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Abstract

We develop a fully parallel numerical me.. «a wnich quickly performs 2D and 3D
segmentation on GPU to extract anatom ~~! structures from medical images. The al-
gorithm solves the level set equations con. ¥ stely within a Lattice Boltzmann model
(LBM). Compared with existing LBM-ha. -1 segmentation approaches, a parallel dis-
tance field regularization is addea ~ u.. ™ * M computing scheme to keep computation
stable with large time step iteration. This approach also avoids external regularization
which has been a major imy .dimen to direct parallelization of level set evolution with
LBM. It allows the whole con,, itip , process to be efficiently executed on GPU. More-
over, the method can b . inc srporated with different image features to adopt in various
image segmentatior «asks. "h refore, our method enables fully GPU accelerated geo-
metric extraction rom . =dical images, leading to high computing performance which
is demanded i- m. 1y practical applications. This method is used to exact accurate
2D and 3D an.. - nical structures from many real world CT and MRI images. The
achieved esu)’s can also directly feed required boundary information to LBM-based
hemodvnam,. ~ s’ aulation.
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1. Introduction

Segmenting 3D geometry from large biomedical images is an i’ ipo..ant task for
extracting anatomical structures, identifying their features, a»~ facin. ting biomedical
engineering tasks. In clinical research and applications, ef. ciently « xtracting anatom-
ical structures from medical images is a key step to off . patic.. specific diagnosis in
a timely manner and make large population studies j ~s-.ole. For example, Patient-
Specific Computational Hemodynamics (PSCH) simu.. “s biood flows in the arteries
extracted from patients’ angiography data [1]. F. ~tual a' d accurate segmentation is
demanded in such applications to promote clinicai . ~alysis and assessment. In this pa-
per, we propose a completely parallel compu. ~g scheme of active contour models for
biomedical geometry extraction. The m¢ ... * *~ huiit up on solving level set equations
(LSE) with a fully parallelized lattice Boltz. -ann model (LBM), enabling direct GPU
acceleration to achieve very fast geome. v c. “raction.

Level set methods have been . *ccess.ally employed in image segmentation by
tracking active contours to match geometric boundaries. They create accurate geome-
tries from noisy raw data a’ d easily 1andle complex topology. However, solving level
set equations cannot ach’zve tu. ~ ¢ .ficiency e asily. Many numerical algorithms based
on explicit finite diffe »nce disc stization have to use very small time steps for stable
computation. Consr Juently, . .arge number of numerical iterations make the entire seg-
mentation proceddre rau. *time-consuming. Therefore, implicit numerical approaches
are used to ovr .con > the problem [2]. However, implicit methods are difficult to paral-
lelize since they .. =d to solve a global linear system. Other strategies including narrow
band [3] .nd r wlti-rid method [4] can improve the efficiency by limiting the compu-
tation i~ nart " * .e whole domain. Some researchers have deliberately designed GPU
impl mentatit ns to accelerate these approaches [5]. They built heterogeneous data
st .turc., -uch as virtual memory system [6] or dynamic list [7], to maintain irregular
'nd dynz nic computing domain. For biomedical geometry extraction tasks, the bound-
ary suuctures of target objects (e.g., arteries) are often very complex, and sometimes
*1ey span over the whole domain. In such cases, the large un-coalesced GPU memory

access would decrease data transfer bandwidth and limit the achieved performance.




Recently, LBM has been developed as an new numerical method . - solv. .g LSEs
[8,9,10, 11, 12, 13, 14]. The explicit scheme of LBM is second ¢ der »~curate and can
utilize larger time step than direct LSE discretization. Moreover, .. omputing scheme
is very simple to program and inherently parallel with lo al date access, making it
greatly amenable for parallel acceleration. However, therc «till e .ist gaps between
existing LBM works and a fully parallel instrument tc solv’ .5 ".SE in 3D biomedical
geometry extraction. In this paper, our LBM schem ~ orovides 1 complete GPU-based
solution of fast medical image segmentation. The main ¢ ntributions of our method,
compared with existing LBM approaches, are «. follo. =

First, we develop both 2D and 3D LBMs *~ ~~=~~ | fast segmentation over images
and volumetric data. The proposed algorithms ca.. ‘terate with large time steps. Mean-
while, they are suitable for parallel compu inc. In contrast, most of the existing LBM
methods are aimed only at 2D image s *«. “ent. ion and do not need to consider parallel
computing efficiency. Alternative’-" extrac “ed contours over 2D slices are connected to
create a 3D shape [14], which howevet, "~ not accurate and smooth. A simple 3D LBM
is implemented for segments .on 1, but the method is not effective for noisy images,
since it only uses a linear u.”"1sion * nd a simple pixel difference comparison for edge
detection.

Second, our methoa | the drst to integrate distance field regularization into the
LBM computing ‘ ci. ™me. It does not need to stop the LBM simulation and explic-
itly locate the 7z . level set by recomputing Euclidean distance as existing works do.
Therefore, ow. apr coach only adds minimal computation load with no extra memory
consumpti ,n. Moreo /er, the computation is embarrassingly parallel and robust in noisy
image.

T ie dist: nce field regularization is an essential part of tracking active contours,
whicl s rear.red to maintain the correct distance function when numerically solving
ae LSI Many existing LBM segmentation methods do not perform this step (e.g.,
. 101 .ad [12]). Consequently, the gradients of distance field are unbounded dur-
u 5 . .rations leading to inaccurate and rough results. Some approaches address this
, Yoblem out of the LBM framework. In particular, Yang et al. [13] successfully seg-

mented 2D auroral oval images by combining LBM with narrow band methods. They




updated zero level set by a sparse field method inside a narrow banu. This . pproach
is hard to parallelize since it needs to explicitly find the zero 1 vel et ana compute
the distances from those pixels to the contour. In 2D image seg. - .atation, Sun et al.
[11] repeatedly recomputed the Euclidean distance of each sxel tc “ero level set con-
tours after several iterations. In these methods, the regulariz. “on of listances involves
global contour information, which is implemented ou of t* _ © BM framework. As a
result, these methods are not easily extended to 3" image << zmentation accelerated
on GPU. On the other hand, Chen et al. [14] added a pcalty term to LSE to force
the distance field smooth based on [15, 16]. T s ter.  -.ay adversely move the zero
level set, and eventually the active contour r~=~~* == erge to achieve correct results.
Thus, this method has to add an extra edge detec.. *n step by Canny operator to handle
noisy images. In these methods, the who. * ¢/ mputing process is no longer fully par-
allel, so that the advantage of LBM-L . 1 se,_mentation is not completely exploited.
Extra CPU computation and GPU “"PI] du."a exchange is needed which can greatly im-
pede acceleration performance. In con.. ~st, our approach implements the distant field
regularization inside LBM ¢ .up.. ‘ng processes.

Third, our method offe. 2 genr ralized LBM scheme to solve Geometric Active
Contour (GAC) mode] . D'iferent LSE approaches that use various image features
(e.g., edge and regicn 1. rm? 1on) can be directly implemented within the scheme.
The scheme can t a5 = adopted in different image segmentation tasks.

We apply orr _~ethod to CT and MRT image datasets to show its quality and perfor-
mance. The 1. mai- der of the paper is organized as follows. In Section 2, we introduce
the level s .t setmen.ation method. Then our fully parallelized LBM is presented in

e

Section 3. ™ accr .eration on GPU is discussed in Section 4. Section 5 provides a set
of ex .mples sing our method in 2D and 3D geometric extraction. Finally, we conclude

the paer in € ection 6.

. Level Set Segmentation

~ 1

T evel Set Equation

Level set methods track an active contour (or a 3D evolving surface) which evolves

to match structural boundaries in image or volume datasets, where a distance field




implicitly represents the contour or surface C. A signed distance fiel., » : k- R for

p € R3, is defined as the closest distance to C with the function:

¢(p) = sign(p)-min{|p—q| : q€C} 1)

where a positive distance refers to outside of C and a negative Yistar _e means inside of
C. Then, C can be seen as the zero level set including : (l pc™.us with zero distance.
In image segmentation, the Geometric Active C. ~tour ‘¢ .C) starts from an arbi-
trary starting shape and evolves itself by a particilar LSE | 7]:
d \Y
2o

The first term in the right side is a smoothino term u.at represents curvature flow, where

div(a—2-)|Vg|+ 21V]. @)

o determines the level of smoothness in ti.> esults. In the second term, 3 is a speed
function that attracts the evolving leve' s to carget regions as a driving force. Vari-
ous image features can be integre. - 1°*~ e parameters o and 3 for different image

segmentation tasks [18].

2.2. Distance Field Regulc ization

The level set functir a ¢ is .. .alized as a distance field (Equation 1). It satisfies

[Vo| = 1[19, 20]. The. ~fc e, F ,uation 2 can be further simplified as:

P
aif — div(aV$)+ B 3)

This LSE ders ribe the evolution of geometric active contour. However, solving this
partial diff rential « uation (PDE) on a discrete grid often introduces numeric errors

and disto. < e di cance function around C. Therefore, ¢ needs to be updated (i.e.,

regul?’ _) in o1 1 to keep |V@| = 1, usually after a small number of time steps. Dis-
tance filed re: alarization usually needs to locate the zero level set explicitly and then
r_.compnte the distance field to it [21, 22, 23]. This process cannot be easily imple-
aented ¢ a parallel platforms such as GPUs, since it often involves global data access
“n the whole domain. The reason is that these methods need to relocate zero level set
vhen the distance regulation is applied. This relocation process involves an additional

step and data structure to acquire global contour, which is not easy to parallelize. In




contrast, our approach avoids the relocation of zero level set for dis.>nce 1. zulation,
so that all the computation is local and becomes very suitable for ¢ PT] acceleration.
Therefore, it can seamlessly intergrated with the LBM parallel co. ** atation framework

for level set based image segmentation.

Figure 1: D2Q5 (left) an. Loy "_ht) lattice models.

3. Fully Parallelized LBM for S¢, menua.ion
3.1. LBM Solution to LSE

With its programming <mplicit and embarrassingly parallel computation, LBM
has been used to solve .ne J SE . quation 3 which is a nonlinear diffusion equation.
Given a discrete compu. "+ on g .d over 2D/3D images, each grid cell located at x’has a
set of associated v . ‘ables f;;1 = 0...N. N is the number of links starting from the cell
to its immediate neighbois and itself, which is determined by different LBM lattice

models. Thes vari .bles f; are summed up to define the distance function:

¢(5c',t):2ﬁ()?,t),i:0...N. 4)

Each f; inter <ts with one of its neighbours following a corresponding direction vector
¢;. F.ure 2 shows a D2Q5 (N = 5) and a D3Q7 (N = 7) lattice model of a grid
.ell. DZ )7 model refers to 3D computation using seven f;,i = 0...6 (six to its axial
n. ‘ohbe s and one to itself).

.._oreover, a set of equilibrium variables corresponding to f; are defined as

fT=Ai,i=0...N, (5)




where A; is a scalar coefficient determined by the lattice model. . ~ Da7, A; =
1/7,i=0...6 and for D2Q5,A; =1/5,i=0...4.

When ¢t = 0, f; is initialized as f; = f?. At a simulation v. = - step ¢ + Ar, the
variables of f; are updated from the variables in the previou step ¢ s:

FE+ @t A0) = i) = () — 1050 i ©®
where 7 is a constant relaxation parameter and F;is the « ~* .cnal f >rce driving the evolv-
ing level set. Once f;s are updated, the distance ¢ at -, /\t is calculated by Equation
4, and fqu are updated by Equation 5 for next 1.« *ation. This iterative computation
repeats in multiple simulation steps with the given . ~e step A\t. It stops when the zero
level set ¢ = O converges to the aimed bounu. v C with respect to a giving stopping
condition.

It can be proved (see details in [” 1) tha the LBM scheme (Equation 6) recovers

the nonlinear diffusion equation through “he, man-Enskog expansion:
1
5 =4 T S)Ve) (7)

Comparing Equation 3 with £quaw »n 7, LBM parameters 7 and F; are defined by the

LSE-based image segmentati. * bar meters as:

1
T=3a+ 5. 8)

Fi=A. ©)

From Eqi. tior 8, it can be seen that 7 is larger than 0.5, whenever ¢ is positive.

Since « is .he diffus.on coefficient, it is always larger than zero. Therefore 7 is always

larger thai, © » wh’ch has been known leading to stable LBM computation for any time
step < .ze At 25].

In ‘mage .egmentation, D2Q5 and D3Q7 lattice models provide minimal comput-

ag tim. and memory use while still maintain good segmentation results. There exists

o.~er la* ice models, such as D3Q15, D3Q19 or D2Q9 [11, 12, 13], which will increase

u . - mputational load. Though these models are more popular in flow simulation,

.2Q5 and D3Q7 are good enough for 2D and 3D segmentation tasks. Next, we show

how to implement the distance field regularization inside the LBM scheme.




3.2. Distance Field Regularization by LBM

When the distance field ¢ is numerically computed, it needs t  be 1 -_ “larized as ¢~
to satisfy |[V¢®| = 1. However, some of the existing LBM-basea . “mentation meth-
ods do not perform regularization [9, 10, 12] and therefore .annot ¢ fectively segment
noised images. A few methods apply external data structure a. ¥ cor putation (e.g., fast
marching [13], distance re-computation [11], and usir ; ap .xu forcing term [14]) to
regulate distance field, but they cannot be easily p.. ~lleliz~" 0 get good computing
performance.

The regularization can be achieved by solv "¢ a ..ue dependent PDE which is
introduced in multi-phase flow problem [19”

‘i;ﬁﬂign((p")\.wT =0, (10)

t
(2 0) = ().

The signum term in Equation . 1s u. _reat importance to maintain the zero level
set as a satisfied distance field. Meanwhile, the distance field is kept smooth during
iterations, so that eventuall* the ext. ‘cted contour or surface will have sub-voxel accu-
racy. Next, we design a r 2w sc. ~'v . to solve this equation in the LBM scheme so that

the whole algorithm is verv suit7 ble for parallel computing.

3.2.1. Efficient Im" ~mentation in LBM

From Equati~n 5, the a.stance function can be represented by the equilibrium vari-
ables as ¢ = 7/#,. We realized that specifically in D2Q5 and D3Q7 models, A; has
the same v Jue (i.e., /5 for D2Q5 and 1/7 for D3Q7, respectively) for all directions
i. There.. ~= only one variable f°¢ is needed at each grid cell. Meanwhile, the dis-
tance .uncticn ¢ can be achieved by f°?/A;. Therefore, Equation 10 which solves the

regul. *ed dist nce function ¢® can be rewritten as

afeq . eq eq
ot sign(fN) (V) ~Ai) = 0. (11
u .5 way, the regularization process becomes part of the LBM computation with f¢4.

‘olving this equation (see below) can be triggered after a few normal LBM steps, after

which we set f; = f°¢ to continue the LBM iterations.




3.2.2. Parallel Regularization Solver

The solution of Equation 11 has been studied by using differer . ma *~~scopic spatial
and temporal discretizations [26]. To solve it in a parallel progra.. we use an explicit
scheme with a first order ENO (Essentially Non-Oscillatory finite ¢ fference in spatial
discretization [19]. Please see the details in Section 4 for G.>'T im~ .ementation. This
approach is very fast regarding convergence which car be » .. ved in only a few iter-
ations. More importantly, the computation is perfo: ned in n~ allel for each grid cell,

fitting seamlessly within the LBM parallel scheme.

3.3. Handling Edge Stopping Models

Our LBM-based level set solver can be . ‘lized for active contour models using
different image features to define the LS - p.. ~—=ters, o and 8. We show two models

below.

3.3.1. Edge Stopping Function with Grad’ ent

1

Let I be an image to be segmenmi. ' an edge stopping function g can be used to

control the evolution of the ¢ .« ~in LSE [27]. A robust form of g is defined as [28]:

v e*((\VGo*Iol)z/k%)’ (12)

.

where |VGg x| der otes . *= g’ «dient of the Gaussian smoothed image. o is a smooth-
ing parameter anc k, ‘< an estimated threshold of the edge gradient of Iy. In LBM
implementatior ..~ simply set & = g and 3 = 4;¢ in Equation 8 and Equation 9. Then
the LBM Equ. “‘or 6 solves the GAC evolution of

%d: = div(gVe)+ Mg (13)

Here A; > 0 - a constant to control the moving speed of the evolving contours. Using
this ap, =oact | the LBM segmentation will stop when the zero level sets reach the large

sradieny >dges defined by k; where g — 0.

3.3.2. Edge Stopping Function with Local Average
Using the gradient-based stopping function in LSE may not work well when the

eages are not easily discovered by image gradients such as in a noisy image. In such




cases, regional information of Iy can be applied to overcome the noisc  In oo imple-
mentation, we combine g with an estimated local average k>. Th .n, \ '» set & = g and
B =2A((Gs *1Ip) — k2) in Equation 8 and Equation 9. Consequenu, ae LBM Equation

6 solves the evolution of GAC as

%‘f — div(gV9) + Ma((Ga ¥ ) ). (14)

Similarly, A, > 0 is a constant to control the contou. ‘“urfac= - .oving speed. G is the
Gaussian convolution kernel with the variance . Then, \ \e LBM segmentation will
stop when the zero level sets reach the image eu_~s wu..¢ local average is close to k.

The two models are well suited to paral’ * __......ution because the calculation of
g and other values at each grid cell only involves 1. ~al data access in its neighborhood.
Therefore the LBM segmentation can be ™ y parallelized for fast performance. In
level set image segmentation tools, th. ¢ nsta its like A and k are usually defined by

users empirically.

3.4. Computational Procedure

In recapitulation, the I 3M basc 1 image segmentation (using D2Q5 or D3Q7) is

implemented in the follc ving sic, <.

1. Define and compu. the ’:vel set edge stopping variables (e.g., g) from an input
image;

2. Generate .. ‘nitial distance field ¢ from a starting shape (zero level set), such as
a 2D ci. ~le/" :ctangle or a 3D sphere/cubic;

3. Init Jdize LBM. f;, f.4 from ¢ by Equation 5;

4. At ea. * gri. cell, compute o, B for the corresponding GAC models, and then
use the m to define LBM computing parameters 7 and F; by Equations 8-9;

5. x» >for 1 LBM evolution following Equation 6;

6. Al cumulate the f; values at each grid cell by Equation 4, which generates an
_pdated ¢ that is directly used to update fe,;

7. If the number of iterations is bigger than M, perform distance field regularization

by solving Equation 11 and then reset f; = f,.

10




8. If the zero level set converges with no significant changes, stop “he L. ™M itera-
tions and output the segmentation results.

9. Otherwise, go back to Step 4.

To fully leverage the parallel nature of the algorithm, the terative ‘omputation steps
(Step 3-9) are put into the GPU computation pipeline. *“’e 1..." L.aplement the tradi-
tional LBM numerical iterator on GPU for Step 5. Trer we ocus on migrating the
new regularization computation (Step 6-7) to GPU. 1. *he uuat section, we discuss the

GPU implementation in details.

4. GPU Acceleration

In this section, we describe the Gi ., .. ~'ementation and optimization for the
proposed LBM image segmentatior Thc whole algorithm is implemented using
the CUDA toolkit v5.5 created by nv dia. CUDA provides developers the
CUDA-accelerated libraries to acce °s 1ts rantime API on CUDA-enabled GPUs. In
imple-menting our LBM algorithm, we divide the whole computation procedure
into two CUDA kernel fv (ctions. Each kernel is executed in parallel by a given
number of threads or GPU. T.ae first one implements the traditional LBM
iterations (Equation € T . sr.ond one is newly developed for the distance field
regularization (Equ «tion 11). For each kernel, one computing thread is responsible
for the operation of oun. LBM grid cell, which refers to one 2D pixel or one 3D
voxel. Thus, mull ple threads corresponding to all the pixels or voxels facilitate
parallel executiow. ~f the local neigh-borhood operations. Inside each kernel function,
the read writ' corilicts are avoided as the source and destination memories are
separa* .

1 e threac synchronization inside each kernel is implicitly implemented by CUDA.
J- .Jdditioy, the second kernel starts when all the threads of the first kernel are com-
Oleted, s¢ that the computations of the LBM evolution and distance field regulation are
not overlapped. Therefore, explicit synchronization points are not needed inside one
"ernel. Such synchronization scheme leads to correct and fast iterative computation.
Next we show the details of GPU implementation.

In the LBM iteration kernel of solving Equation 6, a temporary array ﬂ “" is used

11
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Figure 2: Memory access pattern. (Top) Array of Structures (Bot* .u) ‘tructure of Arrays.

to swap the streaming results with f; to avoid the memory ace problem [8, 29]:

1

1 o
FP (48,0 4+ A1) = (1 — ;)fﬁ £ vaq()?,t)+AtE(f,t) (15)

1

Moreover, the storage of arrays fl.’e’”p ‘e ie arranged to employ a Structures of
Array (SoA) format as shown in Fig. = Co 1pared to the classic format of Array of
Structures (AoS), f [(z * Ny * Nx +y % 1 v + ) % 7 + i], the SOA arrangement stores f;
in the order of i and then by s, tial coordinates. For example, assuming the
computation

domain of a D3Q7 is Nx x vy X iv. f;in SoA is addressed as f [i * Nx x Ny x Nz + z
Ny« Nx+y#*Nx+x],i=1- 7.S A makes the threads within one CUDA warp (e.g.,
32 threads) to read cor .ecu’ ve p-emory. The coalesced memory access can largely
improve the throug} put ot '~ .e memory access on GPU [30].

There are sor e ex.. ““‘ng work using shared memory and intra-warp shuffle opera-
tion to improv' the throughput of memory [31, 32]. However, it has been shown that
this approach 1. * effective in improving the performance on modern GPU architec-
ture [30]. rher fore. our implementation utilizes direct access to globe memory, which
leads to lowe. vec .ster usage and does not need any additional control flow.

T ae regu. rization kernel is implemented by solving Equation 11 through the first
order 1..™ cheme. The 3D version of the GPU implementation is shown as follows

2D vers on has the similar implementation):

12




First, six monotone spatial differences are calculated for each gria =1 (1, k) as

a=D",f% = f,e;{,k - fiegl,j,k’
b=D"f=f) = fi
c=Dyfd=D"f,
e=D .f f=D" 4 (16)

Second, we extract
ay =max(a,0),a_ = min(e. M.
S+ =max(f,0), f- =mu. f,0). a7n
Third, the steeper gradient in each dir~ction . ' computed as
a=max(a;* » ?),u =max(a_*b.?),
e=mx(e ;") f =max(e_ 2, f,?). (18)
Fourth, we compute the sradient |~ f°?| based on the sign of
| =~ a+c+e, (f>0),
Vil =Vb+d+f,(f<0). (19)

S

VIED

(V] —A). (20)

Finally, with -+ smc sthed sign function sign(f¢?) = f¢ is updated as

eq
ceq __ req

1

=S A 1

Thes steps e executed in the distance regularization kernel repeatedly until conver-

gence Tnpra dce, this is usually achieved in a few iterations. In GPU implementation,

ae regL'arization step is also optimized using the similar strategies as in the first kernal
te =ffici atly update 9.

summary, due to the inherent parallel nature, the computing procedure of both

.ernels is explicit and only involves the nearest neighbor grid cells, which lead to high

GPU computation performance reported in the next section.

13




5. Case Studies

In this section, we present several case studies of geometry ¢ <trac (on ..om 2D and

3D medical images.

5.1. Experiment Evaluation and Parameter Setting

Our method provides a fast and parallel numerical aeth” . “>r LSE-based segmen-
tation. To evaluate its segmentation quality, we use "he segme’ ation results of a stan-
dard level set solver, the upwind difference method [17, as the ground truth. The
upwind difference method is the reliable and &. ~uraw. - .nerical solver of LSE equa-
tions [17], which takes into account the gra4:~~* %=~ jon of the evolving interfaces.
This method is widely used in solving level set . ~mentation problems [33, 18]. For
quantitative measurement, we consider th. = s zmentation result of the upwind differ-
ence method as the ground truth. The >« "me. rs of the level set stopping criteria play
an important role in both segmer*~tion o curacy and efficiency. The parameter set-
ting rules have been discussed by man, esearchers [27, 28, 18]. While our approach
focuses on improving the co .pu.. *ional efficiency, different segmentation parameters
can be used per the rules. 1. ‘mpler entation, we choose the segmentation parameters
including ki, ko, Ay, A, wtich can yield good segmentation results in the standard
upwind difference m-tho!

The upwind d”.ac ~nce method uses small time steps and thus leads to long com-
puting time. In - _ ‘rast, LEM method can keep stable numerical iterations using larger
time steps. It . ~ce’ _rates the computational speed and reduces the number of iterations
to converg .. In our c..periments, we found that setting the time step size of LBM iter-
ations betv. > n 1 7ad 2 is a good compromise between the efficiency and the accuracy.

V ¢ furth rcompute the mismatched pixels/voxels in the segmented results between
the g1 "nd tr ¢h and our LBM method. Then an error rate is computed by dividing the
wumber ~f these mismatched ones by the total number of the correctly segmented pix-
€. /voxr s in the ground truth. For evaluating the computing performance, we show the
¢ u., Jtational time of our method in both CPU and GPU versions. We then compare
~Sem with the upwind difference method and several related existing methods. In our

implementation, the CPU based serial algorithms are executed on a PC with an Intel

14




17-3770 CPU at 3.4GHZ and 8G RAM. The GPU based parallel algo.. "ms a. > run on
a consumer GPU, NVIDIA Geforce GTX 780 at 900MHZ and 37,8 1 \»mory.

5.2. 2D Medical Image Segmentation

We first investigate 2D applications of our method to sl Hw its bc 1efits. In the first

case, we evaluate the robustness of our approach to nc’., images and with different

J

initial conditions. In the second and third cases, we cc »* .re o' r approach with other

LBM based segmentation methods.

5.2.1. 2D Segmentation of Carotid Artery from MKy “~ac _s

The LBM scheme extracts carotid arteries from nr. se contrast MRI images. Figure
3 shows an image with the size of 128 x 196 in.'ding both left internal and external
carotid arteries. The image is very noisy -ith owured edges of the arteries. We apply
the edge stopping function with loc.- vera, » as described in Section 3.3.2, where
ki =2,kp=75,A,=0.02,and 6 = 1.

In the first experiment, we set a . ge rectangle as the initial contour as Figure
3(a), and compute the distans . .. '1 ¢ based on this initial contour. In LBM iterations,
the time step is set to 1 ai. ' M =2 That is, we apply regularization of the distance
field every 2 LBM stey .. Fiture _(b) shows the evolving contour after 48 iterations.
Figure 3(c) shows the c. ~ erge . contour after 152 iterations, i.e., when the movement
of the level set is .. < than one pixel in all positions. The result successfully finds
the boundaries ~* the left and right carotid arteries. The distance field is very smooth
during the ev ‘luti- a as visualized in the figures. In comparison, we implement the
LBM algo .thm of | °] to segment this image with the same parameters. Since there is
no distan. £ :ld 1~ gularization, the achieved contours fail to converge at the boundary
of thr carotid arteries (Figure 3(d)).

L. the sec nd experiment, we set the initial contour as a set of circles in the domain

cigure 1(a)). The other parameters are not changed. Moreover, instead of computing
L. = dist ice at each grid cell to these circles to define initial contours, we simply ap-
v, ~ binary function to define if a grid cell is inside/outside a circle. This approach
argely reduces the computing burden of the regularization. Even with this simplified

initial condition, our LBM algorithm still keeps stable during the iterations as shown in
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(c) Converged after 152 LBM iterations (d) LBM method of [9]

Figure 3: 2D carotid artery segmei. ‘uu.. ~ 2 phase contrast MRI image.

Figures 4(b)(c). Furthermore, since the a.<tance between the initial circles and the ar-
teries is much closer than the first expe. “ment, the active contours can quickly converge
and stop at the boundaries of .... ~arotid arteries with fewer iterations (48 iterations).

Figure 4(d) shows the sam. ~egmen! ition result as Figure 3(c).

5.2.2. 2D Segmentatio . of / ortir Artery from CT Images

We extract a 2D .orta a. v from a CT image with a size of 338 x 196. The edge of
the aorta artery ir the T image is clearer than in the previous MRI image. We apply
the edge stopp'ag inction with gradient (Section 3.3.1). The parameters are set as:
o =1, k; =2 - atch artery edges.

Figurr 5 st ows the ground truth result computed from the classic upwind differ-
ence methou "17°, compared with the results of our method and two existing LBM
algo thms fi. m [11] and [14], respectively. In order to keep the algorithm stable, we
set the = ,tep to 0.1 for the upwind differential method. For all LBM algorithms,
he time tep is set to 1. Here, we allow the distance field regularization to be executed
eve. " . =5 step in the proposed algorithm. Our result achieves smoother contour than
S an’s result. On the other hand, Chen’s model fails to find the correct boundary. Since

t. >re is a very narrow gap between the aorta and heart, the algorithm moves the evolv-
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(a) Initial contours (b) After ~ iter (ons

(c) After 12 iterations ‘d) Converged after 48 iterations

Figure 4: 2D carotid artery segmentation from a , vasc . *~<t MRI image with binary initial condition.

Table 1: Computing performance for 2L segnientation of an aorta image (338 x 196).

' swp | aumber of | error | time | speed
Methods si.~ | iterations | rate (sec) | up
Upwind (ground truth) [17] | 0.1 8852 0 121.1 | 1
[11] 1 1255 37% | 19.8 | 6.1
[14] | 1 1200 fail 16.5 | 7.3
Our method (CP™J) 1 1176 2.1% | 125 | 9.7
Our method (C *U) \ 1 1176 2.1% | 0.13 | 930

ing level set out o’ .= aorta since it adds a penalty term to LSE to force the distance
field smooth.
The comy tting performance and quality for all methods is demonstrated in Table
1. Our me aod has . 2.1% error rate, while Sun’s error rate is 3.7%. For computing
efficiency, ~v CP’. implementation uses 12.5 seconds which is about 40% faster than
Sun’s methoA at 19.8 seconds. Our method is almost ten times faster than the upwind
scher. = at 127.1 seconds. By GPU acceleration, our algorithm achieves near 100 times
peedur at 0.13 seconds compared to its CPU version and Sun’s method, which is more

v an 90C cimes faster than the classic upwind differential scheme.
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() (b) (©) ‘d) (e)

Figure 5: 2D aorta segmentation result comparison. (a) Initial co. ~ur: /) Ground truth; (c) Result of [11];
(d) Result of [14]; (e) Result of our algorithm.

Table 2: Computing performance for 2D segmen.. “on of a brain image (388 x 251).

ste, | . ~herof | error | time | speed
Methods size | it ;ations | rate (sec) | up
Upwind (ground truth) [17] 1 ‘:35 0 88.7 |1
[9] 1 J;OU fail 10.2 | 8.69
[11] 1 438 42% | 145 | 6.1
Our method (CPU) T 40 18% [ 9.6 |92
Our method (GPU) |1 [470 1.8% | 0.09 | 940

5.2.3. 2D Segmentation of v “in frc n MRI images

We further perforp a 27, segmentation of complex brain structure from an MRI
image whose size is 88 ~ 7?51 The edge stopping function with local average is used,
where k; =2,k = /u, '» =0.02, and o = 1. In this case, we compare our segmentation
result and effici ... - with the ground truth and two other LBM methods of [11] and [9].
The time step .~ 0 . for the upwind method and 1 for all LBM methods, and M = 4 for
distance i .Id r~ gularization.

Asshov. in F gure 6, our result is smooth and close to the ground truth. Since there
is ne distanc field regularization, the LBM approach of [9] fails to find the structure
(Figm. 6(d» The performance and quality is reported in Table 2. In particular, our
5PU in. 'lementation can achieve the result in 0.09 second which is around 940 speed-
u, “o thupwind difference method. It also achieves 1.8% error rate compared to 4.2%

0 ou.l’s method.
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Figure 6: 2D segmentation result of brain from an MRI image. (., "™itiar contour; (b) Ground truth; (c)
Result of [11]; (d) Result of [9]; (e) Result of our algorithm.

5.3. 3D Geometry Extraction of Medical Images

In this section, we investigate 3D geometi, ~xtraction from CT and MRI medical
images. For 3D cases, the computationa, 'oau ... 2ases greatly by adding an extra di-
mension. Thus, our LBM based para’ ! app. ~ach of 3D extraction is time-efficient so
it can be very helpful for real applicatio. s. 1nere exist very little work using the par-
allel LBM scheme in 3D cases. [9] L. ~sented a 3D algorithm, which however, usually
fails in our experiments of 3] ~~gmentation, because it does not apply distance field
re-initialization and only - ses a sit ple pixel comparison method in stopping func-
tion. So we do not cor .pare ou. aethod with it. In particular, we mainly compare
our approach with thic > 2°) ge metric extraction methods of solving LSE functions
including: (Grour ¢ truth) upwind difference method [17]; (M2) The approach of
[14] who used a simple n.. thod which connects segmented 2D slices together to form
a 3D shape; (".43) .n alternative approach which replaces our unified re-initialization
approach i the L. ™M scheme with the distance field regulation method proposed by
[11]. It ¢ *oul . be .oted that [11] did not implement 3D geometric extraction in their
work “.v¢ exten. their approach to 3D cases in order to compare its distance regulation
meth \d with urs. These methods are not suited to GPU acceleration, since they are
v ot iullv itegrated into the LBM’s parallel scheme, which is the unique feature of our
. nproact .

El

o .. 3D Segmentation of Aorta Artery from CT Images
First, we investigate 3D geometry extraction of aorta artery from CT images. The

volume size of images is 128 x 128 x 372. The edge stopping function with gradient
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Figure 7: 3D aorta artery segmentation from CT images. («, ™itiai « ..our; (b) Ground truth; (c) Result of
M3; (d) Result of M2; (e) Result of our method.

information is used (Section 3.3.1), wher - =2, 4 =1,and 6 = 1.

Figure 7 shows the results of our algori.” n and other approaches. We also show a
zoomed-in region for details. It can be ~ec. that our approach yields the results fairly
similar to the ground truth from th. 'ww ..~ difference method. M2 method forms a 3D
shape from 2D segmented slices leading o obvious artifacts. In practice, this method
needs to perform initializat on for wvery slice and cannot handle topological change
automatically in the verti~al ain. ~tic ... Compared with M3, our re-initialization method
has smoother results f.an » sing Sun’s method. Moreover, Sun’s distance regulation
cannot be easily par ilelize. > 1t uses globe information of the zero level set. This also
makes it hard to i aplew. ~nt M3 on GPUs.

Table 3 she ws 1 e report for this case study. The time step of the upwind difference
algorithm is sev = 0.1, while the time step of other methods are set to 1 for fast run.
Our metb ,d hr ; about 2.7% error rate while M3 has 4.8% error rate. With GPU accel-
eration. our 1. v parallel approach can complete in 22.2 seconds which is around 100

time faster t» 1n the CPU version, and much faster than the upwind approach and M3.

£0.2. 3D Segmentation of Carotid Artery from CT Images

Clini .al assessment of stroke risk has been heavily reliant on the degree of luminal
~+anosis of carotid artery. When a carotid stenosis narrows the artery by a diameter
if more than 60%, a carotid endarterectomy or carotid artery stent is performed to

decrease the risk of patients having a future stroke. The diameter of carotid artery is
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Table 3: Computing performance for 3D segmentation of aorta artery from CT images (1.~ x 128 x 372).

step | number of | error | time sneed
Methods size | iterations | rate (sr ) up
Upwind (ground truth) | 0.1 | 7034 0 2305 ' 1
M3 1 1955 48% " 3568 [ 04
Our method (CPU) 1 947 27% 2258 10.2
Our method (GPU) 1 947 279% | 22 1038

: &:\j :

\ .

Figure 8: 3D segmentation of carc "1 artery .om CT images. (a) Result of M3; (b) Result of our method.

only about 4-6 millime. = mm> (34], and the common resolution of a CT image is 0.4
mm per pixel whic’ -~tands for nearly 10% of the artery diameter. In such cases, getting
accurate segmentation resu.t is critical for a clinic application.

Figure 8 s".ows _he geometry extraction results of a stenosed carotid artery from CT
images. T' ¢ volun. - size is 128 x 128 x 177. Our method gets accurate and smooth
geometr, ~f ‘.ae ¢ cotid artery compared with M3. Our regularization method is in-
clude” w the LM scheme which can reach sub-grid accuracy. In comparison, M3
perfc ms dist' nce field regularization at the accuracy of grid cells. Table 4 shows that
< ur method achieves better quality with a smaller error rate than M3. Moreover, our
.y par ulel method reconstructs the complete 3D geometry totally on GPU in 4.6

~~onds, faster than other approaches.
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Table 4: Computing performance for 3D segmentation of carotid artery from CT images (. "2 x 128 x 177).

step | number of | error | tir. | sneed
Methods size | iterations | rate (cxc) | up
Upwind (ground truth) | 0.1 | 3135 0 4640 1
M3 1 332 49% 185 [ 6.7
Our method (CPU) 1 448 2.8% | 435 10.9
Our method (GPU) 1 448 28% | *A& | 1010

A
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- ‘

100 —|
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40 |

Figure 9: 3D segmentation f car- .1d art ry from MRI images. (a) Result of M2; (b) Result of our method.

5.3.3. 3D Segmer au. ~ of Carotid Artery from MRI Images

We also wr.x n MRI images for the carotid artery extraction. The image size
is 64 x 64 x 1.7 Since the MRI images we achieved from clinical practice are of
relatively ow- ,uality, we apply the edge stopping function with local average with
o=1,4- 0.07, k, =85 and M = 2. Figure 9(a) shows the result of M2 which
creat ;s 3D s -ucture from 2D segmentations. It shows some salient horizontal ring
effects. ™n e atrast, Figure 9(b) shows that our method achieves smoother result with
1.4% er, or rate from the ground truth (the result image is omitted here). Table 5 also
su. e “at our GPU approach completes the task in less than 0.5 seconds which can

¢ ,nuibute to time critical applications such as clinical bio-flow simulation.
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Table 5: Computing performance for 3D segmentation of carotid artery from MRI images "4 x 64 x 167).

step | number of | error | tin . | sneed
Methods size | iterations | rate (‘) l'up
Upwind (ground truth) | 0.1 | 626 0 455 7‘ 1
M2 1 245 16% | 151 131
Our method (CPU) 1 152 24% | 457 99
Our method (GPU) 1 152 24% | MAR | 947

Figure 10: 3D brain segmentation result. (a) -« "t of = 12; (b) Result of M3; (c) Result of our method.

5.3.4. 3D Segmentation of Brain Su . ~ture from MRI Images

Finally, Figure 10 illustratec a 3D brain segmentation from MRI images. We apply
the edge stopping functior with loi al average with ¢ = 1, A, = 0.02, k, = 98 and
M = 2. The image size i, 181 x ", x 181.

Figure 10(a) show. *he resv’. of M2 approach, which cannot construct the brain’s
shape correctly. Fi ure 10(b) 1s the result of M3, its surface is rather rough. In com-
parison, our method (Figw. > 10(c)) creates the smooth and accurate result with a 1.9%
error rate. Fur nerr ore, Table 6 shows the fast computing speed of our method which

can finish t' e segu.. *ntation in 5 seconds on GPU.

5.3.5. Ex, "~ men’. on More Datasets

T, furth ~ evaluate the proposed algorithm, we test our method on more 3D
biomc tical d .tasets. First, we extract the carotid artery of 20 different patients from
aeir 3L MRI images. The image size is 64 x 64 x 196 for each 3D data set. Compar-
1.~ to th . upwind difference method, our method generally achieves good performance.
1 o.. 7 reports the average values among these twenty datasets of the number of itera-
.‘ons, error rates, computing times, and speedups compared to the upwind method. In

particular, the GPU acceleration has an average speedup of 947 with an average 2.5%
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Table 6: Computing performance for 3D segmentation of brain structure from MRI ima_ ~ (181 x 217 x
181).

step | number of | error | tirue | spe.
Methods size | iterations | rate (sec, up
Upwind (ground truth) | 0.1 | 1026 0 0124 | 1
M3 1 143 41% | 824 6.2
Our method (CPU) 1 152 1.9% | 511 10.0
Our method (GPU) 1 152 ) ,j“/oﬂiﬁ.() 1024

Table 7: Average computing performance for the segmentation of . ~tid arteries of 20 patients from their
3D MRI images.

Step | Number of ‘ Tfrror ‘ .otal time | Speed

size | iterations rate (s) up

Upwind (ground truth) | 0.1 732 [ L 644 1

Our method (CPU) 1 184 | 2.5% | 68 9.5
T

Our method (GPU) 1 184 2.5% | 0.7 947

Methods

error from the ground truth in the ext. . ‘ed rc ults.

Moreover, we further test our methou on several 3D image datasets from a public
volume data library !. These datasc. include different biomedical geometries with
different volume sizes, includ* _ human head, foot, tooth, knee, and a frog. Table 8 is
the experiment results of ¢ “mentin A geometrical structures from these datasets. The
table shows that the par .illel impic nentation on GPU can achieve about 100 speedups
comparing to its serial v *.on ¢ « CPU, which is about 900 time faster than the upwind

difference method = “th less than 3% difference in the segmentation results.

6. Conclusior anc Future Work

In this Japer, we ropose a new parallel geometric extraction method from medical
images. 1.°< mod .l is fully parallel by incorporating the necessary distance field reg-
ulari- ation ¢ LSE into the LBM-based level set solver. Our method can completely
run o. GPUs which achieves great performance for biomedical geometry extraction

rom C™ and MRI images. Recently, LBM computations have been implemented on
1. lti-ce e CPU platforms [35], GPU clusters [36] and heterogeneous CPU/GPU clus-

w . 37]. Our LBM algorithm has similar computational structure and procedure to

Thttp://lgdv.cs.fau.de/External/vollib/
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Table 8: Computing performance for 5 biomedical datasets from a public libra.

1

Step | Number of | Error | Tc 2! time | Speed
Datasets Methods size | iterations rate (<, up
Upwind (ground truth) | 0.1 525 0 ~ 05 1
Head Our method (CPU) 1 142 ok | 21 9.2
256 x 256 x 53 | Our method (GPU) 1 142 1.8% | 2 975
Upwind (ground truth) | 0.1 765 : 48 1
Foot Our method (CPU) 1 201 1.9% | 67 9.3
256 x 256 x 128 | Our method (GPU) 1 201 Ly h 07 925
Upwind (ground truth) | 0.1 923 10 995 1
Tooth Our method (CPU) 1 272 0% | 106 94
256 x 256 x 161 | Our method (GPU) 1 272 1.6% | 1.1 905
Upwind (ground truth) | 0.1 4, 0 138 1
Frog Our method (CPU) 1 | 2 [22% | 14 9.9
256 x 256 x 44 | Our method (GPU) 1 \ 122 2.2% | 0.16 862
Upwind (ground truth) | 0.1 1 ooz 0 152 1
Knee Our method (CPU) 1 | -2 23% | 16 9.5
256 x 256 x 44 | Our method (GPU) 162 23% | 0.18 894

these methods, while the extra regulai 7a. ~n step keeps the parallelism and locality.
Therefore, we expect the propose. .~ ‘0 be applied in these platforms in addition
to GPU, which will be our immediate fuiure work.

In geometric active con’our me ‘els, the stopping functions largely affect the seg-
mentation results. We u-e in.. ~e ¢ .adient and local average to define edge stopping
functions, while other ‘mag . fea*uares can be applied in a similar manner. If these fea-
tures can be compu’ :d frow. -~ dy neighboring cells (pixels/voxels), the LBM scheme
can be directly us :d an. =asily parallelized. However, some models use global image
attributes, suct as e high order statistical descriptors [18] or clustering [12], where
the computatio.. - eeds special parallel algorithms, which can be combined with our
parallel sr qutic 1 for fast performance.

In genera. ov method can quickly extract 3D geometry with accurate and smooth
impl cit repre ‘entation from medical images. One direction of the future work is to
combin. *+°, solver and the computation domain reduction methods (e.g., multi-grid
or narro ’ band) together to further enhance the computational efficiency. Another
dnco'oa is in bio-flow modeling as LBM is also a good parallel flow so lver. The
¢ .gmentation results can seamlessly feed to LBM based bio-flow simulation (e.g., [38,

5]) without explicitly generating the meshes. We will further combine this approach
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with the LBM flow simulation towards a unified hemodynamics simu.. “ion s, tem.
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