25 102910 53.75 102671 54.25 105465 54.75 96442 55.25 94145 55.75 83408 56.25 73891 56.75 58230 57.25 50620 57.75 44880 58.25 44206 58.75 45737 59.25 43215 59.75 39201 60.25 52759 60.75 62287 61.25 59518 61.75 45942 62.25 46641 62.75 53789 63.25 51527 63.75 48707 64.25 43449 64.75 37041 65.25 45545 65.75 45272 66.25 34750 66.75 42461 67.25 42629 67.75 61993 68.25 50396 68.75 40045 69.25 35007 69.75 38827 70.25 38793 70.75 37423 71.25 46071 71.75 39303 Co 73 79 49 72 97 92 77 38 36 66 54 57 0 44 38 69 75 59 28 83 17 60 28 54 61 43 20 39 5 30 65 50 26 0 17 49 33 37 12 1455 988 916 1014 693 809 604 608 635 542 710 921 762 702 829 706 829 907 1411 1183 1248 1057 1285 1340 916 992 1144 910 1069 1020 755 1074 985 1162 1087 935 1082 1193 713 Cu Eu 640 440 594 478 638 677 478 941 734 820 819 765 532 654 763 565 620 503 718 499 470 617 556 396 663 577 402 937 667 670 742 543 675 651 712 685 466 658 902 292 2085 1955 1203 1486 2241 2467 2109 2683 1936 2476 2173 1997 2780 2616 2634 2754 2719 3099 3318 3880 3143 2647 2829 3692 3610 3424 2981 3629 3839 3478 3292 3236 3687 3508 3056 2791 3098 3203 2656 Ga Ge 492 533 532 383 874 692 466 671 124 752 221 665 270 517 675 396 362 389 300 324 555 749 300 462 469 581 510 530 459 765 784 258 404 272 487 324 201 555 570 Hf 331 610 222 364 335 0 286 155 597 579 283 422 546 395 490 756 239 148 135 268 425 343 35 353 371 661 640 420 175 296 427 17 404 93 370 204 360 224 129 101 168 218 337 173 130 248 162 289 241 203 292 295 238 230 253 252 234 247 291 398 354 189 193 270 341 206 241 300 424 200 342 352 390 335 261 356 369 152 Depth Ca Cl Co Cu Eu Ga Ge Hf (cm) 72.25 54185 46 787 704 2446 198 140 244 72.75 68099 52 961 579 3052 311 287 335 73.25 62539 65 854 458 2648 334 537 463 73.75 42711 46 508 908 2905 615 524 295 74.25 40190 19 387 758 3058 568 677 202 74.75 40957 39 898 781 1971 384 587 361 75.25 40947 77 268 872 2687 507 61 375 75.75 45632 23 515 747 2959 404 326 133 76.25 50611 59 827 674 2855 616 70 266 76.75 53128 57 674 938 2843 560 284 268 77.25 71054 75 927 477 2504 182 464 248 77.75 86706 65 963 594 2505 559 307 298 78.25 88458 21 986 527 2547 435 112 382 78.75 90307 63 1081 336 2920 533 474 375 79.25 80214 107 1032 476 3530 793 404 208 79.75 74335 140 1127 487 2387 328 61 364 80.25 63322 168 907 565 2121 456 270 314 80.75 70152 224 1083 359 1733 415 0 236 81.25 64790 112 1024 602 1991 470 156 287 81.75 62392 122 927 812 2366 516 125 153 82.25 67755 50 1105 699 1590 657 327 374 82.75 85921 58 1358 622 3297 169 278 176 83.25 81513 74 1236 528 2831 90 175 382 83.75 88756 41 1080 582 3341 430 94 271 84.25 91578 95 1134 501 3648 452 283 320 84.75 88114 114 1246 635 3658 481 547 143 85.25 90527 98 962 568 3407 554 224 296 85.75 92446 105 1084 918 3035 874 480 336 86.25 86550 68 749 871 2870 524 328 265 86.75 88303 90 985 647 2518 106 135 160 87.25 86376 67 912 631 2210 297 63 329 87.75 79612 79 801 550 2862 487 454 194 88.25 75794 109 1007 867 2763 146 409 308 88.75 67249 115 985 753 2823 678 505 331 89.25 51774 81 866 651 3160 411 621 353 89.75 47439 74 938 825 3351 624 401 216 90.25 67142 26 942 488 3155 0 227 385 90.75 148962 45 807 472 2036 419 9 328 91.25 509538 227 791 0 1852 0 0 356 293 Depth Ca Cl Co Cu Eu Ga Ge Hf (cm) 91.75 620346 210 1114 0 2020 0 0 246 92.25 414909 129 1422 348 2866 367 0 309 92.75 360186 146 1737 110 2264 0 0 190 93.25 167792 81 2011 564 3383 202 0 145 93.75 119978 43 2193 222 4017 51 46 176 94.25 66303 40 1887 542 4286 414 35 142 94.75 42101 52 2018 634 4031 443 163 277 95.25 42274 44 1897 425 3403 529 133 366 95.75 46602 79 1745 770 3965 614 416 135 96.25 51722 46 1737 299 3448 663 124 295 96.75 63190 47 1866 503 2734 242 173 99 97.25 70101 71 1640 639 3462 338 0 175 97.75 75519 91 2205 485 2600 380 180 277 98.25 76635 96 1766 540 3029 685 128 198 98.75 78082 86 2077 392 3341 369 166 222 99.25 68747 75 1786 627 3305 421 363 262 99.75 72375 49 1694 590 3024 451 0 276 100.25 80604 37 1711 671 3387 373 85 174 100.75 81376 104 1652 596 2940 469 245 247 101.25 82034 65 1442 504 2789 440 109 324 101.75 78499 71 1534 578 2977 480 141 225 102.25 81127 105 1416 443 3056 320 263 284 102.75 88112 69 1687 595 3041 212 0 238 103.25 87862 52 1552 556 3031 530 237 221 103.75 89829 70 1677 682 3288 368 225 348 104.25 86263 73 1422 680 3070 248 173 307 104.75 82555 52 1163 788 3304 145 79 102 105.25 82717 28 1238 529 2630 364 471 389 105.75 81953 82 1830 744 2870 537 309 246 106.25 78805 33 1323 611 3454 537 41 207 106.75 82664 71 1147 797 3070 576 0 82 107.25 79942 60 1034 655 2966 433 274 254 107.75 80204 58 1315 813 3199 490 63 201 108.25 78926 51 1076 696 2482 534 184 439 108.75 80008 58 1063 863 2263 444 298 258 109.25 83658 57 968 805 2436 419 364 278 109.75 82529 74 977 606 2407 569 313 132 110.25 80346 54 1014 621 2936 164 280 275 110.75 83515 54 1000 586 2727 184 441 315 294 Depth Ca Cl Co Cu Eu Ga Ge Hf (cm) 111.25 83496 57 1219 639 2488 508 367 386 111.75 81746 47 1035 640 2530 489 394 194 112.25 77994 32 1513 641 1588 409 305 310 112.75 76286 74 1231 555 2588 452 403 226 113.25 84036 111 965 681 3029 346 527 489 113.75 87381 87 989 692 2859 422 289 153 114.25 89090 75 1176 707 2744 641 420 251 114.75 86136 56 1031 806 2751 507 202 318 115.25 78929 47 1149 650 2330 611 368 359 115.75 82416 40 1090 599 2386 355 217 303 116.25 79510 31 1103 723 2666 428 319 282 116.75 75169 86 1022 719 2969 430 475 270 117.25 76238 50 1206 661 2342 500 390 243 117.75 77297 103 1156 565 1903 362 0 194 118.25 81904 6 1175 658 2056 295 255 158 118.75 85497 23 993 624 2696 711 91 265 119.25 84702 51 981 700 3145 515 212 233 119.75 78979 0 1101 708 3217 564 112 203 120.25 54061 33 609 554 586 358 276 327 120.75 26472 35 249 391 0 268 143 218 121.25 18417 41 207 335 0 327 100 228 121.75 18786 9 245 304 49 345 192 104 122.25 39142 20 531 457 1389 485 234 246 122.75 72194 87 1109 591 2989 441 402 163 123.25 79511 52 1521 752 2202 261 211 88 123.75 89135 93 1407 796 2768 682 591 227 124.25 113939 73 1478 625 3084 436 289 345 124.75 108169 95 1691 390 2791 79 352 171 125.25 114750 53 1508 750 2489 308 138 168 125.75 112933 80 1449 530 2158 96 203 149 126.25 115873 76 1399 455 2189 181 225 379 126.75 116965 120 1536 717 2387 474 296 161 127.25 120070 78 1432 579 2416 263 25 83 127.75 96156 81 1686 732 2518 812 156 146 128.25 92365 51 2118 425 2380 899 470 224 128.75 111007 64 1830 754 2143 325 71 60 129.25 114433 75 1265 742 1940 556 401 230 129.75 107232 92 1144 667 2368 405 289 207 130.25 98497 63 1285 719 2076 358 382 211 295 Depth Ca Cl Co Cu Eu Ga Ge Hf (cm) 130.75 88829 65 1145 586 2645 497 416 189 131.25 90498 86 1081 701 2156 630 256 273 131.75 82770 52 1227 515 2419 485 197 286 132.25 81580 50 1079 820 2036 373 429 211 132.75 83955 101 1230 785 1874 546 325 142 133.25 98968 52 1210 855 1794 428 487 227 133.75 98969 86 904 715 2485 630 242 393 134.25 92556 67 1253 695 1425 319 311 323 134.75 84917 68 1285 661 2352 553 262 350 135.25 79767 26 1294 725 2148 629 308 319 135.75 81112 54 1202 655 2342 508 182 217 136.25 85151 45 1268 752 2013 324 269 299 136.75 80180 75 1120 774 2701 359 82 273 137.25 76682 41 1303 658 2702 219 446 321 137.75 72843 67 1419 831 2554 566 0 275 138.25 65811 7 1346 687 2168 511 0 278 138.75 62810 18 990 714 2823 458 292 363 139.25 62403 34 1081 738 2891 407 328 324 139.75 63394 0 1286 656 2195 433 155 352 140.25 62112 17 1108 808 2476 360 431 212 140.75 61853 50 1177 661 2991 471 0 213 141.25 62113 8 1624 827 1518 156 207 240 141.75 64599 64 1379 513 2410 352 205 319 142.25 67940 18 1715 687 2229 437 311 344 142.75 68128 73 1354 472 2561 285 90 194 143.25 62568 11 1747 523 2160 494 272 361 143.75 46999 75 1775 722 3161 756 150 313 144.25 44604 36 1967 573 3444 619 307 249 144.75 54038 78 2567 599 2743 459 180 189 145.25 62900 110 2569 405 3403 779 0 272 145.75 88099 154 2823 646 2185 623 249 148 146.25 92803 159 2823 922 1913 503 460 178 146.75 102751 162 2809 774 1960 538 341 235 147.25 91768 113 2651 800 1792 660 329 247 147.75 69466 114 1674 1045 2599 807 149 279 148.25 61535 56 964 743 3066 418 146 207 148.75 60268 47 1135 682 2418 464 390 428 149.25 58104 9 1275 632 2819 221 160 298 149.75 56608 54 1232 782 2864 711 549 401 296 Depth Ca Cl (cm) 150.25 52808 150.75 50939 151.25 46844 151.75 49287 152.25 62528 152.75 80540 153.25 61615 153.75 56287 154.25 49407 154.75 45180 155.25 20766 155.75 14451 156.25 7452 156.75 9881 157.25 30413 157.75 48046 158.25 45350 158.75 50508 159.25 52454 159.75 56706 160.25 58273 160.75 52409 161.25 49129 161.75 52760 162.25 48287 162.75 41723 163.25 38022 163.75 43789 164.25 37944 164.75 35946 165.25 32931 165.75 36512 166.25 9850 166.75 16632 167.25 41519 167.75 45318 168.25 52613 168.75 51116 169.25 56682 Co 62 0 37 64 93 69 44 50 68 0 44 40 7 9 40 36 14 5 0 72 31 32 73 50 0 0 0 0 0 0 18 34 35 23 58 5 20 51 37 1312 1164 1301 1354 1630 1399 1293 1217 1158 843 400 160 85 217 385 771 1027 764 766 942 650 676 736 787 494 394 157 331 310 547 201 251 121 23 261 293 764 877 718 Cu 630 713 512 749 669 616 648 867 880 877 799 463 416 478 616 784 829 983 632 760 745 1045 979 989 1046 784 913 919 1183 932 1112 1061 265 430 1096 1018 849 840 733 297 Eu 2934 3230 3356 2533 2660 2709 2845 2876 2651 1904 0 0 0 0 1381 2648 2438 2283 2330 2328 2522 3304 2769 3092 2229 2171 2194 2493 2174 1769 2139 1729 63 42 2298 2525 2613 2677 2158 Ga Ge 671 366 377 511 726 296 214 460 451 548 491 452 411 172 241 356 721 175 198 376 185 375 556 431 196 228 309 461 628 726 396 421 194 302 267 478 641 433 476 Hf 299 139 56 171 196 419 287 152 375 452 302 110 268 36 575 209 499 315 528 645 331 426 194 39 318 243 120 285 729 441 317 494 116 72 443 666 434 422 265 296 291 258 300 371 364 134 287 289 260 249 191 187 120 206 348 301 242 332 349 216 329 197 259 110 295 367 384 281 273 321 419 136 233 382 330 351 330 255 Depth Ca Cl Co Cu Eu Ga Ge Hf (cm) 169.75 57126 59 990 703 2503 144 331 161 170.25 53845 70 1012 966 1939 829 332 254 170.75 55170 54 925 909 2417 383 330 223 171.25 51324 32 864 947 2388 254 646 380 171.75 53423 38 876 796 2148 315 219 173 172.25 54057 52 750 994 2323 592 183 223 172.75 51590 56 568 580 2626 229 524 300 173.25 43339 36 664 695 1454 556 269 306 173.75 29177 0 570 492 671 602 151 243 174.25 34510 6 385 956 1271 404 136 283 174.75 45540 131 705 620 1571 521 535 315 175.25 49019 0 604 727 3051 671 171 250 175.75 47303 0 757 912 2897 575 441 357 176.25 47297 29 509 966 3482 486 527 275 176.75 45483 6 476 831 3251 330 471 252 177.25 48248 0 572 1034 3353 291 361 249 177.75 45936 7 471 795 3279 129 438 253 178.25 45124 43 564 1020 2492 482 109 290 178.75 19942 79 263 679 117 463 162 203 179.25 20207 64 268 704 286 424 166 319 179.75 13286 46 203 398 0 260 262 179 180.25 37517 24 388 730 2499 686 428 327 180.75 53413 19 549 869 3198 375 271 182 181.25 48303 15 509 1047 3519 306 246 182 181.75 43102 0 287 856 2985 139 567 303 182.25 46032 0 206 1105 2555 497 533 242 182.75 52781 0 466 800 2472 377 320 394 183.25 46760 19 340 854 2205 540 410 357 183.75 49523 9 248 914 2751 442 72 151 184.25 51413 0 219 762 2319 147 465 287 184.75 49618 0 197 944 2502 285 330 258 185.25 49420 7 72 1161 2571 364 434 341 185.75 50589 0 372 970 2099 239 317 278 186.25 58767 0 301 755 3439 524 115 123 186.75 57795 15 587 799 2714 231 522 372 187.25 63556 20 432 761 3576 401 477 244 187.75 63110 0 442 679 3350 292 211 356 188.25 60260 48 415 823 2959 359 503 385 188.75 63400 0 556 917 2956 372 274 183 298 Depth Ca Cl Co Cu Eu Ga Ge Hf (cm) 189.25 58620 0 280 793 3658 357 140 350 189.75 60254 0 508 871 2911 425 350 136 190.25 59634 11 433 750 3573 514 688 258 190.75 58838 0 658 1106 3000 650 433 328 191.25 59066 77 495 972 3530 328 491 434 191.75 59498 18 417 1018 2753 671 408 345 192.25 60085 49 470 718 2995 626 541 174 192.75 57643 17 574 823 3208 643 314 202 193.25 58894 38 284 1072 3583 647 539 272 193.75 66668 6 438 678 3083 357 496 192 194.25 62188 0 385 795 2898 319 477 390 194.75 63633 0 444 860 2803 591 218 386 195.25 62492 0 474 650 3329 822 613 269 195.75 51883 0 252 837 3047 447 730 328 196.25 53842 0 161 778 3104 519 346 294 196.75 55546 19 322 939 2881 179 428 330 197.25 60152 12 302 814 2912 111 280 243 197.75 58281 0 368 979 2910 537 273 214 198.25 58994 7 452 844 2700 464 490 408 198.75 54486 0 450 772 3295 437 172 260 199.25 56887 15 335 940 3137 708 577 109 199.75 58281 0 565 933 2661 382 606 358 200.25 60908 23 465 808 3710 108 437 290 200.75 57237 38 373 836 2973 262 347 345 201.25 59241 22 576 814 3322 266 17 329 201.75 49133 51 455 926 1210 534 331 367 202.25 16911 66 212 337 0 562 14 204 202.75 9610 90 204 433 0 304 194 140 203.25 15715 39 87 481 0 243 267 222 203.75 41819 202 192 661 1994 451 532 314 204.25 63698 135 464 994 2481 240 678 193 204.75 65479 61 547 685 3443 428 278 163 205.25 69372 29 362 772 2714 322 404 226 205.75 63066 23 480 762 2968 605 369 350 206.25 63250 25 708 869 2705 453 590 167 206.75 57923 39 530 702 2559 423 213 292 207.25 61613 32 417 874 3106 328 526 255 207.75 57617 65 545 766 3323 260 426 273 208.25 52535 50 310 912 2675 581 286 311 299 Depth Ca Cl (cm) 208.75 57211 209.25 61054 209.75 60050 210.25 62384 210.75 63673 211.25 59942 211.75 53966 212.25 65008 212.75 62807 213.25 59733 213.75 56930 214.25 56053 214.75 53362 215.25 51758 215.75 53862 216.25 54441 216.75 54127 217.25 52994 217.75 55213 218.25 53020 218.75 55107 219.25 45880 219.75 45264 220.25 41147 220.75 40018 221.25 39643 221.75 46233 222.25 76340 222.75 64122 223.25 55817 223.75 56746 224.25 50741 224.75 68102 225.25 62018 225.75 75059 226.25 55720 226.75 49494 227.25 51485 227.75 55882 Co 25 7 48 4 37 52 75 64 73 0 13 0 0 0 0 35 41 0 0 0 22 8 0 0 0 0 13 52 85 5 0 0 40 10 53 0 0 0 0 Cu 516 526 555 387 529 309 264 561 496 551 320 218 146 207 54 92 196 164 410 400 327 350 352 261 504 569 259 842 631 351 341 486 310 679 322 333 313 496 192 958 994 727 926 687 1029 738 696 557 945 517 845 890 971 1055 970 1135 1126 1099 990 729 695 881 918 784 1004 748 833 602 674 555 1051 991 883 902 897 1134 1137 833 300 Eu 2366 2624 2805 3291 2892 2524 2362 3629 3698 2542 2670 3090 2200 1611 2131 2035 2019 2266 2850 3058 3180 3347 2753 2777 2643 2974 3819 2887 3559 3187 2721 2180 3168 2659 3068 2362 2181 2857 2962 Ga 551 454 307 403 379 411 476 373 674 638 351 576 137 378 419 622 575 590 524 312 544 619 445 558 544 1038 404 365 242 145 326 434 694 218 544 234 0 392 600 Ge Hf 379 386 397 201 585 492 498 245 658 689 541 378 376 517 206 229 307 525 605 342 453 587 392 385 539 808 548 343 160 455 517 506 550 596 216 632 360 401 217 284 415 323 364 370 242 282 140 317 353 242 410 400 385 222 416 377 395 233 124 123 330 319 221 331 243 394 248 202 289 234 281 217 192 321 163 106 302 377 Depth Ca Cl (cm) 228.25 58827 228.75 50652 229.25 53911 229.75 52565 230.25 40987 230.75 23954 231.25 15512 231.75 36042 232.25 66632 232.75 62194 233.25 63112 233.75 66089 234.25 65384 234.75 73513 235.25 86538 235.75 79983 236.25 74595 236.75 76539 237.25 73503 237.75 75595 238.25 72789 238.75 70698 239.25 58649 239.75 58269 240.25 71600 240.75 80093 241.25 58343 241.75 52799 242.25 50672 242.75 96619 243.25 94526 243.75 104211 244.25 93638 244.75 102767 245.25 105089 245.75 121177 246.25 95192 246.75 65010 247.25 78308 Co 0 12 64 43 13 31 66 18 61 65 44 76 13 80 0 34 45 55 64 0 10 0 0 44 45 78 36 61 4 12 5 32 41 21 36 31 0 0 20 478 519 1056 748 646 224 179 313 591 684 358 471 524 784 632 611 413 415 595 352 440 400 371 511 403 527 387 293 167 1108 1171 1174 1096 1217 1196 1170 754 752 773 Cu 1038 918 985 760 798 523 358 474 824 911 798 781 703 668 680 766 604 826 635 652 865 722 908 1044 903 664 688 956 954 768 832 1018 696 632 657 542 918 1225 1114 301 Eu 2759 4249 3563 4096 755 0 0 1013 2963 2550 3399 3299 3882 3956 2771 2582 2782 2820 3101 3560 2314 3542 3039 3562 3186 2427 2576 2114 2673 3763 4194 3870 3721 4449 3827 3698 3698 3003 4310 Ga Ge 721 469 532 165 597 427 313 303 377 634 174 469 263 392 367 269 503 451 147 353 595 568 255 582 575 380 465 328 792 511 533 770 259 317 828 750 428 520 852 Hf 366 278 133 231 186 133 104 473 398 174 356 358 526 474 318 610 329 433 291 615 587 64 188 536 411 303 366 578 399 245 358 168 582 525 561 271 807 735 473 257 281 325 273 235 187 111 0 198 423 261 267 198 279 205 297 187 340 197 245 378 253 180 288 309 129 276 266 355 427 532 411 576 558 592 568 419 727 665 Depth Ca Cl (cm) 247.75 81838 248.25 70016 248.75 75400 249.25 87246 249.75 87132 250.25 85060 250.75 97800 251.25 90223 251.75 68615 252.25 59695 252.75 53139 253.25 54434 253.75 51747 254.25 50435 254.75 47959 255.25 48255 255.75 49417 256.25 51233 256.75 53216 257.25 64896 257.75 73436 258.25 78871 258.75 104577 259.25 70111 259.75 73056 260.25 87063 260.75 76218 261.25 87800 261.75 75115 262.25 70208 262.75 58863 263.25 53778 263.75 52198 264.25 54100 264.75 56114 265.25 54957 265.75 55781 266.25 60579 266.75 60960 Co 55 0 0 19 0 13 7 12 0 0 14 0 0 0 0 0 0 0 0 6 41 0 9 33 0 0 16 53 0 0 0 0 0 0 0 0 0 0 0 656 719 725 1084 1060 1091 834 999 1357 1031 995 944 1101 965 1295 1047 1178 1217 980 1059 958 651 836 679 702 802 999 889 982 872 1010 842 937 865 957 754 638 721 781 Cu 807 936 950 683 1039 761 621 598 961 1002 973 807 930 1215 832 993 981 1102 1081 824 773 708 816 821 837 926 796 659 719 950 943 825 1012 843 975 1011 1094 735 938 302 Eu 3412 3598 4394 4837 4024 3891 4443 4441 4390 4254 4575 4846 4438 5068 4295 4394 3468 4324 3790 4117 3354 3365 3410 2566 2252 3265 3893 4230 4159 3697 3125 3254 3961 4070 4066 4061 3966 3938 4499 Ga Ge 565 703 730 706 587 362 344 466 533 454 669 471 781 628 261 592 250 607 743 819 652 698 744 294 445 694 539 359 547 470 796 982 545 628 458 426 775 394 606 Hf 399 898 371 404 163 322 374 420 488 352 422 697 596 456 294 300 386 491 535 379 207 634 455 461 428 499 828 630 235 476 406 880 724 248 485 245 521 501 513 319 696 562 557 492 305 413 563 431 412 427 650 671 275 289 556 394 532 538 374 262 447 515 468 406 505 495 465 515 467 678 541 533 552 587 668 577 683 470 Depth (cm) 267.25 267.75 268.25 268.75 269.25 269.75 270.25 270.75 271.25 271.75 272.25 272.75 273.25 273.75 274.25 274.75 275.25 275.75 276.25 276.75 277.25 277.75 278.25 278.75 279.25 279.75 280.25 280.75 281.25 281.75 282.25 282.75 283.25 283.75 284.25 284.75 285.25 285.75 286.25 Ca 65490 70555 86239 103293 150261 181437 329379 607306 1016696 1105500 1018303 1236244 916648 506881 223402 91223 53707 43638 42337 60895 86953 80731 71572 67957 66481 65378 63583 63552 64682 59114 58399 60695 65170 66254 69679 78357 84040 84082 101430 Cl Co 0 0 27 40 0 17 56 40 63 74 79 74 16 25 0 6 15 53 64 26 0 0 0 0 0 0 0 0 0 0 9 0 0 7 0 0 0 0 0 968 928 1265 1074 796 1235 1266 1041 852 702 859 895 654 626 793 345 253 225 304 487 648 623 772 803 869 809 937 598 827 631 717 804 869 739 677 721 638 785 776 Cu 1036 1208 718 829 924 542 332 400 0 0 0 0 83 409 791 760 278 563 474 691 1026 935 1073 891 945 1184 1062 925 933 846 956 823 872 887 728 1030 945 850 1043 303 Eu 4756 4520 4171 4434 3881 3915 2959 2878 1644 1656 1286 1007 1558 2585 2763 814 0 0 198 930 3012 3321 3844 3345 3391 2982 2796 3700 3401 3200 3627 3732 2795 3242 3983 3413 3524 2867 2259 Ga Ge 556 778 541 667 367 653 0 0 0 0 0 0 0 0 155 446 254 333 65 401 793 503 830 572 797 256 566 570 644 890 857 356 590 440 260 301 437 585 797 Hf 574 491 626 169 416 376 8 0 0 0 0 0 0 341 539 152 392 398 308 370 432 343 372 618 720 476 739 485 484 334 791 531 401 495 312 542 596 308 666 401 447 487 449 396 440 260 351 229 312 400 320 325 421 552 232 28 0 88 258 405 443 620 795 753 529 698 526 582 541 682 591 517 544 601 603 523 823 664 Depth Ca Cl Co Cu Eu Ga Ge Hf (cm) 286.75 98998 0 723 1036 2874 270 439 636 287.25 476245 0 746 439 3328 11 201 431 287.75 1215259 68 755 0 1376 0 0 323 288.25 828785 100 816 0 1022 0 0 287 288.75 163474 29 1613 630 4134 700 205 356 289.25 93039 99 1952 692 3921 644 265 291 289.75 95706 29 1771 823 4818 556 98 373 290.25 88297 18 1711 635 3460 596 60 393 290.75 88520 34 1546 702 2882 636 485 417 291.25 103402 24 1511 582 3759 664 330 493 291.75 138440 55 1543 399 3258 484 222 395 292.25 135872 36 1576 566 2947 654 302 248 292.75 118498 25 1612 581 2515 478 147 347 293.25 141802 0 1395 627 2733 496 293 241 293.75 148087 0 1361 634 2814 435 149 105 304 Table A 4.3 Galang Co XRF Geochemistry Hg – Mo Depth Hg I (cm) 14.25 0 14.75 25 15.25 118 15.75 533 16.25 573 16.75 247 17.25 401 17.75 588 18.25 161 18.75 223 19.25 467 19.75 662 20.25 620 20.75 517 21.25 836 21.75 416 22.25 297 22.75 357 23.25 388 23.75 406 24.25 273 24.75 351 25.25 371 25.75 465 26.25 921 26.75 548 27.25 582 27.75 409 28.25 151 28.75 491 29.25 334 29.75 525 30.25 339 30.75 376 31.25 263 31.75 457 32.25 360 32.75 293 Ir 247 187 326 360 374 417 429 376 456 316 288 355 354 418 429 354 425 427 383 354 408 301 384 346 415 497 398 422 374 367 283 392 422 389 403 382 403 339 K 72 85 401 667 664 374 413 202 259 394 218 620 410 392 435 269 637 481 347 463 273 538 407 557 582 509 282 371 547 821 603 412 174 387 524 502 228 360 La 3304 4632 10350 11384 11838 10852 9997 9814 9444 11474 9361 9696 9717 10926 10055 9738 9456 9881 8963 10466 10079 11493 12541 11460 11829 12634 12988 13007 13781 11740 11363 12781 12020 12369 12616 12107 12211 13039 305 Mg 533 501 1066 1081 1137 1154 1104 1001 1141 1089 987 1117 1078 1137 1093 1163 1133 1184 1087 1101 1308 1249 1225 1082 1161 1248 1146 1094 1271 1075 1060 1070 1025 1113 1186 1193 1076 1077 Mn 13 25 0 0 0 0 0 24 0 9 5 0 0 82 0 21 0 0 0 0 0 35 0 6 0 8 17 0 22 38 0 56 0 26 0 0 33 44 3898 2738 4279 4581 4115 4578 3474 3358 5453 4725 3341 3995 2904 4873 3110 4240 4328 5506 3806 4183 4039 3696 4407 3755 4634 3657 4175 6878 4806 5537 5195 4442 4782 5530 4955 4894 4754 4447 Mo 0 0 0 0 0 153 0 118 296 32 317 71 0 0 0 175 250 438 215 207 125 63 175 0 53 72 187 159 134 0 57 341 63 119 0 17 0 7 Depth Hg I (cm) 33.25 299 33.75 240 34.25 427 34.75 297 35.25 620 35.75 191 36.25 572 36.75 297 37.25 462 37.75 578 38.25 717 38.75 559 39.25 390 39.75 252 40.25 496 40.75 583 41.25 680 41.75 575 42.25 387 42.75 344 43.25 284 43.75 558 44.25 488 44.75 532 45.25 363 45.75 440 46.25 287 46.75 360 47.25 597 47.75 308 48.25 423 48.75 218 49.25 244 49.75 280 50.25 488 50.75 531 51.25 325 51.75 336 52.25 497 Ir 422 449 349 386 335 358 460 413 401 483 364 351 377 383 387 403 452 444 372 398 387 428 353 435 398 376 559 355 419 459 362 388 427 412 476 439 427 437 426 K 479 421 693 290 682 507 367 597 349 551 689 486 537 349 501 533 664 480 839 471 498 376 561 623 547 387 934 577 453 566 425 563 585 367 663 616 448 427 729 La 13064 12716 9706 10957 11340 9913 10558 10081 9808 9524 10777 12384 11815 12873 13277 12612 13778 14723 12518 14207 13813 12331 14600 14707 14964 16087 15182 15245 17367 16183 14886 14620 13891 13405 13954 15821 16228 19093 20669 306 Mg 1089 1281 1186 1005 1170 1084 1193 1154 1279 1128 1224 1174 1210 1250 1155 1207 1318 1156 1199 1223 1065 1066 1076 1162 1204 1209 1310 1224 1360 1297 1222 1247 1282 1226 1297 1316 1204 1165 1327 Mn 0 11 55 45 0 72 20 0 63 0 0 25 0 11 22 0 0 26 21 9 0 14 0 0 20 0 17 9 20 0 0 17 35 36 25 0 65 27 0 4375 4256 4409 4593 4256 5811 4881 5192 5456 4620 4366 3921 4264 4070 4114 4683 5098 4554 4294 4781 6322 6745 5704 3901 5301 5612 3452 5758 3757 5787 5348 4994 5961 4582 5008 5355 4546 4816 4519 Mo 417 93 49 96 59 396 0 92 38 0 81 51 175 276 356 230 218 297 0 0 121 0 0 137 0 122 0 292 159 128 152 166 21 0 0 0 272 359 0 Depth Hg I (cm) 52.75 442 53.25 159 53.75 314 54.25 258 54.75 367 55.25 376 55.75 176 56.25 295 56.75 216 57.25 0 57.75 241 58.25 242 58.75 269 59.25 286 59.75 271 60.25 0 60.75 437 61.25 418 61.75 403 62.25 404 62.75 123 63.25 407 63.75 415 64.25 459 64.75 254 65.25 97 65.75 45 66.25 339 66.75 544 67.25 426 67.75 486 68.25 440 68.75 309 69.25 452 69.75 286 70.25 204 70.75 488 71.25 450 71.75 212 Ir 399 302 360 312 358 406 434 510 368 389 341 407 262 405 408 457 433 457 360 361 475 447 379 350 405 390 398 431 338 380 482 445 440 361 416 499 350 498 394 K 510 374 491 532 360 353 448 413 829 316 535 368 559 457 392 390 690 544 613 594 431 287 472 382 422 443 476 568 491 331 525 601 425 499 359 429 652 600 339 La 30409 42191 37006 37411 29091 27305 23329 16406 17527 20211 17355 18264 18805 19095 17712 17337 12379 14824 12117 12567 12970 13376 13977 12833 10846 11880 11122 9791 7320 8172 7174 7283 7050 7412 6990 7676 6948 6983 6887 307 Mg 1153 1051 1211 1196 1100 1233 1104 1218 1252 1207 1290 1235 1233 1069 1209 1158 1239 1233 1150 1237 1279 1089 1185 1208 1104 1228 1143 1213 1123 1238 1172 1289 1182 1091 1119 1203 1128 1197 1131 Mn 24 46 0 63 0 0 47 33 34 55 22 11 0 61 0 31 0 0 38 0 0 0 0 0 54 10 60 0 31 11 0 18 24 5 0 72 0 0 9 5155 3378 7160 6014 5100 5095 5008 4307 5762 4184 5535 5487 4202 4356 4132 4407 4977 3425 4734 3125 4387 4094 3642 3297 3592 3285 4131 3959 2745 3683 3533 3823 2926 3733 4161 4277 3566 3507 3756 Mo 160 137 106 179 283 0 459 179 316 0 0 281 66 0 339 531 0 0 82 4 0 0 452 0 0 298 0 200 185 111 0 41 0 0 0 0 434 0 89 Depth Hg I (cm) 72.25 243 72.75 149 73.25 119 73.75 149 74.25 32 74.75 23 75.25 425 75.75 72 76.25 240 76.75 309 77.25 106 77.75 441 78.25 479 78.75 270 79.25 499 79.75 572 80.25 339 80.75 407 81.25 399 81.75 338 82.25 145 82.75 500 83.25 759 83.75 593 84.25 457 84.75 210 85.25 322 85.75 461 86.25 451 86.75 347 87.25 521 87.75 187 88.25 177 88.75 166 89.25 144 89.75 403 90.25 474 90.75 404 91.25 252 Ir 338 393 322 372 372 385 373 289 344 413 371 378 349 321 389 472 450 478 486 488 421 540 505 498 523 529 549 506 628 518 535 457 506 533 527 458 478 469 97 K 782 426 409 397 414 551 555 470 314 517 607 483 463 415 153 554 340 324 327 378 252 557 768 552 636 572 541 447 311 740 656 559 683 403 620 399 885 529 791 La 8564 7956 9707 10303 11571 12697 12892 17952 20595 20863 23960 23140 23242 25426 16165 12796 9950 12025 11820 9668 11572 14706 12726 16027 19250 18008 17765 18381 14877 17083 17161 13553 14350 14067 11416 10776 9399 7225 5186 308 Mg 1188 1340 1132 1172 1068 1115 1161 1209 1158 1175 1113 1110 1242 1131 1100 995 912 960 1024 947 992 1252 1331 1322 1293 1347 1238 1255 1295 1325 1259 1146 1254 1359 1285 1178 1275 1208 849 Mn 22 0 26 18 48 7 66 0 44 31 0 0 0 6 23 18 21 0 15 13 6 44 27 0 6 47 32 21 14 0 0 0 35 19 26 10 67 0 0 5016 3578 4437 3131 3519 5480 4027 2872 3783 2959 4084 3562 4539 4384 1117 1879 1675 2427 1131 1319 3299 1453 3103 3335 4335 5587 10719 8099 6042 5673 4521 2079 2832 1917 1421 2138 1563 1173 1453 Mo 255 0 0 142 176 239 397 195 53 545 43 0 0 54 0 142 0 232 121 476 180 0 208 106 0 347 109 162 89 228 253 107 300 396 33 664 656 129 0 Depth Hg I (cm) 91.75 548 92.25 685 92.75 635 93.25 809 93.75 721 94.25 757 94.75 604 95.25 671 95.75 548 96.25 470 96.75 455 97.25 618 97.75 647 98.25 543 98.75 574 99.25 411 99.75 802 100.25 742 100.75 601 101.25 759 101.75 615 102.25 478 102.75 840 103.25 422 103.75 566 104.25 597 104.75 559 105.25 258 105.75 537 106.25 610 106.75 636 107.25 473 107.75 496 108.25 601 108.75 374 109.25 350 109.75 316 110.25 338 110.75 380 Ir 302 337 372 572 570 467 503 476 523 507 432 471 400 523 504 546 490 491 599 523 440 473 530 464 603 486 465 519 546 513 558 635 495 499 529 543 500 572 545 K 864 556 795 555 662 533 574 629 452 165 566 614 446 458 469 511 523 586 379 325 525 373 695 659 561 662 798 466 542 556 623 590 552 423 677 734 529 697 674 La 4882 5673 6307 7458 9744 11106 14177 12963 12987 14938 16966 17388 19946 20865 18852 15719 17317 22273 19135 17539 16410 17347 19081 19722 19618 18312 17582 18755 17884 16495 19130 15529 15764 16388 15721 15860 16301 16209 16532 309 Mg 884 1010 1007 1207 1248 1471 1395 1204 1292 1253 1226 1175 1256 1216 1351 1224 1163 1224 1256 1230 1218 1256 1334 1340 1281 1164 1199 1251 1333 1090 1187 1345 1286 1141 1290 1226 1181 1226 1260 Mn 0 27 9 33 0 24 14 25 38 0 0 9 0 0 0 30 29 36 0 0 0 50 0 31 0 0 57 41 0 0 0 0 10 45 34 0 7 11 0 1067 0 1155 737 0 86 681 1833 1595 3131 6755 8433 4438 3569 2671 2019 2382 2379 2926 2392 3214 3573 4566 4516 3726 6169 3070 2074 2562 1067 2991 1594 1421 2314 3123 2971 3070 1130 2388 Mo 0 0 293 0 271 74 327 290 0 281 0 175 105 155 0 67 466 0 92 16 0 235 0 133 19 273 135 304 280 381 267 325 287 323 0 0 313 106 81 Depth Hg I (cm) 111.25 438 111.75 348 112.25 440 112.75 403 113.25 228 113.75 298 114.25 465 114.75 276 115.25 110 115.75 532 116.25 351 116.75 19 117.25 342 117.75 492 118.25 644 118.75 678 119.25 351 119.75 546 120.25 300 120.75 20 121.25 81 121.75 0 122.25 327 122.75 237 123.25 587 123.75 324 124.25 575 124.75 433 125.25 444 125.75 574 126.25 387 126.75 267 127.25 730 127.75 434 128.25 342 128.75 531 129.25 236 129.75 415 130.25 351 Ir 637 542 459 549 643 470 538 514 498 558 486 585 539 584 547 549 536 544 320 193 186 134 332 468 484 507 518 493 465 475 520 556 498 595 516 547 607 550 585 K 563 510 510 631 512 583 477 499 498 524 537 447 515 494 518 296 566 489 401 130 136 147 241 444 524 536 699 598 811 553 612 541 691 351 334 518 491 729 636 La 15033 16284 16405 18726 18504 18649 18659 16694 14707 15002 15038 14405 13258 13356 14651 16051 13701 13129 9061 4161 2753 2646 5866 12603 16128 20591 24564 24586 26170 24526 24211 25592 25781 24396 28282 38931 25733 19151 17829 310 Mg 1394 1201 1238 1190 1254 1147 1230 1255 1161 1166 1301 1249 1412 1232 1207 1320 1258 1305 769 416 359 367 713 1145 1211 1156 1298 1184 1159 1107 1198 1254 1206 1194 1181 1266 1237 1260 1399 Mn 0 0 77 6 0 0 19 17 43 24 0 64 20 23 0 66 33 4 0 0 0 32 40 28 0 18 0 0 0 0 7 0 0 0 0 0 0 0 0 2953 3555 6110 4082 1732 1942 1947 1277 2392 2257 1551 1672 3619 3567 3721 3425 2209 2165 3253 2078 1550 1455 1714 2046 3743 3064 3850 2694 3077 3019 3183 2708 3319 4167 4341 3193 2161 2819 3815 Mo 269 125 190 0 256 153 285 315 0 78 57 0 0 216 0 138 127 122 129 70 0 122 0 68 87 143 0 0 221 487 77 449 199 201 280 387 281 0 0 Depth Hg I (cm) 130.75 370 131.25 518 131.75 307 132.25 358 132.75 248 133.25 252 133.75 447 134.25 359 134.75 463 135.25 555 135.75 281 136.25 462 136.75 371 137.25 374 137.75 771 138.25 519 138.75 471 139.25 446 139.75 232 140.25 375 140.75 713 141.25 508 141.75 481 142.25 573 142.75 349 143.25 560 143.75 416 144.25 429 144.75 626 145.25 831 145.75 709 146.25 694 146.75 699 147.25 552 147.75 421 148.25 560 148.75 278 149.25 414 149.75 437 Ir 596 553 478 489 502 601 537 513 560 495 565 482 655 557 513 449 522 490 398 433 418 470 462 453 433 408 625 486 489 457 336 453 403 381 365 437 526 524 466 K 529 559 178 658 417 787 343 628 454 454 449 670 526 718 466 599 656 459 452 649 592 677 542 628 585 347 320 457 466 67 397 375 367 212 337 537 638 678 500 La 17461 16471 15969 17673 17071 16744 17381 16757 12557 11323 11278 12440 12445 11113 10819 9774 9296 9174 9621 9625 11014 11667 12603 13467 15055 14724 13121 16406 27914 48398 87889 96968 108275 89072 48433 21491 16187 14304 14132 311 Mg 1422 1271 1244 1230 1250 1229 1202 1274 1202 1202 1205 1270 1195 1104 1179 1157 1312 1245 1220 1092 1119 1080 1088 1127 1078 1200 1220 1272 1314 1213 1187 1194 1071 1110 1068 1070 1216 1217 1328 Mn 36 0 8 37 0 0 0 9 0 66 27 14 0 93 0 43 0 16 49 32 21 38 65 56 0 27 8 0 0 0 0 5 0 23 0 0 26 12 60 1877 2218 2308 2823 3360 3907 2118 4434 2699 4107 4234 3239 2129 1967 3014 3795 2506 2073 3506 2470 1824 3218 2807 2648 3420 3066 1344 903 2211 844 2061 2334 1980 2334 2287 2081 3519 2412 3217 Mo 11 0 362 172 64 0 84 0 171 216 211 6 23 0 526 0 173 0 0 183 187 0 0 382 93 44 126 510 285 147 0 99 212 305 168 0 49 153 47 Depth Hg I (cm) 150.25 315 150.75 374 151.25 410 151.75 551 152.25 432 152.75 412 153.25 225 153.75 500 154.25 626 154.75 447 155.25 0 155.75 0 156.25 0 156.75 136 157.25 168 157.75 359 158.25 148 158.75 208 159.25 425 159.75 196 160.25 346 160.75 142 161.25 408 161.75 524 162.25 315 162.75 394 163.25 695 163.75 125 164.25 273 164.75 559 165.25 173 165.75 0 166.25 0 166.75 78 167.25 328 167.75 350 168.25 293 168.75 427 169.25 364 Ir 450 527 466 421 475 481 471 493 487 413 147 128 63 103 275 439 413 424 348 504 487 498 464 426 415 493 429 448 461 402 373 393 141 227 441 428 462 573 476 K 495 466 543 498 249 479 669 561 584 440 105 81 0 151 315 455 349 772 629 509 579 621 408 532 508 859 626 570 400 479 342 390 108 230 650 620 324 580 676 La 14604 16701 18127 19808 24369 27431 23061 22331 14739 13632 6312 3182 1475 2321 7386 13549 12352 14191 12929 13931 14611 14000 12033 15202 12489 4327 2506 9193 5188 4212 2291 1496 316 944 4428 7769 15219 14289 15961 312 Mg 1220 1178 1184 1281 1175 1138 1308 1047 1383 1137 458 287 195 257 796 1130 1330 1314 1251 1248 1216 1319 1232 1329 1329 1081 1144 1276 1093 1275 1064 1117 352 495 1141 1204 1190 1239 1301 Mn 10 0 28 12 0 36 0 64 52 18 38 0 0 34 0 13 0 36 27 47 0 0 4 5 27 0 11 65 37 30 61 64 0 0 30 0 46 73 31 2224 2503 2213 2332 1849 2152 1559 1116 2177 3199 3026 2315 2997 1954 2191 1986 2777 2900 3485 3895 1946 1497 1988 1746 3577 3659 3650 3579 2927 3970 3247 2644 1222 1876 2129 2280 1680 2964 2840 Mo 0 0 484 410 148 267 151 162 483 236 0 0 0 0 0 40 0 0 0 176 0 0 248 312 459 310 108 165 80 0 104 101 0 0 339 165 331 513 232 Depth Hg I (cm) 169.75 487 170.25 534 170.75 382 171.25 106 171.75 448 172.25 59 172.75 23 173.25 173 173.75 72 174.25 362 174.75 279 175.25 518 175.75 307 176.25 508 176.75 281 177.25 570 177.75 121 178.25 342 178.75 0 179.25 291 179.75 75 180.25 311 180.75 396 181.25 412 181.75 260 182.25 117 182.75 366 183.25 240 183.75 294 184.25 121 184.75 345 185.25 307 185.75 233 186.25 219 186.75 509 187.25 229 187.75 317 188.25 219 188.75 531 Ir 487 446 426 411 367 388 406 319 295 339 392 441 369 335 394 464 431 376 236 247 225 368 368 452 439 411 489 485 453 493 421 507 415 390 347 461 414 336 427 K 796 414 537 719 539 248 515 129 114 415 255 431 666 467 641 666 679 538 120 322 98 476 368 672 843 463 603 660 626 634 882 891 732 379 769 679 596 751 680 La 17462 15793 14436 14839 14635 13896 13380 11649 6416 8138 11721 14896 13797 13192 11341 11699 10240 11290 5337 4940 3793 6623 12562 10594 5723 5386 5512 4386 4586 4337 3623 4570 5192 8886 10594 12383 10635 11234 12157 313 Mg 1146 1174 1357 1224 1251 1174 1137 914 676 893 909 1273 1194 1335 1297 1299 1439 1206 521 461 334 1024 1352 1180 1266 1437 1234 1275 1195 1291 1299 1156 1224 1334 1261 1228 1371 1307 1343 Mn 7 86 27 11 32 0 0 14 29 0 93 43 0 0 77 54 0 32 37 0 15 35 80 89 51 0 18 45 0 0 38 23 0 50 29 0 11 62 0 1846 3687 2764 1989 2928 2130 1838 2284 1864 2143 3309 2724 2699 1888 2967 1806 2816 2347 2942 2144 1732 1403 2899 2396 2088 3992 2829 4223 2722 3378 3194 2460 3342 2350 2825 1857 2218 3222 2931 Mo 14 210 50 0 6 273 0 0 0 126 36 32 0 118 184 0 31 0 0 0 0 65 138 390 44 15 99 349 0 0 0 0 39 114 0 111 19 239 175 Depth Hg I (cm) 189.25 520 189.75 140 190.25 0 190.75 486 191.25 0 191.75 294 192.25 261 192.75 354 193.25 365 193.75 126 194.25 517 194.75 198 195.25 230 195.75 261 196.25 211 196.75 410 197.25 300 197.75 322 198.25 273 198.75 248 199.25 81 199.75 114 200.25 342 200.75 487 201.25 385 201.75 119 202.25 90 202.75 123 203.25 227 203.75 104 204.25 152 204.75 512 205.25 370 205.75 477 206.25 236 206.75 461 207.25 430 207.75 35 208.25 215 Ir 488 455 520 402 436 444 464 449 437 401 427 477 455 432 467 400 359 400 481 382 482 447 395 408 460 356 211 199 194 315 467 504 419 471 456 382 471 442 363 K 625 530 701 481 785 527 357 356 793 518 660 514 428 676 650 662 644 659 475 534 438 694 861 764 780 443 58 123 304 276 728 366 593 649 587 479 760 555 462 La 12254 11267 10921 11248 11856 11890 11204 11310 11455 12940 13610 13006 12387 9322 7312 7954 10494 9432 9887 9111 8818 10672 13060 11126 12101 9633 3296 1204 1335 7515 12277 12332 12295 13040 15126 11405 8977 11502 12372 314 Mg 1371 1306 1399 1338 1437 1198 1317 1291 1298 1377 1209 1251 1407 1280 1321 1295 1361 1197 1300 1317 1225 1373 1121 1145 1320 915 358 281 361 915 1298 1402 1336 1225 1327 1349 1232 1304 1222 Mn 5 35 18 18 83 0 0 38 24 0 16 22 0 0 10 72 0 10 0 12 0 0 0 60 14 46 0 0 0 0 18 51 43 13 10 0 45 76 25 1730 2464 1449 2100 2258 1955 3092 1967 2243 3459 3164 2168 2615 2167 2811 3262 2745 2517 2670 1416 2597 3485 37 2686 1441 2191 2465 2488 2086 1882 2639 1758 3637 3513 2389 3143 2623 1537 2324 Mo 0 163 0 133 0 181 101 0 0 0 0 85 195 83 144 0 0 145 0 0 278 0 176 329 0 74 0 0 0 226 163 235 223 0 192 122 118 190 0 Depth Hg I (cm) 208.75 302 209.25 257 209.75 191 210.25 517 210.75 245 211.25 218 211.75 0 212.25 70 212.75 71 213.25 133 213.75 193 214.25 255 214.75 77 215.25 10 215.75 485 216.25 408 216.75 479 217.25 213 217.75 359 218.25 349 218.75 242 219.25 330 219.75 8 220.25 467 220.75 316 221.25 0 221.75 310 222.25 345 222.75 534 223.25 148 223.75 0 224.25 495 224.75 253 225.25 0 225.75 295 226.25 110 226.75 0 227.25 462 227.75 190 Ir 435 472 508 423 403 453 392 491 415 370 377 423 419 416 427 451 393 401 477 418 394 441 416 400 398 480 500 361 443 462 384 386 405 405 467 435 451 406 452 K 404 692 610 723 500 664 617 475 351 239 444 431 731 588 502 639 713 682 713 586 566 612 297 616 454 240 584 658 618 660 656 720 545 584 342 742 803 801 679 La 10925 9516 11463 11069 11900 11084 12786 12662 12720 11163 10819 9634 6443 6565 4961 5860 4208 5609 6917 9577 12611 8446 9767 8495 7129 8932 8436 14351 16390 8976 5547 5399 11235 11939 8745 5531 6967 7854 8725 315 Mg 1222 1343 1363 1367 1375 1278 1145 1327 1323 1183 1144 1206 1251 1313 1254 1186 1301 1178 1289 1289 1155 1171 1240 1192 1242 1314 1318 1102 1283 1198 1122 1220 1136 1194 1142 1063 1278 1369 1183 Mn 45 71 61 31 16 61 30 0 0 38 0 26 28 44 0 0 38 0 0 23 0 37 29 0 0 113 17 0 0 34 12 18 0 35 22 35 37 12 37 3327 3495 3793 2043 1890 2761 2502 2091 1662 2616 2047 1587 2973 3897 3011 2545 3813 3130 3007 1984 2170 671 2713 1795 2349 1109 503 1575 1221 2238 2305 3899 1845 3066 2815 3039 3566 2219 2482 Mo 0 0 0 142 0 28 8 123 0 454 19 121 0 21 0 0 341 0 0 84 0 270 422 139 495 0 0 25 0 221 15 229 0 170 86 453 0 171 313 Depth Hg I (cm) 228.25 290 228.75 465 229.25 582 229.75 521 230.25 342 230.75 51 231.25 0 231.75 0 232.25 611 232.75 424 233.25 206 233.75 194 234.25 0 234.75 150 235.25 207 235.75 322 236.25 227 236.75 374 237.25 100 237.75 114 238.25 241 238.75 664 239.25 483 239.75 387 240.25 412 240.75 225 241.25 430 241.75 174 242.25 250 242.75 369 243.25 380 243.75 254 244.25 473 244.75 310 245.25 375 245.75 476 246.25 226 246.75 277 247.25 493 Ir 358 430 401 359 282 173 170 204 427 489 410 443 536 419 404 410 441 379 431 344 402 439 366 394 349 421 433 476 352 355 339 331 337 368 276 358 382 382 388 K 632 752 539 660 451 118 59 386 499 552 701 518 681 578 406 709 367 392 666 596 563 422 387 619 409 536 713 648 322 318 604 515 661 668 129 347 505 689 329 La 10911 18130 23908 18647 9378 4768 3114 6575 12290 12524 12503 12990 11438 11627 17536 13738 13337 12711 16767 14811 10881 12881 11369 12842 13807 17233 9840 5897 5657 18049 15424 16989 16866 19732 18316 25157 15618 9059 12130 316 Mg 1312 1435 1188 1238 727 429 308 679 1150 1237 1274 1284 1415 1398 1192 1143 1167 1116 1275 1265 1269 1376 1249 1453 1139 1089 1047 1234 1171 1354 1348 1446 1475 1472 1415 1387 1588 1564 1521 Mn 20 26 66 25 17 0 0 0 0 14 12 22 0 0 0 19 0 0 33 87 0 9 0 28 9 0 38 75 0 27 28 0 77 0 54 13 35 23 0 3139 1539 1216 1015 2774 2526 1336 1776 2277 2721 199 2135 1681 1284 2496 2785 3221 2459 2040 1986 3190 1095 2318 1868 1825 3055 3816 3832 3003 1208 951 2244 1815 812 1871 1849 2755 3972 2370 Mo 175 88 0 299 0 0 0 65 0 52 114 0 292 196 0 0 0 0 63 0 0 0 0 327 0 8 0 0 0 318 48 39 536 300 348 325 0 277 12 Depth Hg I (cm) 247.75 226 248.25 16 248.75 396 249.25 212 249.75 356 250.25 364 250.75 520 251.25 330 251.75 190 252.25 366 252.75 535 253.25 44 253.75 592 254.25 268 254.75 316 255.25 389 255.75 251 256.25 478 256.75 528 257.25 215 257.75 306 258.25 16 258.75 467 259.25 485 259.75 469 260.25 550 260.75 294 261.25 143 261.75 472 262.25 571 262.75 473 263.25 166 263.75 341 264.25 670 264.75 307 265.25 527 265.75 326 266.25 628 266.75 482 Ir 277 378 353 364 361 273 306 245 358 388 422 367 408 340 338 389 404 346 404 391 361 250 385 241 325 279 405 368 288 337 382 369 377 339 403 408 441 402 395 K 533 430 584 409 543 620 678 473 420 459 381 460 464 412 700 421 823 825 612 253 267 431 523 788 472 640 673 501 413 695 493 305 620 392 703 695 384 572 681 La 17421 7706 9599 16407 14179 18897 18006 21156 16324 14926 13205 13675 13137 12727 12148 12607 13455 11577 10137 14164 16549 8899 7592 4971 5199 5917 13517 17455 20000 15654 12506 7504 8284 9399 11073 8851 9207 8622 13589 317 Mg 1342 1577 1454 1613 1502 1394 1435 1525 1498 1531 1566 1599 1525 1515 1447 1550 1502 1532 1509 1341 1261 1189 1317 1212 1083 1301 1489 1423 1402 1437 1366 1472 1464 1513 1534 1545 1596 1459 1450 Mn 6 98 20 8 15 11 45 83 45 27 50 18 42 14 25 51 8 17 8 31 47 36 23 55 8 0 21 0 41 49 34 64 45 54 41 46 50 44 0 945 2816 1621 897 2304 2797 1813 2110 875 3254 712 1607 2312 715 2282 942 3518 1370 2090 896 1135 1385 2486 1841 2385 1248 2146 1755 1376 2345 3025 3172 2246 1586 2844 1869 1967 2615 2212 Mo 250 0 0 34 105 539 108 346 275 0 359 132 536 638 619 456 619 152 322 237 189 104 82 58 510 341 299 0 418 0 0 424 0 742 444 59 0 0 0 Depth Hg I (cm) 267.25 450 267.75 439 268.25 488 268.75 498 269.25 496 269.75 237 270.25 0 270.75 341 271.25 0 271.75 0 272.25 117 272.75 0 273.25 0 273.75 201 274.25 212 274.75 336 275.25 102 275.75 13 276.25 0 276.75 376 277.25 378 277.75 160 278.25 427 278.75 379 279.25 291 279.75 279 280.25 438 280.75 380 281.25 354 281.75 571 282.25 236 282.75 296 283.25 344 283.75 376 284.25 221 284.75 435 285.25 290 285.75 708 286.25 344 Ir 441 438 384 441 355 295 171 119 0 0 0 0 0 87 204 196 80 96 96 206 368 399 359 358 396 400 347 374 351 385 332 440 428 497 595 473 371 365 368 K 605 525 683 429 893 213 557 1084 1247 1296 1414 1474 1192 1228 1088 659 427 319 572 493 356 366 359 565 466 652 573 345 628 649 374 653 449 511 540 688 695 588 403 La 13810 12617 19406 18742 14096 20407 28100 21009 6697 6363 4329 4833 4946 4458 5704 2871 1158 1498 1340 2349 3093 3113 2479 2969 2984 2602 2566 2676 2452 2172 1770 1786 2555 3176 3301 3993 2716 2525 2513 318 Mg 1524 1545 1589 1462 1471 1363 1186 1048 630 574 720 579 769 937 1283 886 453 417 524 760 1315 1316 1352 1436 1366 1244 1387 1297 1426 1285 1405 1419 1342 1384 1386 1401 1407 1383 1285 Mn 8 55 0 0 27 9 0 19 12 0 0 28 0 0 0 0 17 0 10 28 6 0 0 34 0 0 13 0 50 0 40 52 0 71 0 50 53 77 50 1816 2006 2591 2974 2791 1665 3281 2159 2440 2492 3719 3699 3481 2550 3860 3034 3798 1903 1987 2904 2367 3042 2466 2738 3096 3543 3412 1647 3350 2332 1793 3121 3326 3493 1638 2505 2528 3754 4060 Mo 0 148 32 197 349 149 497 258 137 171 109 0 0 0 0 0 0 0 0 0 152 1069 1051 1073 645 0 80 272 467 180 73 0 0 0 0 0 654 181 142 Depth Hg I (cm) 286.75 369 287.25 86 287.75 0 288.25 109 288.75 407 289.25 324 289.75 508 290.25 536 290.75 301 291.25 451 291.75 442 292.25 248 292.75 349 293.25 331 293.75 312 Ir 422 109 0 0 217 429 361 317 405 277 300 307 241 185 238 K 831 964 1487 1025 569 381 346 551 513 377 402 143 297 566 298 La 3189 5193 6158 12450 36208 42800 45618 42389 32875 33659 32426 32154 49610 41639 36859 319 Mg 1392 1226 430 632 1446 1681 1606 1439 1240 1469 1418 1321 1256 1247 1146 Mn 46 0 0 29 43 38 57 30 0 0 46 18 21 0 0 3495 4604 2940 3137 1974 2162 0 1817 2487 2461 2306 2800 3286 2528 967 Mo 99 297 160 23 356 277 397 271 135 0 233 210 82 0 0 Table A 4.4 Galang Co XRF Geochemistry Ni – Sc Depth Ni P (cm) 14.25 570 14.75 405 15.25 693 15.75 619 16.25 585 16.75 506 17.25 603 17.75 649 18.25 604 18.75 497 19.25 486 19.75 456 20.25 366 20.75 519 21.25 556 21.75 493 22.25 439 22.75 570 23.25 455 23.75 328 24.25 468 24.75 583 25.25 545 25.75 457 26.25 559 26.75 550 27.25 497 27.75 430 28.25 480 28.75 677 29.25 600 29.75 603 30.25 754 30.75 669 31.25 679 31.75 770 32.25 591 32.75 669 Pr 5 0 0 39 0 0 0 0 0 0 0 0 40 0 23 0 0 0 0 0 15 0 18 0 0 7 27 0 0 0 0 0 0 0 0 0 14 0 Pt 398 378 1073 1230 1361 1011 959 1066 1049 1081 1038 1220 1090 1030 1172 1010 1084 1016 1030 1205 941 883 1093 1064 954 999 1014 932 1057 1160 953 989 1050 932 1154 935 971 1179 Rb 315 385 833 967 1015 938 778 951 865 922 1036 914 912 847 951 1020 872 849 768 859 696 860 1050 1109 904 951 866 982 741 764 1005 999 853 777 657 833 748 1023 320 712 662 1253 1189 999 1069 814 825 970 1013 1047 1225 623 1195 1061 793 558 1337 1003 809 839 1376 811 957 1123 984 978 836 683 975 1326 1072 1092 1298 1254 1052 1287 1100 S Sb 537 649 1197 1272 1543 1394 1149 1192 1081 1256 1160 1284 1204 1295 1295 1206 1202 1150 1231 1336 1224 1350 1523 1436 1294 1410 1350 1348 1388 1224 1110 1227 1144 1141 1175 1110 1314 1157 Sc 163 236 230 298 427 288 297 291 276 234 274 154 312 295 195 278 323 242 244 392 405 404 425 350 341 341 359 404 326 334 338 208 338 350 321 377 464 364 232 200 375 439 417 445 367 397 381 492 383 452 403 468 529 481 392 468 537 381 423 286 358 579 426 460 398 462 519 504 459 539 424 534 548 530 522 557 Depth Ni P (cm) 33.25 505 33.75 579 34.25 709 34.75 682 35.25 494 35.75 690 36.25 654 36.75 660 37.25 595 37.75 425 38.25 457 38.75 383 39.25 513 39.75 326 40.25 386 40.75 513 41.25 516 41.75 560 42.25 709 42.75 637 43.25 759 43.75 802 44.25 799 44.75 759 45.25 639 45.75 772 46.25 601 46.75 754 47.25 616 47.75 686 48.25 670 48.75 743 49.25 686 49.75 647 50.25 497 50.75 769 51.25 582 51.75 478 52.25 678 Pr 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14 0 0 37 43 0 14 0 10 0 5 26 0 0 0 0 6 Pt 1256 1079 1030 1321 1241 1158 1064 1109 974 1174 1341 1092 886 1072 1251 999 953 1001 1067 1059 998 1088 1195 1161 1386 1210 959 1077 915 1023 1015 1035 1326 1113 1142 958 1151 1151 1001 Rb 683 935 1094 991 1088 1076 685 975 952 1001 910 996 1093 696 668 891 699 833 984 748 1069 837 947 997 670 724 583 602 703 1015 727 1012 769 967 708 972 538 658 679 321 1215 956 947 932 652 919 915 1117 905 740 1187 974 1018 1042 1110 1019 1067 1069 1329 1221 924 1139 1277 939 1235 1244 1357 1128 1236 1327 1527 1278 1111 1259 1529 1328 1218 1160 1357 S Sb 1286 1428 1122 1321 1341 1338 1364 1484 1453 1549 1792 1880 1586 1663 1612 1346 1358 1394 1352 1484 1665 1513 1711 1798 2052 1937 1787 1629 1816 1791 1730 1772 1792 1685 1679 1986 1995 2207 2152 Sc 291 317 264 236 303 250 323 229 219 219 411 333 295 319 428 480 316 425 398 487 458 393 355 452 424 468 462 506 536 490 327 439 383 499 450 478 471 560 500 395 490 447 391 391 382 346 497 418 562 320 438 385 450 445 571 478 571 466 446 578 536 309 606 485 521 440 410 683 469 632 473 496 542 587 401 455 665 550 Depth Ni P (cm) 52.75 612 53.25 641 53.75 705 54.25 809 54.75 674 55.25 718 55.75 828 56.25 932 56.75 730 57.25 802 57.75 823 58.25 946 58.75 790 59.25 813 59.75 791 60.25 690 60.75 667 61.25 707 61.75 556 62.25 691 62.75 693 63.25 624 63.75 597 64.25 445 64.75 584 65.25 791 65.75 731 66.25 606 66.75 668 67.25 661 67.75 817 68.25 682 68.75 831 69.25 788 69.75 798 70.25 739 70.75 617 71.25 802 71.75 811 Pr 0 20 0 0 0 0 0 0 0 0 12 0 0 12 41 0 0 14 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 13 0 0 0 0 Pt 1070 1178 1115 989 1234 1270 1191 1069 1055 1069 1146 1096 1196 1189 1172 1002 1134 1293 1010 1034 1004 1214 1209 1214 1183 1153 975 1195 1161 1111 1098 913 1105 1018 1003 869 1048 1183 1124 Rb 854 468 658 748 696 778 535 1172 1170 657 986 900 686 829 976 700 647 750 719 873 813 929 777 716 864 486 722 585 1026 825 802 641 746 735 885 927 859 845 926 322 1731 2486 2429 2235 2628 1994 1546 1531 1166 1585 1277 1495 1764 1413 1407 1178 1439 1095 987 1003 1111 889 1068 1089 1226 846 893 835 815 804 665 710 617 558 593 594 565 555 606 S Sb 2042 1542 1538 1374 1589 1686 1579 1526 1681 1563 1560 1597 1619 1542 1544 2170 2350 2389 2206 2301 2388 2225 2233 2066 1795 2172 2143 2143 2233 2243 2933 2351 1908 1921 1879 2015 1943 2430 2011 Sc 759 875 785 796 602 730 622 586 496 438 402 336 438 308 376 175 454 387 348 227 381 346 388 261 212 360 353 194 263 212 363 332 219 180 257 249 268 246 271 717 751 648 749 726 631 604 455 540 482 633 512 564 460 417 323 407 688 470 521 528 504 491 470 465 588 455 399 421 538 421 639 437 371 355 471 398 449 347 Depth Ni P (cm) 72.25 798 72.75 802 73.25 751 73.75 630 74.25 725 74.75 910 75.25 821 75.75 643 76.25 682 76.75 756 77.25 865 77.75 813 78.25 697 78.75 659 79.25 570 79.75 810 80.25 585 80.75 624 81.25 655 81.75 711 82.25 672 82.75 594 83.25 716 83.75 623 84.25 766 84.75 594 85.25 685 85.75 614 86.25 833 86.75 807 87.25 829 87.75 641 88.25 792 88.75 929 89.25 855 89.75 800 90.25 666 90.75 693 91.25 757 Pr 0 0 0 0 0 19 38 0 0 0 0 0 0 0 0 0 13 0 0 33 0 0 0 0 0 17 0 0 0 27 0 15 0 0 14 15 0 0 0 Pt 1052 916 984 1121 1139 1154 1203 1113 1046 1007 1181 1102 943 1091 1107 1132 991 1011 805 963 819 1301 1195 1239 1145 1089 1185 1370 1117 1240 1220 1306 1092 1254 1108 1420 1143 1019 1093 Rb 963 822 778 964 665 965 915 437 785 907 669 570 834 633 530 854 706 470 735 759 984 556 1102 693 841 742 687 663 901 675 724 571 962 801 1002 1055 955 698 361 323 879 670 795 1077 688 1117 1259 1518 1558 1671 1715 1459 1501 1894 1394 1085 1232 1280 1225 1029 875 1116 752 1146 1157 1231 1069 1331 1256 1309 1222 1038 952 831 769 1010 873 902 511 S Sb 2233 2646 2742 1968 1574 1603 1473 1344 1350 1303 1376 1408 1456 1433 926 892 796 722 744 922 1021 1372 1506 1492 1484 1406 1425 1414 1439 1479 1475 1447 1566 1473 1463 1848 2947 5553 18468 Sc 312 371 430 231 307 360 254 389 344 415 556 586 512 626 476 382 490 330 333 364 294 483 313 426 462 377 337 494 482 492 318 564 395 190 348 276 341 463 1440 524 477 599 416 470 428 399 436 512 485 542 566 653 635 754 585 651 712 465 434 506 803 591 618 792 784 689 642 703 638 764 697 672 665 529 256 465 874 2336 Depth Ni P (cm) 91.75 719 92.25 567 92.75 684 93.25 530 93.75 508 94.25 590 94.75 504 95.25 746 95.75 445 96.25 580 96.75 687 97.25 685 97.75 659 98.25 566 98.75 535 99.25 548 99.75 638 100.25 614 100.75 602 101.25 555 101.75 686 102.25 571 102.75 558 103.25 645 103.75 650 104.25 721 104.75 633 105.25 652 105.75 719 106.25 557 106.75 753 107.25 548 107.75 657 108.25 780 108.75 825 109.25 837 109.75 603 110.25 715 110.75 729 Pr 0 0 0 0 0 4 45 37 57 16 63 46 110 67 124 50 104 27 41 0 0 11 0 0 0 0 0 0 16 0 0 51 0 0 0 0 0 0 0 Pt 886 979 1072 1150 1088 1119 1217 1222 1106 1036 1157 1339 1309 1136 1074 1260 1330 1052 1279 1270 1207 965 1041 1031 992 1341 1282 1113 1195 1138 1216 913 1220 1235 899 1392 1273 1002 1204 Rb 280 295 774 685 603 911 866 849 718 789 744 622 791 831 727 791 719 874 510 907 764 620 733 737 864 880 793 893 616 824 765 789 747 1021 1076 955 757 1040 825 324 684 698 528 712 670 639 915 597 981 614 1093 1139 1501 1223 1337 1013 966 1541 1433 1210 1208 1180 1054 1389 1270 1455 1310 1283 1312 1323 1435 1035 983 862 783 678 1273 1195 1049 S Sb 21825 14677 14812 6885 4800 2741 1592 1486 1440 1428 1383 1412 1557 1620 1519 1268 1335 1422 1271 1375 1449 1307 1373 1387 1316 1219 1035 1135 1207 1062 1223 1163 1373 1420 1212 1207 1224 1192 1164 Sc 1538 1273 1002 608 339 311 199 240 265 252 377 393 408 336 489 289 556 369 418 593 471 446 408 383 398 431 423 388 442 348 403 467 331 495 449 436 465 348 371 3279 2004 1673 1130 627 501 412 444 511 515 567 545 471 685 749 704 672 605 642 767 679 631 731 721 742 767 559 605 753 585 663 665 694 752 624 729 612 702 586 Depth Ni P (cm) 111.25 876 111.75 655 112.25 766 112.75 671 113.25 818 113.75 654 114.25 695 114.75 758 115.25 892 115.75 784 116.25 686 116.75 652 117.25 868 117.75 910 118.25 797 118.75 635 119.25 778 119.75 953 120.25 830 120.75 769 121.25 730 121.75 592 122.25 793 122.75 651 123.25 764 123.75 669 124.25 658 124.75 463 125.25 586 125.75 665 126.25 684 126.75 594 127.25 496 127.75 574 128.25 446 128.75 627 129.25 824 129.75 833 130.25 727 Pr 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 15 0 0 42 0 15 0 0 0 6 0 0 0 0 0 0 0 0 0 0 Pt 1061 1209 1154 1072 1199 1183 1331 1204 1232 1155 1037 1281 1025 1087 1182 1178 1242 1077 843 340 348 358 723 1197 1251 1127 1338 1044 1179 1119 1365 1189 1329 1324 1036 1205 1151 949 963 Rb 877 823 762 804 1011 719 783 846 658 942 725 693 865 742 817 950 990 749 799 541 286 446 709 584 903 739 974 630 665 829 573 516 707 786 672 882 704 582 747 325 754 1140 1227 1444 1289 1253 1027 1007 998 1135 1069 1111 948 1183 871 895 1151 967 810 317 387 410 602 778 1141 1064 1403 1597 1274 1607 1434 1510 1508 1353 1678 2206 1638 928 1169 S Sb 1128 1154 1044 1227 1399 1314 1355 1341 1436 1332 1253 1385 1265 1413 1298 1243 1569 1626 1132 609 359 385 823 1777 1416 1272 1471 1414 1394 1317 1249 1469 1723 1261 1132 1312 1436 1689 1840 Sc 386 491 346 447 427 394 450 406 439 443 347 344 320 313 458 300 378 266 300 176 188 136 170 374 442 396 633 655 654 517 668 622 584 593 474 776 685 578 515 631 714 664 546 711 684 730 698 553 649 664 644 641 656 702 569 620 873 419 244 216 179 305 566 672 492 801 896 943 780 958 1065 729 890 673 917 724 852 658 Depth Ni P (cm) 130.75 737 131.25 800 131.75 793 132.25 810 132.75 743 133.25 843 133.75 809 134.25 866 134.75 746 135.25 740 135.75 687 136.25 778 136.75 772 137.25 773 137.75 795 138.25 757 138.75 887 139.25 734 139.75 630 140.25 630 140.75 693 141.25 745 141.75 679 142.25 754 142.75 617 143.25 852 143.75 592 144.25 553 144.75 443 145.25 348 145.75 500 146.25 500 146.75 565 147.25 641 147.75 810 148.25 791 148.75 778 149.25 660 149.75 830 Pr 0 0 0 0 0 0 0 0 0 0 13 0 0 0 52 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 8 0 0 12 53 0 0 0 0 Pt 1009 965 1078 1183 1094 1074 1161 1240 1173 1020 1049 1029 1063 1057 956 1161 1017 1040 900 940 1185 1029 998 1148 1017 887 941 1062 1248 1184 1312 1336 1476 1443 1518 1313 1110 1150 1187 Rb 686 532 603 825 724 973 737 965 692 751 802 1080 712 827 1245 831 975 757 932 909 1100 917 692 1042 782 605 874 621 920 544 604 519 465 415 719 962 1017 931 978 326 924 1049 1314 1005 1204 1391 1141 990 971 706 1034 865 776 515 875 757 576 592 405 366 580 834 606 720 1092 840 585 794 1231 2349 3608 4080 4593 4324 2555 1428 927 887 871 S Sb 1727 1679 1512 1660 1813 1779 1723 1543 1813 1824 1683 1651 1623 1824 2075 1890 1646 1511 1484 1756 1849 1935 1677 1912 1646 1643 1713 1557 1548 1175 995 826 611 812 1024 1308 1453 1456 1255 Sc 357 313 388 585 435 563 464 353 413 466 336 411 212 309 313 308 303 263 290 227 260 299 265 148 379 296 228 301 289 394 733 698 749 720 629 299 271 293 343 641 661 590 734 399 923 711 620 693 628 670 668 667 584 598 582 481 452 586 327 415 450 622 564 645 605 422 477 546 831 745 787 865 797 720 495 472 472 483 Depth Ni P (cm) 150.25 820 150.75 755 151.25 777 151.75 684 152.25 702 152.75 799 153.25 655 153.75 814 154.25 1001 154.75 969 155.25 944 155.75 809 156.25 874 156.75 649 157.25 808 157.75 606 158.25 689 158.75 790 159.25 854 159.75 689 160.25 801 160.75 744 161.25 771 161.75 656 162.25 887 162.75 845 163.25 913 163.75 889 164.25 833 164.75 1208 165.25 1034 165.75 931 166.25 448 166.75 797 167.25 866 167.75 859 168.25 811 168.75 826 169.25 992 Pr 0 8 0 0 63 0 0 0 0 0 23 16 38 35 0 0 29 0 0 0 0 0 0 0 0 0 0 6 15 0 0 0 42 0 0 0 0 27 0 Pt 1165 1164 1288 1316 1409 1204 965 1310 1229 1198 339 309 106 248 766 971 1067 967 1233 1079 1052 1263 1101 1071 1042 1156 1095 1030 1139 1060 1198 1068 99 427 1184 1191 1287 1124 948 Rb 874 983 821 760 732 837 858 979 730 730 744 635 328 435 781 1014 807 1024 1000 978 1064 989 1014 1082 862 973 922 1325 1010 1364 1308 830 270 581 924 1202 966 1190 919 327 1078 1189 988 1380 1583 1611 1736 1735 877 1096 815 883 599 667 614 1150 1326 922 835 1119 1054 1197 1131 1395 823 70 179 469 382 0 373 0 0 0 355 396 934 1293 1033 S Sb 1243 1290 1157 1264 1653 2353 2023 1788 1612 1697 842 557 242 322 984 1667 1517 1713 1764 1907 1909 1758 1517 1639 1456 1457 1266 1418 1242 1322 1301 1372 374 444 1087 1251 1381 1336 1559 Sc 114 294 178 320 338 431 363 338 148 351 198 176 149 145 137 186 269 306 274 236 288 264 288 251 183 270 193 145 150 256 224 218 59 80 95 96 353 381 311 422 453 458 518 611 623 451 592 497 412 115 86 80 89 343 464 543 490 467 491 475 504 628 495 443 440 409 347 311 433 342 287 154 183 372 296 406 655 575 Depth Ni P (cm) 169.75 714 170.25 824 170.75 874 171.25 868 171.75 789 172.25 704 172.75 837 173.25 848 173.75 786 174.25 723 174.75 760 175.25 755 175.75 836 176.25 817 176.75 683 177.25 721 177.75 824 178.25 863 178.75 799 179.25 829 179.75 588 180.25 832 180.75 735 181.25 821 181.75 976 182.25 1089 182.75 974 183.25 888 183.75 854 184.25 932 184.75 945 185.25 937 185.75 961 186.25 755 186.75 930 187.25 908 187.75 935 188.25 892 188.75 836 Pr 0 0 0 0 0 0 0 0 0 0 31 0 0 0 0 0 37 0 38 42 11 0 21 0 0 0 20 0 21 0 0 7 9 0 0 0 0 0 0 Pt 1053 1124 1072 1238 937 1120 1017 862 594 722 860 1132 1094 1158 1214 1398 1118 982 470 530 376 1006 1171 1247 1361 1067 1319 1067 1295 1243 1254 1240 1152 1220 1154 1061 1276 1288 1068 Rb 825 916 1248 936 812 921 742 723 510 812 659 833 1058 871 1093 1081 881 899 691 579 443 927 947 946 1127 1216 1176 1428 936 945 1193 1144 1254 1200 1328 886 1114 957 883 328 1487 1105 1291 1435 1510 1325 1091 1124 769 1020 929 1322 898 1230 1095 1214 1110 1194 915 1007 484 884 1229 997 523 288 402 527 161 319 249 208 489 747 751 1084 1161 777 1034 S Sb 1379 1388 1396 1320 1390 1413 1234 973 651 742 1001 1311 1219 1491 1181 1336 1350 1260 564 562 353 899 1553 1718 1662 1727 2330 1639 1826 1801 1664 1663 1726 1741 1689 1659 1635 1693 1688 Sc 362 330 357 334 289 285 277 160 220 107 329 256 280 375 214 329 265 312 124 192 160 291 269 232 199 135 184 244 199 151 169 215 286 309 204 327 321 418 230 546 595 601 584 429 457 650 446 329 370 460 433 478 441 572 480 291 401 301 245 151 412 438 510 538 486 478 326 346 271 437 315 309 391 501 523 757 426 460 Depth Ni P (cm) 189.25 711 189.75 827 190.25 870 190.75 910 191.25 914 191.75 812 192.25 788 192.75 879 193.25 812 193.75 960 194.25 885 194.75 864 195.25 828 195.75 757 196.25 937 196.75 904 197.25 955 197.75 692 198.25 930 198.75 756 199.25 727 199.75 902 200.25 721 200.75 739 201.25 914 201.75 963 202.25 735 202.75 810 203.25 690 203.75 814 204.25 833 204.75 648 205.25 722 205.75 912 206.25 754 206.75 978 207.25 890 207.75 737 208.25 886 Pr 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 13 0 0 31 27 19 39 0 0 0 0 0 0 0 0 0 0 Pt 1208 1258 1017 1195 1130 1093 1174 1277 1218 1056 1200 1096 1006 1129 1053 1289 1094 1441 1276 1011 994 1055 1162 1204 1034 849 322 206 324 874 1354 1177 1173 1041 1283 1137 1395 1132 1058 Rb 878 877 768 1161 1181 1146 1068 975 919 743 1121 1089 840 1124 909 1197 961 920 1035 1101 928 745 753 786 949 739 361 477 631 946 673 796 1135 1001 976 967 1003 683 699 329 980 670 995 954 1112 982 1369 731 1134 844 926 1439 1163 967 408 867 688 692 882 826 760 1310 992 1274 1013 829 832 736 415 835 1203 1423 1183 1167 1394 1254 1008 1103 1177 S Sb 1454 1712 1581 1449 1533 1588 1471 1350 1391 1591 1429 1479 1529 1219 1426 1268 1323 1231 1357 1246 1191 1211 1252 1170 1212 890 316 207 294 842 1366 1357 1407 1399 1342 1144 1168 1199 1024 Sc 329 207 113 203 336 204 179 313 348 464 360 155 265 280 207 331 245 386 207 233 172 215 374 271 334 173 225 190 157 219 297 347 330 199 285 337 343 325 237 574 594 537 447 546 467 468 448 405 524 464 574 642 336 356 508 644 473 516 383 462 509 525 460 640 316 167 130 203 406 519 598 484 719 402 716 609 476 437 Depth Ni P (cm) 208.75 858 209.25 905 209.75 809 210.25 921 210.75 873 211.25 751 211.75 813 212.25 697 212.75 873 213.25 893 213.75 717 214.25 923 214.75 1017 215.25 1039 215.75 1159 216.25 1070 216.75 996 217.25 986 217.75 908 218.25 874 218.75 708 219.25 763 219.75 782 220.25 817 220.75 1017 221.25 934 221.75 833 222.25 757 222.75 795 223.25 835 223.75 734 224.25 834 224.75 665 225.25 532 225.75 857 226.25 850 226.75 944 227.25 1088 227.75 923 Pr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 0 5 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 Pt 976 1171 1162 1060 1126 1082 991 1107 1055 1335 1128 1273 993 1001 1125 1225 1158 1354 1289 1155 1110 1343 886 1090 1049 1177 1140 1095 1142 1057 1056 1017 1201 1300 1077 1115 1062 1232 1359 Rb 1116 1249 1061 1050 1198 1062 658 785 869 1015 746 863 1101 1088 1249 1293 1214 1135 984 1058 816 1189 1039 1023 1192 775 870 760 679 749 835 1029 904 989 888 935 1369 1037 1098 330 934 1133 989 812 923 907 679 1312 1328 1240 323 687 220 207 337 132 655 229 499 1096 1384 483 622 660 377 496 844 1325 1446 727 260 678 1175 1247 985 516 316 418 666 S Sb 1201 1313 1376 1366 1304 1206 1213 1269 1357 1370 1246 1300 1414 1440 1425 1465 1390 1377 1516 1481 1304 1281 1432 1453 1554 1566 1818 2470 1952 2116 2319 2119 1972 1633 2527 1964 1689 1826 1901 Sc 266 218 281 314 293 253 240 409 245 351 362 96 126 150 161 157 111 288 254 235 246 132 260 246 181 229 183 315 328 377 228 244 448 215 386 243 230 207 330 512 582 471 325 510 569 416 633 615 529 400 366 215 317 452 367 346 391 587 314 350 369 381 516 434 397 361 530 494 444 306 407 525 422 424 356 413 433 491 Depth Ni P (cm) 228.25 1010 228.75 802 229.25 812 229.75 730 230.25 908 230.75 802 231.25 727 231.75 522 232.25 655 232.75 933 233.25 744 233.75 710 234.25 859 234.75 787 235.25 754 235.75 726 236.25 725 236.75 690 237.25 648 237.75 617 238.25 941 238.75 812 239.25 648 239.75 857 240.25 811 240.75 726 241.25 665 241.75 814 242.25 930 242.75 942 243.25 911 243.75 949 244.25 935 244.75 866 245.25 930 245.75 807 246.25 1067 246.75 1231 247.25 1169 Pr 0 18 0 0 0 10 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Pt 1203 1134 1331 1358 831 266 326 572 1340 839 1275 1090 1092 1214 1269 1024 1122 1037 1022 1269 1096 1099 1357 1074 1280 1175 1096 1115 1188 536 633 780 627 618 493 451 328 472 554 Rb 1175 941 1173 855 683 548 427 613 835 918 754 672 771 924 774 912 964 830 811 798 1088 1038 883 1236 867 583 891 1412 1353 712 768 764 642 649 645 650 783 829 724 331 1017 1071 1712 1607 1238 815 322 488 995 947 1415 1377 872 1194 1302 926 870 1224 1503 1436 1057 970 1199 1615 1352 1247 945 453 324 1453 1159 1466 1228 1314 1557 1919 1386 356 736 S Sb 1977 1604 1733 2009 1180 569 284 828 1633 1266 1405 1479 1995 2691 1745 1578 1398 1623 1458 1395 1365 1488 1173 1479 1446 1382 1437 1832 1530 1464 1328 1381 1501 1779 1476 1674 1437 1599 1557 Sc 342 315 522 506 187 176 163 191 343 348 467 283 227 430 437 496 381 247 264 317 437 249 268 247 344 408 208 279 119 831 674 691 742 630 900 916 655 531 407 508 565 695 528 244 212 192 240 484 470 593 605 505 606 645 530 553 433 759 674 639 545 513 491 454 617 498 536 378 578 695 691 513 580 701 714 605 498 520 Depth Ni P (cm) 247.75 991 248.25 1223 248.75 986 249.25 860 249.75 951 250.25 856 250.75 984 251.25 1101 251.75 965 252.25 986 252.75 986 253.25 932 253.75 1059 254.25 1022 254.75 953 255.25 853 255.75 1145 256.25 976 256.75 1118 257.25 926 257.75 759 258.25 825 258.75 1052 259.25 946 259.75 906 260.25 959 260.75 1080 261.25 921 261.75 934 262.25 1125 262.75 1066 263.25 1172 263.75 1096 264.25 1197 264.75 1201 265.25 1206 265.75 1237 266.25 1049 266.75 1152 Pr 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 Pt 276 468 622 419 587 699 596 612 732 510 549 411 612 457 518 650 725 549 620 444 475 527 449 273 276 510 422 598 558 455 388 488 650 671 599 643 417 484 555 Rb 1047 693 607 819 760 706 855 711 783 870 919 686 641 848 639 772 893 868 909 859 705 347 739 1002 746 1002 484 427 838 864 1008 949 770 715 920 559 850 921 865 332 762 532 1159 1682 1332 1423 1557 1312 1348 1096 1267 1087 1335 1153 1168 1422 1134 1231 1345 1348 1347 600 512 433 324 880 728 1424 1373 1269 804 244 1042 1070 1318 840 1079 922 1150 S Sb 1207 1307 1582 1826 1746 1673 1754 1732 1635 1808 1928 1922 1921 1849 1820 1858 1913 1876 1745 1778 1779 1841 2500 1701 1430 1965 1774 1903 1591 1790 1641 1732 1695 1654 1691 1678 1757 1722 1717 Sc 608 459 508 648 630 651 743 893 453 273 426 352 334 377 366 276 325 315 345 406 519 667 917 570 451 655 535 739 494 673 481 361 330 467 409 461 397 608 482 426 462 441 546 604 641 587 534 409 351 221 382 332 422 420 447 336 448 448 202 482 557 652 366 446 519 704 593 462 399 440 413 409 392 459 373 484 517 531 Depth Ni P (cm) 267.25 1044 267.75 1017 268.25 1034 268.75 905 269.25 945 269.75 813 270.25 801 270.75 1022 271.25 1937 271.75 1851 272.25 1878 272.75 2292 273.25 1664 273.75 1090 274.25 1069 274.75 853 275.25 636 275.75 774 276.25 787 276.75 855 277.25 920 277.75 1061 278.25 1083 278.75 1231 279.25 1179 279.75 1199 280.25 1209 280.75 918 281.25 1386 281.75 1150 282.25 1073 282.75 1095 283.25 1091 283.75 1162 284.25 1072 284.75 1009 285.25 1175 285.75 1206 286.25 1307 Pr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 Pt 486 511 474 722 367 550 722 505 607 542 406 500 471 663 498 132 179 219 173 298 537 506 539 473 777 648 513 712 468 575 536 342 620 487 706 601 613 428 477 Rb 997 943 609 602 796 120 186 400 266 440 233 475 448 960 964 878 417 465 655 610 976 1070 735 788 903 905 1141 826 912 1252 696 1014 1146 650 1090 1140 925 886 597 333 1574 974 1280 1633 1034 1340 1810 1005 147 0 0 0 281 532 520 0 0 217 336 424 817 992 835 544 451 253 221 341 613 633 6 485 1068 1062 1294 1330 267 304 247 S Sb 1810 2012 2695 1803 1752 1854 1849 1971 1717 1583 1452 1450 1535 1602 2387 1570 1086 853 898 1281 1805 1878 1959 1806 1950 1789 1942 1971 1918 1750 1640 1546 1869 1810 1736 1845 2196 1848 2046 Sc 499 421 689 766 1265 1402 2582 4874 7783 8610 8168 9271 7539 4345 2040 805 499 401 317 528 543 605 570 576 511 461 506 583 465 423 440 448 578 638 471 647 644 649 871 571 629 416 683 712 887 1305 2490 4309 4175 4408 5440 3921 1925 942 481 314 254 223 416 486 505 611 417 467 493 346 503 433 380 399 363 586 500 463 673 449 471 669 Depth Ni P (cm) 286.75 1051 287.25 1213 287.75 2102 288.25 1624 288.75 649 289.25 894 289.75 775 290.25 799 290.75 834 291.25 785 291.75 899 292.25 828 292.75 714 293.25 659 293.75 570 Pr 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 Pt 594 513 641 526 710 586 557 576 587 560 565 592 731 530 549 Rb 1076 633 246 140 419 739 617 660 867 734 496 358 560 444 387 334 379 478 406 1036 2527 2639 2710 2212 2462 2203 2099 2209 2022 2097 2035 S Sb 1862 1977 1836 1550 2574 3318 3685 3436 2352 2423 2672 2133 2681 2267 2516 Sc 762 3591 9535 6569 1304 929 813 702 620 786 1148 974 943 1095 1200 728 1936 5039 2603 841 583 529 758 564 572 796 833 649 920 888 Table A 4.5 Galang Co XRF Geochemistry Se – U Depth Se Si Sr Ta Tb Te Tm U (cm) 14.25 0 260 1080 783 662 50 98 14.75 176 254 1104 655 791 407 316 15.25 318 647 1407 1479 1657 553 575 15.75 143 738 1423 1680 2123 606 612 16.25 180 743 1503 1612 2246 535 576 16.75 101 606 828 1441 1869 622 752 17.25 183 584 1303 1305 1654 632 684 17.75 331 598 897 1325 1939 516 702 18.25 217 660 782 1392 1676 426 528 18.75 410 697 979 1401 1918 685 684 19.25 226 655 1227 1436 1872 526 686 19.75 242 655 1167 1439 2012 523 482 20.25 10 633 965 1505 2004 576 628 20.75 401 727 999 1444 2144 504 789 21.25 287 671 1169 1497 2110 367 792 21.75 25 676 942 1515 2130 475 650 22.25 85 613 1055 1505 2300 434 598 22.75 169 547 959 1376 1947 490 671 23.25 203 623 1115 1462 1976 395 630 23.75 61 578 764 1463 2445 604 803 24.25 253 519 1158 1330 2374 522 827 24.75 277 558 1157 1297 2230 752 841 25.25 34 623 1236 1468 2252 733 739 25.75 0 618 1328 1262 2101 343 635 26.25 140 606 1239 1436 2359 517 658 26.75 0 698 1519 1277 2304 555 803 27.25 421 762 1092 1401 2012 396 562 27.75 378 711 1258 1503 2419 589 666 28.25 280 868 1043 1700 2299 491 465 28.75 377 753 1146 1737 1573 521 500 29.25 112 910 1501 1626 1498 527 532 29.75 121 1030 1565 1607 1479 523 446 30.25 430 880 1461 1483 1795 531 569 30.75 472 913 1353 1557 1809 406 618 31.25 363 954 1375 1554 1822 521 531 31.75 296 772 1922 1463 1680 471 536 32.25 198 864 1404 1485 1730 432 637 32.75 34 988 1410 1610 1858 491 509 335 Depth Se Si Sr Ta Tb Te Tm U (cm) 33.25 89 1150 1372 1735 1878 531 645 33.75 78 1181 1043 1583 1801 651 570 34.25 0 963 1054 1702 1573 449 523 34.75 420 1182 1161 1489 1508 474 543 35.25 301 1329 733 1866 1639 381 444 35.75 152 1348 883 1689 1419 360 474 36.25 13 1429 1109 1543 1595 398 556 36.75 298 1326 1263 1921 1627 388 590 37.25 84 1158 1144 1780 1902 534 586 37.75 283 964 1149 1716 1990 331 783 38.25 122 872 998 1712 2413 623 556 38.75 257 873 1394 1388 2550 587 716 39.25 229 693 1347 1251 1952 705 718 39.75 0 775 1300 1666 2538 563 517 40.25 0 785 1235 1449 2510 588 607 40.75 0 763 1048 1297 2092 381 885 41.25 319 741 1119 1379 1995 596 543 41.75 207 795 1301 1658 2219 450 460 42.25 213 737 992 1709 2036 674 560 42.75 379 801 1556 1727 1854 592 666 43.25 284 710 1362 1616 1846 312 392 43.75 540 799 1562 1583 1680 486 585 44.25 713 1041 1160 1791 1371 697 508 44.75 400 949 1567 1752 1976 378 613 45.25 0 983 1386 1660 1879 597 629 45.75 381 1099 1497 1622 1789 653 684 46.25 196 1018 1283 1902 2235 405 576 46.75 413 979 1618 1753 1921 561 539 47.25 261 859 1551 1587 2306 473 494 47.75 0 803 1672 1510 2325 532 568 48.25 172 787 1498 1386 2223 488 593 48.75 72 809 1334 1393 2023 586 628 49.25 291 735 1748 1662 2147 656 558 49.75 330 731 1409 1453 1934 579 706 50.25 523 731 1747 1707 2121 463 494 50.75 271 744 1533 1653 2010 726 480 51.25 118 938 1630 1474 2035 526 639 51.75 100 991 1515 1508 2216 486 529 52.25 82 1046 1883 1568 1892 500 691 336 Depth Se Si Sr Ta Tb Te Tm U (cm) 52.75 163 1648 2472 1362 1859 399 572 53.25 140 2521 3558 1264 1515 421 441 53.75 273 2186 2874 1279 1569 447 422 54.25 157 2192 3003 1284 1420 695 532 54.75 0 1721 3031 1374 1618 716 519 55.25 0 1510 2733 1435 1657 809 508 55.75 328 1291 2399 1787 1345 534 368 56.25 116 940 1771 1524 1532 624 542 56.75 30 905 1909 1822 1420 437 481 57.25 441 1244 2424 1663 1320 442 472 57.75 61 958 1431 1763 1356 259 436 58.25 305 947 1817 1745 1377 337 716 58.75 35 983 1734 1993 1740 303 460 59.25 340 1083 1554 1661 1559 288 639 59.75 447 786 1669 1588 1367 140 520 60.25 129 813 1303 1737 1592 616 737 60.75 32 489 1228 1490 1956 603 646 61.25 254 628 1253 1717 1873 458 575 61.75 381 545 1410 1485 2381 472 679 62.25 135 502 1105 1469 2217 580 841 62.75 222 490 1183 1422 2228 400 704 63.25 10 703 1585 1295 2115 512 749 63.75 355 615 1271 1545 2028 528 589 64.25 0 614 1423 1591 2160 270 821 64.75 150 473 1157 1591 1948 390 662 65.25 297 785 1232 1672 1656 316 644 65.75 34 573 1305 1690 2007 367 804 66.25 152 524 645 1726 2064 282 600 66.75 15 499 967 1444 2232 605 713 67.25 321 570 1073 1625 1972 521 729 67.75 184 579 973 1682 1782 1008 681 68.25 136 593 1040 1575 2044 540 736 68.75 46 632 656 1626 1794 426 594 69.25 224 639 362 1605 2243 354 762 69.75 435 637 890 1546 1814 440 648 70.25 455 679 799 1580 1645 185 633 70.75 185 734 584 1689 2024 435 766 71.25 187 740 906 1604 2012 536 802 71.75 367 810 542 1467 1569 477 532 337 Depth Se Si Sr Ta Tb Te Tm U (cm) 72.25 144 750 925 1596 1639 758 700 72.75 350 663 905 1601 1526 1138 727 73.25 130 747 970 1711 1274 696 523 73.75 326 825 865 1549 1603 643 657 74.25 120 741 1266 1671 1531 260 505 74.75 348 792 1307 1738 1301 413 560 75.25 405 886 979 1675 1296 398 452 75.75 73 895 1842 1517 1656 441 428 76.25 181 1025 1604 1371 1548 443 649 76.75 154 919 2096 1369 1543 380 615 77.25 122 1160 2092 1455 1653 658 566 77.75 233 1230 2017 1630 1453 768 611 78.25 181 1124 1996 1493 1512 781 580 78.75 0 1224 2496 1486 1385 896 515 79.25 317 561 1853 1320 1412 595 602 129 79.75 176 444 1554 1416 1390 658 604 9 80.25 260 186 1633 1373 1293 335 430 31 80.75 200 295 1704 1528 1349 343 540 62 81.25 164 290 1558 1146 1304 364 524 106 81.75 184 416 1245 1109 1323 374 476 47 82.25 0 506 1597 1106 1107 433 560 201 82.75 220 677 1521 1767 1681 345 543 0 83.25 0 562 1177 1643 1607 653 898 207 83.75 601 710 1688 1595 1910 491 616 64 84.25 354 937 1784 1650 1264 278 581 344 84.75 432 808 1655 1612 1265 367 627 17 85.25 264 763 1762 1639 1557 482 636 251 85.75 241 853 1780 1379 1202 620 583 200 86.25 223 746 1358 1467 1519 367 533 0 86.75 186 845 1530 1961 1212 426 469 133 87.25 448 868 1666 1944 938 445 437 145 87.75 358 775 1638 1752 1425 247 594 23 88.25 38 737 1429 1696 1440 459 401 184 88.75 362 741 1188 1797 1357 428 567 0 89.25 203 634 1379 2020 1629 228 442 31 89.75 427 568 995 1487 1584 308 715 0 90.25 159 584 635 1960 1460 450 528 182 90.75 481 375 560 1471 1383 1216 538 323 91.25 0 376 1176 1059 1115 3341 713 462 338 Depth Se Si Sr Ta Tb Te Tm U (cm) 91.75 0 343 944 759 1109 3113 602 239 92.25 137 438 666 880 1666 2395 631 208 92.75 0 555 842 1131 1912 2184 813 17 93.25 45 443 673 1301 2506 892 633 105 93.75 28 376 305 1471 2983 740 727 53 94.25 0 355 658 1228 3086 537 753 239 94.75 0 525 765 1283 2361 265 756 17 95.25 515 509 694 1456 2121 222 821 253 95.75 211 579 727 1291 2405 130 814 26 96.25 425 602 1005 1438 2271 376 719 0 96.75 330 787 1066 1334 2445 454 708 8 97.25 477 784 1136 1420 2210 393 446 189 97.75 321 857 1571 1605 1901 499 721 0 98.25 0 985 1325 1299 1983 371 766 132 98.75 159 854 1253 1286 1949 207 820 0 99.25 0 677 1217 1471 1989 367 648 76 99.75 412 800 1463 1389 2279 136 640 36 100.25 146 959 1596 1395 1895 347 609 57 100.75 165 846 1470 1325 1995 168 452 0 101.25 331 697 1252 1441 2261 116 795 0 101.75 326 741 1206 1532 1782 501 660 102 102.25 62 820 1107 1634 1895 377 492 0 102.75 319 868 1376 1515 1573 469 507 0 103.25 526 993 1507 1420 2067 667 754 170 103.75 21 954 1588 1316 1832 582 586 75 104.25 364 980 1310 1560 1697 461 462 0 104.75 129 1087 1610 1568 1501 556 575 0 105.25 18 1168 1312 1578 1692 402 500 79 105.75 135 940 1459 1409 1948 472 741 206 106.25 124 1079 1238 1315 1568 435 732 0 106.75 0 973 1454 1519 1750 423 699 67 107.25 215 759 1407 1546 1670 309 585 117 107.75 394 709 1472 1535 1560 518 651 0 108.25 132 747 1505 1592 1662 262 521 0 108.75 132 732 1194 1536 1459 179 604 0 109.25 0 738 1235 1747 1508 310 497 21 109.75 139 902 1344 1686 1351 317 606 0 110.25 9 1011 1446 1683 1090 402 610 0 110.75 257 901 1286 1978 1379 395 372 0 339 Depth Se Si Sr Ta Tb Te Tm U (cm) 111.25 219 859 1358 1782 1572 185 594 147 111.75 0 829 1541 1763 1653 312 456 173 112.25 248 891 1661 1569 1654 387 642 164 112.75 208 1204 1555 1505 1451 305 629 0 113.25 122 1056 1221 1471 1649 343 698 96 113.75 179 838 1462 1384 1442 581 498 126 114.25 335 833 1814 1778 1324 468 570 70 114.75 318 740 1667 1692 1525 449 591 77 115.25 176 556 1350 1722 1481 498 600 0 115.75 0 516 1200 1879 1554 279 549 103 116.25 305 543 1406 1667 1531 347 594 87 116.75 205 631 1239 1359 1592 396 485 297 117.25 441 511 1474 1682 1637 324 687 208 117.75 231 500 1557 1637 1574 330 519 322 118.25 169 595 1119 1937 1583 207 415 143 118.75 122 606 1316 1562 1421 543 669 110 119.25 58 498 1243 1679 1818 545 508 245 119.75 203 488 1149 1988 1481 229 598 247 120.25 299 384 1208 1498 1372 149 367 0 120.75 0 230 773 799 689 63 173 147 121.25 53 87 1038 716 467 35 109 196 121.75 41 152 563 620 493 73 93 66 122.25 154 339 561 1372 720 158 348 157 122.75 300 777 1296 1782 1664 635 465 0 123.25 171 938 1051 1399 1736 403 501 0 123.75 82 1356 1772 1361 1600 289 501 14 124.25 209 1175 2088 1281 1626 436 806 119 124.75 181 1258 2317 1465 1421 404 576 176 125.25 407 1342 2146 1545 1416 453 461 163 125.75 156 1203 2252 1583 1386 559 433 8 126.25 339 1369 2040 1673 1522 195 442 80 126.75 154 1276 2286 1352 1565 337 526 116 127.25 172 1144 1854 1371 1837 460 403 0 127.75 229 1392 1866 1063 1776 0 545 0 128.25 69 1566 1554 1080 2345 362 720 0 128.75 0 1669 2064 1036 1115 0 474 0 129.25 285 990 2131 1215 1763 409 585 9 129.75 255 933 1803 1622 1577 436 542 46 130.25 161 833 1776 1648 1328 386 555 224 340 Depth Se Si Sr Ta Tb Te Tm U (cm) 130.75 128 921 1571 1734 1353 287 485 0 131.25 258 841 1543 1590 1570 562 474 235 131.75 302 949 1608 1883 1513 528 606 92 132.25 134 1258 1369 1599 1575 58 503 298 132.75 179 1260 1529 1669 1463 480 272 50 133.25 103 1025 1589 1538 1498 243 586 215 133.75 475 760 1320 1610 1404 396 536 0 134.25 0 599 1205 1789 1119 646 583 0 134.75 412 433 1116 1699 1152 320 608 22 135.25 483 482 1024 1727 1469 218 563 87 135.75 83 519 1114 1675 1390 423 529 638 136.25 197 541 1285 1636 1641 492 661 148 136.75 228 365 1120 1827 1588 414 513 291 137.25 239 455 1271 1691 1442 166 606 346 137.75 135 419 799 1314 1607 428 755 270 138.25 170 328 586 1833 1900 516 398 255 138.75 91 351 842 1732 1961 304 695 291 139.25 110 413 723 1569 1782 444 642 162 139.75 37 361 699 1785 1326 389 572 387 140.25 229 361 855 1511 1774 578 495 278 140.75 114 419 908 1431 1788 329 671 125 141.25 140 430 814 1522 1913 324 611 125 141.75 246 530 1325 1557 1723 373 583 362 142.25 206 587 1116 1418 1994 408 649 0 142.75 0 685 1374 1427 1913 232 553 192 143.25 246 638 1275 1546 1910 205 636 249 143.75 0 484 683 1308 1861 129 614 306 144.25 4 710 556 1159 2426 96 793 0 144.75 45 967 577 1063 2558 125 593 96 145.25 23 1913 970 982 2069 0 736 105 145.75 15 4100 1507 594 1596 0 547 0 146.25 150 4760 2053 679 1348 0 307 0 146.75 208 5479 1944 955 1309 0 416 92 147.25 180 4143 1895 851 1660 0 626 102 147.75 329 1985 1524 1065 1697 0 655 69 148.25 0 747 864 1729 1575 303 577 25 148.75 274 506 1141 1745 1246 323 612 92 149.25 169 497 722 1763 1766 301 473 31 149.75 175 510 969 1585 1851 0 779 41 341 Depth Se Si Sr Ta Tb Te Tm U (cm) 150.25 257 507 1162 1647 1822 463 666 197 150.75 86 596 1238 1516 1983 276 725 178 151.25 347 590 919 1743 1879 283 750 84 151.75 254 767 942 1547 1819 235 526 123 152.25 409 997 966 1666 1720 411 635 328 152.75 131 991 1021 1522 1893 370 554 318 153.25 83 825 1193 1376 1675 382 679 166 153.75 283 815 919 1731 1632 205 626 182 154.25 284 587 710 2102 1496 351 374 614 154.75 0 643 917 1905 1343 84 416 762 155.25 118 291 1024 928 710 72 75 701 155.75 58 105 790 719 332 0 89 614 156.25 203 110 866 590 329 0 0 620 156.75 175 122 448 586 369 18 92 457 157.25 35 375 663 1672 944 184 215 850 157.75 140 527 890 1757 1330 290 510 599 158.25 622 431 818 1866 1181 225 448 689 158.75 352 731 563 1734 1596 256 489 499 159.25 374 560 577 2133 1437 391 441 802 159.75 246 673 791 1934 1384 294 548 721 160.25 500 642 836 1678 1340 383 543 700 160.75 532 586 715 1848 1366 336 530 927 161.25 106 582 1187 1869 1237 336 524 878 161.75 179 744 1093 1955 1471 628 484 784 162.25 457 492 1112 2098 1397 574 379 834 162.75 635 241 35 2293 1148 224 505 1009 163.25 709 157 400 2516 1133 213 399 892 163.75 549 383 636 2067 1357 389 422 947 164.25 372 184 681 2031 1179 196 437 746 164.75 67 146 146 2234 891 253 560 697 165.25 455 121 356 2139 910 170 393 550 165.75 615 101 158 2458 844 257 316 722 166.25 95 50 210 554 207 0 101 182 166.75 138 5 242 967 463 219 131 413 167.25 716 158 398 2120 1070 398 344 703 167.75 323 283 553 2221 1288 476 472 770 168.25 288 728 542 1939 1395 213 481 612 168.75 176 694 898 1818 1180 141 531 959 169.25 443 718 888 1947 1142 214 370 865 342 Depth Se Si Sr Ta Tb Te Tm U (cm) 169.75 339 780 1117 1721 1518 229 658 834 170.25 351 674 1074 1642 1341 58 635 897 170.75 278 586 853 1666 1385 292 543 875 171.25 96 614 1140 1826 1313 165 386 818 171.75 266 710 920 1891 1371 384 364 888 172.25 457 583 905 1637 1385 220 320 737 172.75 182 536 1122 1749 1356 239 510 510 173.25 385 405 1035 1507 1019 297 390 554 173.75 171 292 695 1140 859 16 323 458 174.25 0 299 1062 1162 908 171 344 516 174.75 259 534 923 1630 878 172 382 610 175.25 291 734 1021 1921 1411 460 393 175.75 161 653 1045 1726 1190 394 554 176.25 445 577 853 2043 1291 468 482 176.75 412 453 756 2085 1421 376 555 177.25 36 467 900 1978 1409 372 530 177.75 400 459 576 2013 1310 733 545 178.25 299 547 801 1829 1152 498 485 178.75 87 244 972 1019 202 250 146 179.25 203 237 882 1127 159 169 227 179.75 213 223 630 653 169 135 106 180.25 452 275 736 1467 922 374 555 180.75 557 454 1133 1878 1289 621 509 181.25 194 448 995 2010 1366 469 465 181.75 269 254 486 2331 1223 440 629 182.25 403 225 747 2204 1143 505 496 182.75 572 185 533 2401 1116 602 560 183.25 399 117 45 2167 1138 628 452 183.75 552 169 772 2336 1197 681 474 184.25 251 146 158 2415 1171 800 430 184.75 630 101 637 2344 1099 605 356 185.25 671 218 617 1976 1192 497 393 185.75 654 185 431 2209 1014 795 423 186.25 389 336 954 1874 1291 815 605 186.75 365 476 981 1921 1106 757 574 187.25 239 524 1103 1876 1248 548 507 187.75 633 380 733 1997 1317 516 512 188.25 31 515 654 2146 1338 674 564 188.75 526 561 1210 2173 1213 618 490 343 Depth Se Si Sr Ta Tb Te Tm U (cm) 189.25 549 582 865 2050 1194 338 416 189.75 428 335 1344 2024 1268 459 437 190.25 279 431 1140 1925 1449 661 627 190.75 315 436 808 1739 1268 638 594 191.25 276 514 1302 1844 1408 615 709 191.75 261 447 1200 1837 1386 711 435 192.25 0 474 1249 1878 1292 631 580 192.75 511 458 1127 1916 1388 670 517 193.25 374 537 1076 1943 1236 722 543 193.75 516 689 781 2193 1574 509 422 194.25 306 625 906 2048 1248 531 566 194.75 380 601 1002 1910 1332 683 393 195.25 148 490 866 1917 1505 612 666 195.75 440 296 872 2119 1152 564 443 196.25 814 254 309 2421 1262 658 465 196.75 451 363 764 2153 1072 646 461 197.25 500 508 736 2151 1218 695 526 197.75 725 439 786 2209 1239 585 359 198.25 716 401 1122 2107 1283 652 641 198.75 268 492 1084 1746 1152 742 631 199.25 431 353 1045 1877 1279 600 496 199.75 355 474 1148 1885 1152 573 511 200.25 766 613 1040 1924 1250 579 386 200.75 420 403 1385 2016 1395 692 518 201.25 71 555 1498 1667 1305 594 586 201.75 259 458 1418 1535 570 443 276 202.25 64 221 1223 715 0 95 37 202.75 0 64 1243 613 0 119 0 203.25 408 88 447 875 74 126 68 203.75 458 322 960 1661 767 507 262 204.25 681 604 1000 2050 1307 514 261 204.75 591 583 1277 2053 1349 644 530 205.25 0 589 1361 2014 1396 648 330 205.75 671 567 1060 1781 1488 521 621 206.25 490 660 1201 1729 1337 658 469 206.75 298 462 1279 1997 1232 470 465 207.25 461 404 928 2248 1176 632 423 207.75 224 580 1046 2124 1129 527 495 208.25 330 453 1233 1787 1290 585 550 344 Depth Se Si Sr Ta Tb Te Tm U (cm) 208.75 382 497 756 1594 1067 582 641 209.25 613 487 1014 2083 1247 587 426 209.75 324 538 957 1889 1458 750 634 210.25 401 632 971 2114 1367 635 505 210.75 476 669 986 1985 1236 717 532 211.25 393 645 647 1800 1207 562 542 211.75 204 686 956 1917 1189 484 363 212.25 356 556 1427 1819 1317 552 613 212.75 461 626 973 1864 1349 738 654 213.25 409 479 1279 1818 1077 707 313 213.75 366 612 772 2210 1099 630 356 214.25 781 392 1079 1979 928 896 485 214.75 644 283 630 2420 868 818 303 215.25 422 365 95 2250 964 770 425 215.75 377 186 642 2348 860 643 280 216.25 405 181 683 2164 972 724 428 216.75 776 164 1012 2080 947 859 518 217.25 427 198 630 2236 971 760 435 217.75 369 265 857 2138 1092 524 503 218.25 379 348 1038 2138 1208 768 516 218.75 333 823 1658 1773 1200 617 479 219.25 483 326 777 2095 1275 602 427 219.75 448 468 580 2016 1229 484 431 220.25 868 338 430 2022 1161 410 485 220.75 243 238 145 2133 1264 482 568 221.25 832 289 481 1900 1147 310 574 221.75 432 325 704 2076 1387 424 572 222.25 459 736 1036 1797 1026 792 417 222.75 507 928 1925 1845 1345 493 578 223.25 538 517 1004 2030 1292 539 505 223.75 584 302 230 2337 1281 842 401 224.25 391 192 574 1944 1218 537 428 224.75 454 636 785 1685 1176 595 413 225.25 230 540 1121 1558 1103 643 379 225.75 532 295 680 1810 1101 911 586 226.25 532 201 618 2152 997 732 397 226.75 378 260 391 2002 1050 354 374 227.25 719 246 283 2184 1089 705 383 227.75 683 301 402 2163 1262 368 561 345 Depth Se Si Sr Ta Tb Te Tm U (cm) 228.25 248 356 618 2064 1201 595 451 228.75 680 513 765 2041 1518 378 533 229.25 100 746 922 1631 1249 191 602 229.75 235 573 1089 1891 1357 281 669 230.25 74 478 872 1327 505 454 386 230.75 0 378 908 785 72 209 43 231.25 0 251 863 519 15 49 46 231.75 311 310 840 1291 499 362 54 232.25 293 674 936 1751 1167 713 430 232.75 252 567 1109 1826 1103 586 454 233.25 488 600 1373 2019 1337 676 466 233.75 553 534 1498 1801 1363 683 679 234.25 344 480 1324 2016 1527 860 533 234.75 665 669 1360 1676 1420 841 714 235.25 364 1129 1456 1891 1192 894 510 235.75 352 769 931 1900 1111 781 449 236.25 451 749 1007 2012 1339 592 465 236.75 424 658 1081 1796 1215 1050 502 237.25 125 936 1569 1475 1469 681 601 237.75 299 652 1580 1896 1409 517 550 238.25 653 594 1122 1988 1068 661 343 238.75 416 669 1263 1987 1076 846 494 239.25 765 463 1010 2033 1099 647 419 239.75 880 435 897 1884 1236 538 605 240.25 383 731 1312 1724 1165 823 397 240.75 567 1099 1678 1699 1199 576 477 241.25 412 366 1028 1964 1216 650 577 241.75 322 191 775 2178 1072 593 435 242.25 661 183 834 2054 1143 512 415 242.75 557 1002 1434 1619 1705 450 756 233 243.25 0 762 1777 1383 1603 543 886 162 243.75 206 688 1322 1497 1434 804 659 335 244.25 655 825 1458 1834 1702 687 672 529 244.75 285 1001 1551 1837 1676 990 816 257 245.25 0 1075 1605 1487 1444 574 764 779 245.75 0 1391 2455 1387 1582 651 812 81 246.25 0 802 1790 1995 1500 618 642 650 246.75 326 392 394 2282 1230 491 684 520 247.25 365 473 1610 2060 1467 709 806 257 346 Depth Se Si Sr Ta Tb Te Tm U (cm) 247.75 303 1032 1440 1671 1418 560 771 95 248.25 123 234 867 2087 1203 545 833 0 248.75 496 419 1000 1902 1606 581 846 10 249.25 0 691 1542 1757 1916 389 882 352 249.75 305 734 1473 1767 1774 527 720 677 250.25 218 990 1509 1661 1847 393 727 151 250.75 0 968 1785 1810 1822 494 814 807 251.25 0 1163 1588 1849 1860 577 911 776 251.75 150 727 1239 1833 1784 562 812 1531 252.25 467 590 901 2163 1795 514 669 2571 252.75 387 602 855 1883 2055 504 977 2248 253.25 271 500 781 2076 1781 493 642 2811 253.75 393 486 913 2205 1615 400 875 2520 254.25 17 486 726 1694 1844 402 801 2223 254.75 280 357 645 2087 1908 353 1026 2888 255.25 284 366 687 1952 1798 200 882 2474 255.75 179 416 499 1884 1712 478 692 2646 256.25 520 417 843 1948 1762 436 838 2280 256.75 181 342 995 1888 1578 467 864 2741 257.25 65 818 1377 1337 1525 464 901 1037 257.75 201 945 1312 1241 1391 332 651 430 258.25 158 570 1076 1743 1362 279 486 226 258.75 403 398 743 2092 1400 414 615 70 259.25 262 360 923 1605 915 387 647 8 259.75 246 247 410 1914 1039 621 548 0 260.25 193 317 891 1945 1219 633 793 715 260.75 327 572 923 1865 1592 350 942 657 261.25 165 828 1394 1812 2012 262 894 944 261.75 0 968 1137 1624 1820 709 752 1153 262.25 285 717 787 2062 1871 413 665 1633 262.75 456 581 622 2014 1306 108 675 1849 263.25 385 259 704 2193 1323 408 741 1856 263.75 510 249 658 2114 1449 621 768 1989 264.25 35 290 671 2273 1774 465 767 2479 264.75 552 362 1244 2166 1757 508 812 1797 265.25 236 296 904 2460 1479 440 704 1754 265.75 402 285 460 2097 1531 374 915 1793 266.25 356 252 598 2357 1524 356 798 2212 266.75 41 411 733 2179 1840 436 764 2574 347 Depth Se Si Sr Ta Tb Te Tm U (cm) 267.25 180 409 1034 2010 1879 365 852 1480 267.75 542 436 592 1860 1746 255 951 1588 268.25 547 842 941 1807 1940 659 802 1377 268.75 0 825 1563 1727 1944 412 715 719 269.25 346 636 1251 1812 1478 791 763 443 269.75 207 1318 1958 1446 1718 641 798 92 270.25 0 2022 2429 1378 1587 735 761 0 270.75 106 988 2478 1017 1177 1289 722 305 271.25 0 375 2010 752 546 1629 818 173 271.75 0 346 1664 856 506 1164 887 144 272.25 6 185 1737 1028 575 1774 747 0 272.75 0 202 2052 828 319 1432 912 324 273.25 0 173 1804 919 713 1006 753 346 273.75 63 168 1355 1773 943 1051 682 980 274.25 553 272 1060 2130 1119 923 670 2069 274.75 131 122 882 1440 557 154 254 1531 275.25 0 50 625 1131 102 120 42 1860 275.75 0 46 307 937 184 190 55 2893 276.25 77 71 530 1119 288 167 187 3007 276.75 366 91 76 1403 510 215 370 2442 277.25 0 70 874 1860 1213 500 723 3742 277.75 56 89 152 2106 1110 549 606 5491 278.25 465 136 595 2268 1340 266 679 4190 278.75 711 18 565 2269 1429 574 935 2120 279.25 403 61 353 2238 1374 682 842 879 279.75 479 63 524 2076 1518 385 820 1006 280.25 175 63 704 2310 1207 407 658 1230 280.75 362 77 101 2272 1421 309 694 1363 281.25 318 70 158 2370 1092 392 807 1713 281.75 67 24 407 2085 1274 375 799 1407 282.25 583 33 230 2233 1419 398 760 2155 282.75 158 92 524 2283 1409 479 775 3363 283.25 186 76 556 2284 1368 397 769 5789 283.75 400 107 502 2298 1413 380 739 6239 284.25 173 116 401 2100 1359 494 920 8290 284.75 250 143 395 2286 1247 438 781 7267 285.25 286 104 452 2221 1477 609 827 3265 285.75 374 80 369 2305 1055 713 743 2155 286.25 384 49 398 2308 1057 743 655 1315 348 Depth Se Si Sr Ta Tb Te Tm U (cm) 286.75 182 127 474 2156 1212 663 793 1112 287.25 91 148 1547 1599 1213 1952 705 905 287.75 0 317 1994 552 515 1326 1017 218 288.25 81 572 1731 1071 612 757 559 143 288.75 266 1299 1852 1423 2022 677 872 455 289.25 221 1610 1737 1359 2446 65 941 477 289.75 0 1750 1859 1346 2522 427 719 716 290.25 108 1877 1776 1451 2035 0 626 500 290.75 171 1331 1797 1239 1905 198 733 136 291.25 304 1302 1538 1512 1874 526 753 148 291.75 0 1678 1837 1386 1886 616 834 206 292.25 0 1371 2154 1379 1803 501 768 326 292.75 24 2550 2265 1310 1822 466 487 251 293.25 223 2225 2204 1259 1678 320 498 495 293.75 169 2100 2042 1121 1631 259 380 473 349 Table A 4.6 Galang Co XRF Geochemistry V – Zn Depth V W Y Zn (cm) 14.25 787 1157 541 314 14.75 1022 1402 638 243 15.25 1809 2542 608 395 15.75 1950 2672 484 304 16.25 1910 2728 169 257 16.75 1946 2352 341 141 17.25 1742 2391 307 433 17.75 1818 2385 44 283 18.25 1671 2494 139 382 18.75 1889 2747 81 495 19.25 1767 2419 256 462 19.75 1547 2678 208 292 20.25 1818 2443 0 398 20.75 2186 2611 194 409 21.25 1775 2679 0 403 21.75 2021 2657 262 396 22.25 1861 2477 249 451 22.75 1998 2589 90 510 23.25 1924 2553 206 315 23.75 1838 2569 0 333 24.25 2033 2599 406 402 24.75 2096 2633 397 399 25.25 1985 2400 0 405 25.75 1886 2358 208 171 26.25 2129 2605 324 435 26.75 2087 2694 128 308 27.25 1947 2500 0 450 27.75 2159 2551 240 394 28.25 2189 2449 39 315 28.75 1837 2617 299 293 29.25 1967 2838 387 307 29.75 1950 2753 492 215 30.25 2101 2780 419 490 30.75 2008 2758 238 533 31.25 1915 2795 283 318 31.75 2182 2657 452 402 32.25 1911 2720 140 337 32.75 1979 2869 310 349 350 Depth V W Y Zn (cm) 33.25 1772 2848 200 340 33.75 2131 2900 220 268 34.25 1891 2987 87 490 34.75 1667 2850 238 360 35.25 1791 2918 0 85 35.75 1841 3099 179 481 36.25 1888 2885 327 341 36.75 2150 2927 0 377 37.25 2246 2723 91 452 37.75 2010 2682 425 321 38.25 2040 2763 37 288 38.75 2233 2619 542 211 39.25 2121 2565 206 283 39.75 2223 2596 177 464 40.25 2015 2531 200 338 40.75 2164 2423 16 380 41.25 2444 2698 72 468 41.75 2199 2688 0 346 42.25 2186 2747 0 387 42.75 2160 2662 36 437 43.25 2161 2979 219 722 43.75 2002 2771 130 497 44.25 1991 2864 0 413 44.75 2207 2773 88 456 45.25 1756 2852 258 289 45.75 2104 2836 0 530 46.25 2346 2853 280 503 46.75 2192 2615 456 444 47.25 2534 2845 276 458 47.75 2631 2923 0 525 48.25 2246 2697 219 480 48.75 2240 2705 0 507 49.25 2005 2616 0 336 49.75 2234 2867 113 383 50.25 2154 2799 219 375 50.75 2361 2847 348 358 51.25 2009 2613 0 461 51.75 2203 2778 197 365 52.25 2322 2789 329 644 351 Depth V W Y Zn (cm) 52.75 2056 3042 151 527 53.25 1958 2979 189 692 53.75 1978 2695 51 729 54.25 2195 3126 447 640 54.75 1902 2905 85 602 55.25 1875 2954 291 741 55.75 1721 2944 473 1139 56.25 1959 3207 384 1107 56.75 1986 3011 188 526 57.25 2102 2910 86 392 57.75 2044 3048 526 308 58.25 2165 2880 573 449 58.75 2223 3079 153 200 59.25 1907 2894 297 371 59.75 1863 2910 401 345 60.25 2268 2984 331 328 60.75 2024 2648 266 0 61.25 1785 2732 276 146 61.75 2181 2533 396 418 62.25 2276 2662 172 331 62.75 2341 2672 17 285 63.25 2080 2596 178 204 63.75 2166 2606 290 59 64.25 2520 2427 265 146 64.75 2213 2491 257 250 65.25 2240 2787 334 174 65.75 2605 2755 116 333 66.25 2427 2648 300 64 66.75 2948 2537 208 88 67.25 2611 2777 118 247 67.75 2647 2786 396 251 68.25 2444 2616 688 0 68.75 2350 2601 423 242 69.25 2387 2728 335 248 69.75 2782 2618 136 99 70.25 2431 2633 424 0 70.75 2392 2542 310 91 71.25 2351 2642 99 273 71.75 2040 2770 481 64 352 Depth V W Y Zn (cm) 72.25 2247 2709 28 4 72.75 2609 2770 950 126 73.25 2178 2806 263 70 73.75 2124 2696 166 139 74.25 2146 2525 434 94 74.75 1978 2969 428 228 75.25 1691 2584 214 425 75.75 2080 2731 241 202 76.25 2170 2644 551 466 76.75 2430 2722 351 736 77.25 1781 2606 438 948 77.75 1768 2702 358 1349 78.25 2398 2740 241 1105 78.75 2063 2742 293 891 79.25 2233 2477 365 79.75 1998 2670 258 80.25 1967 2199 410 80.75 1870 2446 412 81.25 1768 2140 342 81.75 1743 2365 303 82.25 1999 2210 360 82.75 2443 2861 436 83.25 2435 2754 375 83.75 2625 2616 138 84.25 2571 2760 394 84.75 2593 2758 172 85.25 2635 2698 546 85.75 2409 3014 501 86.25 2163 2945 368 86.75 2343 2938 274 87.25 2173 2880 496 87.75 2406 2740 500 88.25 2388 2692 555 88.75 2208 2790 551 89.25 2441 2879 352 89.75 2524 2602 225 90.25 2900 2810 86 90.75 2494 2433 0 91.25 1833 2030 0 353 Depth V W Y (cm) 91.75 1667 1828 92.25 2118 1923 92.75 2359 2024 93.25 2739 2252 93.75 3134 2359 94.25 3030 2401 94.75 2873 2376 95.25 2488 2622 95.75 2780 2370 96.25 2890 2431 96.75 2508 2526 97.25 2530 2511 97.75 2305 2526 98.25 2312 2367 98.75 2247 2318 99.25 2187 2477 99.75 1924 2471 100.25 2486 2643 100.75 1989 2399 101.25 2092 2462 101.75 2085 2368 102.25 2241 2487 102.75 2388 2573 103.25 2562 2809 103.75 2188 2689 104.25 2306 2603 104.75 2224 2679 105.25 2240 2854 105.75 2247 2669 106.25 2533 2707 106.75 2267 2878 107.25 2438 2520 107.75 2084 2644 108.25 2213 2726 108.75 2319 2652 109.25 2219 2822 109.75 2163 2747 110.25 2306 2861 110.75 2025 2926 Zn 0 0 0 0 0 276 379 262 465 440 459 590 554 599 345 568 522 709 472 537 508 220 509 358 509 547 427 648 346 443 387 593 457 609 291 460 305 344 249 354 Depth V W Y (cm) 111.25 2248 2719 111.75 2368 2869 112.25 2225 2661 112.75 2265 2735 113.25 2253 2810 113.75 2176 2735 114.25 2200 2859 114.75 2049 2733 115.25 2430 2698 115.75 2060 2800 116.25 2245 2715 116.75 2339 2487 117.25 2437 2871 117.75 2295 2664 118.25 2215 2822 118.75 2261 2610 119.25 2252 2663 119.75 2468 2812 120.25 1577 2147 120.75 897 1200 121.25 630 1198 121.75 644 962 122.25 1287 2295 122.75 2149 2598 123.25 2215 2459 123.75 2209 2639 124.25 2366 2817 124.75 2486 2581 125.25 2553 2616 125.75 2538 2780 126.25 2118 2694 126.75 2149 2797 127.25 2213 2598 127.75 2034 2510 128.25 2412 2419 128.75 2388 2436 129.25 2290 2578 129.75 2456 2842 130.25 2671 2819 Zn 490 286 526 521 549 433 317 557 490 272 474 249 444 195 317 472 463 328 428 281 329 233 486 337 406 567 761 505 594 493 450 501 522 534 468 802 645 531 478 355 Depth V W Y (cm) 130.75 2379 2769 131.25 2730 2754 131.75 2485 2768 132.25 2313 2756 132.75 2388 2648 133.25 2195 2956 133.75 2262 2742 134.25 2342 2757 134.75 2377 2506 135.25 2429 2521 135.75 2565 2622 136.25 2587 2487 136.75 2419 2614 137.25 2408 2608 137.75 2676 2561 138.25 2708 2566 138.75 2495 2594 139.25 2307 2483 139.75 2504 2675 140.25 2532 2435 140.75 2485 2325 141.25 2536 2406 141.75 2436 2354 142.25 2155 2421 142.75 2365 2418 143.25 2434 2458 143.75 2817 2177 144.25 2653 2102 144.75 2325 2253 145.25 2603 1846 145.75 2702 2030 146.25 2466 2079 146.75 2750 2499 147.25 2396 2182 147.75 1746 2434 148.25 2029 2704 148.75 2141 2802 149.25 2492 2563 149.75 2357 2816 Zn 453 375 428 470 417 534 577 612 355 456 384 462 369 435 319 395 395 167 226 326 277 504 226 640 414 433 268 300 576 796 1234 1658 1699 1678 988 379 351 318 481 356 Depth V W Y (cm) 150.25 2124 2353 150.75 2312 2660 151.25 2430 2518 151.75 2230 2675 152.25 2065 2576 152.75 2049 2381 153.25 2534 2394 153.75 2121 2720 154.25 2206 2597 154.75 1861 2590 155.25 968 1529 155.75 567 1222 156.25 446 922 156.75 473 868 157.25 1318 2243 157.75 2595 2783 158.25 2021 2764 158.75 2223 2760 159.25 2426 2812 159.75 2214 2708 160.25 2115 2842 160.75 1954 2973 161.25 2204 2824 161.75 2284 2984 162.25 2156 3039 162.75 2178 3162 163.25 2193 3423 163.75 2422 3205 164.25 2206 3132 164.75 2102 3307 165.25 1924 3244 165.75 2018 3486 166.25 663 799 166.75 894 1395 167.25 1903 2792 167.75 1854 2985 168.25 1949 2900 168.75 2004 2856 169.25 2513 2807 Zn 403 356 336 546 792 662 446 426 272 242 475 285 275 228 76 234 299 85 286 257 220 317 193 342 247 0 0 66 0 0 0 111 9 54 18 0 439 337 371 357 Depth V W Y Zn (cm) 169.75 2486 2712 323 170.25 2315 2753 345 170.75 2355 2978 438 171.25 1841 2597 320 171.75 2261 2793 325 172.25 1937 2559 257 172.75 1888 2665 256 173.25 1785 2317 247 173.75 1353 1694 140 174.25 1561 2006 521 174.75 1719 2368 164 175.25 2291 2970 176 195 175.75 2218 2764 0 295 176.25 2241 2907 199 340 176.75 2128 2916 228 350 177.25 1990 2870 254 480 177.75 2397 2966 66 97 178.25 2050 2905 472 86 178.75 1003 1587 727 144 179.25 924 1733 431 235 179.75 500 998 525 162 180.25 1288 2417 13 324 180.75 2332 2771 168 143 181.25 2510 3023 61 40 181.75 1809 2914 351 0 182.25 2014 2913 281 12 182.75 1824 3032 166 145 183.25 2006 3044 0 0 183.75 2058 2858 259 0 184.25 1721 2952 139 28 184.75 1903 3003 177 51 185.25 1832 3009 256 0 185.75 2086 3073 0 40 186.25 2137 2683 61 0 186.75 1954 3065 245 135 187.25 2542 2916 169 353 187.75 2200 3162 444 75 188.25 2198 2877 293 79 188.75 2262 2795 155 26 358 Depth V W Y Zn (cm) 189.25 2044 2937 228 105 189.75 1932 2827 332 232 190.25 2257 2918 141 181 190.75 2224 2993 293 198 191.25 2100 2985 362 169 191.75 2315 2975 0 327 192.25 2245 2886 417 206 192.75 2115 2832 411 61 193.25 2136 3008 302 333 193.75 2407 2990 128 94 194.25 2080 2811 0 341 194.75 2169 2808 0 212 195.25 2287 2955 375 325 195.75 2071 2960 0 137 196.25 2295 3089 0 36 196.75 2183 3026 0 99 197.25 2206 2891 0 153 197.75 2079 3081 49 86 198.25 2089 3163 287 5 198.75 2033 2938 0 0 199.25 2229 2814 95 9 199.75 2205 2827 477 247 200.25 2070 2818 361 100 200.75 2249 2934 251 433 201.25 2310 2694 228 133 201.75 1674 2299 584 333 202.25 408 1025 1114 134 202.75 366 976 808 166 203.25 679 1180 416 156 203.75 1479 2472 180 0 204.25 1980 2929 298 175 204.75 2286 2929 0 317 205.25 2147 2778 155 52 205.75 2369 3006 0 144 206.25 1963 2818 0 246 206.75 1995 2763 0 281 207.25 1970 3034 63 93 207.75 2148 2822 250 149 208.25 2143 2814 414 181 359 Depth V W Y Zn (cm) 208.75 2205 2740 88 98 209.25 1907 2972 0 286 209.75 2244 2818 22 223 210.25 2089 3110 93 66 210.75 2372 2770 141 298 211.25 2035 2915 168 69 211.75 1949 2502 234 164 212.25 2053 2546 333 118 212.75 2126 2899 95 74 213.25 1850 2744 233 112 213.75 2155 2755 419 103 214.25 1932 2765 493 18 214.75 1800 3082 439 35 215.25 1765 3117 431 76 215.75 1773 2970 161 73 216.25 1673 2931 140 0 216.75 1819 3220 390 8 217.25 1791 3119 0 104 217.75 2126 2945 60 44 218.25 2080 3011 0 0 218.75 2288 2930 126 147 219.25 1794 2980 404 32 219.75 2058 2979 0 0 220.25 1779 2714 0 42 220.75 1995 2897 219 165 221.25 1981 2851 301 55 221.75 1769 2896 0 0 222.25 2037 2524 520 219 222.75 2258 2810 425 311 223.25 2062 2962 357 14 223.75 1730 2852 0 0 224.25 1756 2930 162 0 224.75 1967 2663 150 50 225.25 2033 2770 168 244 225.75 1783 2817 139 142 226.25 1928 2836 69 0 226.75 2043 2973 22 0 227.25 2139 3029 0 170 227.75 1853 2909 0 157 360 Depth V W Y Zn (cm) 228.25 2248 2936 238 187 228.75 2655 2845 222 298 229.25 2261 2738 598 603 229.75 2293 2611 177 341 230.25 1369 1968 476 269 230.75 737 1176 704 218 231.25 538 940 674 187 231.75 1109 1872 348 0 232.25 1879 2560 50 96 232.75 2311 2821 48 200 233.25 2126 2755 583 0 233.75 2143 2697 316 53 234.25 2375 3083 528 162 234.75 2073 2666 0 232 235.25 1976 2920 0 196 235.75 1998 3065 175 140 236.25 2190 3143 34 74 236.75 2249 2640 0 0 237.25 2218 2740 164 66 237.75 2378 2787 137 0 238.25 2171 2923 178 302 238.75 2049 2675 0 263 239.25 1755 2978 69 159 239.75 1988 2886 0 174 240.25 1814 2800 183 286 240.75 1782 2682 0 68 241.25 2171 2792 306 200 241.75 1860 2869 0 0 242.25 1757 2942 114 34 242.75 3055 2888 408 243.25 3117 2773 731 243.75 2931 2996 522 244.25 2610 3107 580 244.75 3043 2856 344 245.25 3001 3108 446 245.75 2720 2790 379 246.25 2760 3053 282 246.75 2561 3307 198 247.25 2790 3215 351 361 Depth V W Y (cm) 247.75 2248 2991 248.25 2395 3508 248.75 2654 3061 249.25 3147 3267 249.75 2846 3203 250.25 2859 2764 250.75 3046 3155 251.25 3007 3132 251.75 2918 2996 252.25 2921 3011 252.75 2575 3118 253.25 2729 3086 253.75 2727 3223 254.25 2833 2811 254.75 2620 2994 255.25 2605 2951 255.75 2563 2861 256.25 2860 3010 256.75 2707 2927 257.25 2662 2859 257.75 2445 2455 258.25 2077 2435 258.75 2382 2846 259.25 2178 2590 259.75 2325 2530 260.25 2655 2870 260.75 2913 2995 261.25 2943 3145 261.75 2804 2818 262.25 3181 3163 262.75 2799 2847 263.25 2402 3010 263.75 2383 3212 264.25 2727 2898 264.75 3032 3236 265.25 2506 3175 265.75 2788 3172 266.25 2540 3347 266.75 2767 2924 Zn 300 216 321 424 393 366 592 564 313 405 281 198 373 79 160 266 257 495 252 98 303 120 143 290 194 434 408 546 446 647 382 119 198 292 562 332 396 267 498 362 Depth V W Y (cm) 267.25 2684 3035 267.75 2882 3045 268.25 3032 2852 268.75 2846 2915 269.25 2841 2801 269.75 2915 2691 270.25 2418 2722 270.75 2493 2185 271.25 1907 2004 271.75 2005 2111 272.25 2163 2082 272.75 1989 1847 273.25 2221 2188 273.75 2568 2579 274.25 3433 3152 274.75 2139 2109 275.25 1291 1403 275.75 1126 1358 276.25 1274 1552 276.75 1685 2302 277.25 2646 3373 277.75 2772 3300 278.25 2883 3323 278.75 2907 3192 279.25 2640 3138 279.75 2596 3093 280.25 2648 3196 280.75 2742 3236 281.25 3050 3406 281.75 2886 3186 282.25 3215 3261 282.75 3531 3016 283.25 4243 3258 283.75 4597 3245 284.25 4876 3276 284.75 5532 3181 285.25 4911 3166 285.75 4226 3320 286.25 3734 3105 Zn 503 494 551 433 242 201 142 0 0 0 0 0 0 0 182 12 0 0 182 43 0 49 0 71 24 7 0 0 29 29 0 149 0 59 0 86 155 82 298 363 Depth V W Y (cm) 286.75 3265 2882 287.25 3317 2611 287.75 2032 1696 288.25 1838 1840 288.75 3301 2819 289.25 3122 2957 289.75 3195 2782 290.25 2860 2879 290.75 2683 2667 291.25 2811 2776 291.75 2486 2560 292.25 2658 2739 292.75 2419 2540 293.25 2265 2263 293.75 1904 2257 Zn 372 0 0 0 865 1155 962 1201 1139 1215 898 554 759 576 533 364 CURRICULUM VITAE Melanie Marie Perello Education December 2020 Doctor of Philosophy in Applied Earth Sciences Indiana University degree, earned at Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN Dissertation: Reconstructing Holocene Indian Summer Monsoon Variability using High Resolution Sediments from the Southeastern Tibet Ph.D. Minor: Geographic Information Science Advisor: Dr. Broxton Bird June 2016 Master of Science in Environmental Science and Policy Center for the Environment, Plymouth State University (PSU), NH Master’s Thesis: Linking the Effects of Land Use vs Climate Change on Water Quality in Northern New England lakes (Defended May 2015) Advisor: Dr. Lisa Doner May 2013 Bachelor of Science in Biology with All-College Honors Westminster College, New Wilmington, PA Thesis: The Behavior of Silver Nanoparticles in a Freshwater Tritrophic System Advisor: Dr. Ann Throckmorton Publications Perello MM, Kane DD, Golnick P, Hughes MC, Thomas MA, Conroy JD. 2017. Effects of local weather variation on water-column stratification and hypoxia in the western, Sandusky and central basins of Lake Erie. Water 9(4): 279. Bird B, Lei Y, Perello M, Polissar PJ, Yao T, Finney B, Bain D, Pompeani D, Thompson LG. 2017. Late Holocene Indian summer monsoon variability revealed from a 3,300-year-long lake sediment record from Nir’pa Co, southeastern Tibet. The Holocene 27(4): 541-552. Perello M, Simon TP, Thompson H, Kane D. 2014. Feeding ecology the invasive round goby, Appolonia melanostomus (Pallas 1811), in the Western basin of Lake Erie. Journal of Aquatic Invasions 10(4): 463-474. Middleton S, Perello M, Simon TP 2013. Length-weight relationships of the Mimic Shiner Notropis volucellus (Cope 1865) in the Western Basin of Lake Erie. The Ohio Journal of Science, 112 (2): 44-50. Perello M, Throckmorton A. 2013. Effects of direct and dietary exposure to silver nanoparticles on a tritrophic system. Proceedings of the National Conference for Undergraduate Research 2013: 117-124. Relevant Research & Work Experience 2019 – pres. NOAA Coastal Management Fellow, Minnesota’s Lake Superior Coastal Program, Minnesota Department of Natural Resources 2015 – 2019 Graduate Research Assistant, Department of Earth Sciences, IUPUI 2014- 2015 Student Lab Supervisor, Watershed Sensing Lab, PSU 2014 - 2015 Graduate Assistant, Pathways Project, PSU 2013 - 2015 Graduate Research Assistant, Center for the Environment, PSU 2013 Field Technician, Westminster College Field Station 2011 - 2013 All-College Honors Program Honors Program, Westminster College 2012 Undergraduate Researcher, F.T. Stone Laboratory, The Ohio State University Teaching Experience 2018-2019 Lab Instructor, Environmental Geology, Department of Earth Sciences, IUPUI 2018 Teacher’s Assistant, Earth Materials, Department of Earth Sciences, IUPUI 2015 Graduate Co-Instructor, Environmental Science & Policy Capstone, Environmental Science & Policy Department, PSU 2013 Teacher’s Assistant, Molecular Genetics & Heredity Lab, Biology Department, Westminster College 2012 Teacher’s Assistant, Recombinant DNA & Biotechnology Lab, Biology Department, Westminster College Community Involvement & Outreach Experience 2019 Mentor, Center for Earth and Environmental Science, IUPUI 2018 Mentor, Multidisciplinary Undergraduate Research Institute, IUPUI 2018 - 2019 Earth Sciences Representative, School of Science Multidisciplinary Committee, IUPUI 2017 - 2020 Graduate Student Representative, Global Environmental Change Section, American Geophysical Union 2015 Student Researcher, U.S. State Department Diplomacy Lab, Department of Earth Sciences, IUPUI 2015 Mentor, K-12 Science Education Outreach, Environmental Science & Policy Department, PSU 2015 Workshop Assistant, K-12 Science Education, Outreach, Center for the Environment, PSU 2014 Researcher, Environmental Economics, Environmental Science & Policy Department, PSU & The Nature Conservancy 2014 Researcher, Community Reports on Water Resources, Environmental Science & Policy Department, PSU 2014 Web Designer, Community Outreach, Environmental Science & Policy Department, PSU 2014 Facilitator, Community Forum, Plymouth NH 2011-2012 Youth Mentor, Transformers Robotics Program, Westminster College 2011-2013 Scholar-in-Service to Pennsylvania, AmeriCorps Presentations Perello, M, Bird, B, Lei, Y, Pollisar P, Thompson, L, Yao, T. 2018. Holocene Indian Summer Monsoon Across a Transect of Lakes in Southeastern Tibet. American Geophysical Union Fall Meeting, Washington DC. Perello, M, Bird, B, Lei, Y, Pollisar P, Thompson, L, Yao, T. 2018. Holocene Monsoon Rainfall and Lake Levels in Galang Co, Southeastern Tibet. Geological Society of America Annual Meeting, Indianapolis IN. Perello, M, Bird, B, Lei, Y, Pollisar P, Thompson, L, Yao, T. 2018. Inferred Holocene Monsoon Rainfall and Lake Levels in Eastern Tibet. Geological Society of America North-Central Section Meeting, Ames IA. Perello, M, Bird, B, Lei, Y, Pollisar P, Thompson, L, Yao, T. 2017. Measuring Holocene Indian Summer Monsoon Precipitation through Lake Sedimentary Proxies, Eastern Tibet. American Geophysical Union Fall Meeting, New Orleans LA. Perello, M, Smythe, R, Borre, L, Baumert, K, Weirich, C, Bartlett, S, Klug, J, Johnson, D, Kimirei, I, and Perillo, G. 2017. Differences and similarities in perceived threats to North American lakes by scientists, managers, and stakeholders. GLEON 19, Lake Mohonk NY. Perello, M, Bird, B, Lei, Y, Pollisar P, Thompson, L, Yao, T. 2017. Changing Indian Summer Monsoon Intensity throughout the Holocene at Galang Co, Southeastern Tibet. GLEON 19, Lake Mohonk NY. Perello, M, Bird, B, Lei Y, Pollisar, P, Thompson, L, Yao, T. 2017. Tracking Changes in Indian Summer Monsoon Intensity using Precipitation and Lake Level Proxies from Eastern Tibet. GSA North-East and North-Central Joint Meeting, Pittsburgh PA. Perello, M, Bird, B, Lei Y, Yao T, Thompson, L. 2015. Monitoring the Indian Summer Monsoon using lake sediments in the Eastern Tibetan Plateau. GLEON 17, Chuncheon South Korea. Professional Societies 2019-20 American Meteorological Society 2017-18 North American Lake Management Society 2016-20 American Geophysical Union 2016-20 International Paleolimnological Association 2014-20 Global Lakes Ecological Observation Network 2014-20 Geological Society of America 2014-15 International Phycological Society 2014-17 Phycological Society of America 2013-14 Ohio Academy of Science 2012-14 Association for the Sciences of Limnology and Oceanography Academic Societies 2018-19 Earth Sciences Representative, School of Science Multidisciplinary Committee, IUPUI 2017-19 Preparing Future Faculty and Professionals (PFFP), IUPUI 2017-19 Earth Sciences Representative, Graduate Student Council, School of Science 2016-17 Representative, Graduate and Professional Student Government, IUPUI 2014-15 Graduate Research Society, PSU 2012-13 Member, Pi Sigma Pi, Westminster College 2010-13 President, Beta Beta Beta, Westminster College 2010-11 Member, Lambda Sigma, Westminster College 2009-13 Vice-President, Secretary, Omicron Kappa Sigma, Westminster College Honors & Awards 2016 GSA NC Section Graduate Student Poster (Honorable Mention) 2013, 2014 Pamela Marrapese Keep NH Lakes Clear Scholarship, PSU 2012 Thomas V. and Margaret Mansell Scholarship, Westminster College 2012 Allen P. Splete Leadership and Service Award, Westminster College 2011, 2012 Nathan & E. Lucille Beerbower Frey Scholarship Biology Department Award, Westminster College 2010-2013 Dean’s List, seven semesters, Westminster College 2009 Vance Honors Scholarship, Westminster College Research Grants 2015 Sigma XI Grants in Aid of Research Grant 2015 GSA Graduate Student Research Grant 2015 Paul C. Silva Student Grant, International Phycological Society 2014 Student Research Advisory Council (SRAC) Student Research Grant, PSU 2012 Undergraduate Research Grant - Drinko Center for Experiential Learning, Westminster College