Kolcheck, KevinWang, ZheyuanXu, HaiyanZheng, Jiang Yu2020-11-062020-11-062020Kolcheck K., Wang Z., Xu H., Zheng J.Y. (2020) Visual Counting of Traffic Flow from a Car via Vehicle Detection and Motion Analysis. In: Palaiahnakote S., Sanniti di Baja G., Wang L., Yan W. (eds) Pattern Recognition. ACPR 2019. Lecture Notes in Computer Science, vol 12046. Springer, Cham. https://doi.org/10.1007/978-3-030-41404-7_37https://hdl.handle.net/1805/24312Visual traffic counting so far has been carried out by static cameras at streets or aerial pictures from sky. This work initiates a new approach to count traffic flow by using populated vehicle driving recorders. Mainly vehicles are counted by a camera moves along a route on opposite lane. Vehicle detection is first implemented in video frames by using deep learning YOLO3, and then vehicle trajectories are counted in the spatial-temporal space called motion profile. Motion continuity, direction, and detection missing are considered to avoid multiple counting of oncoming vehicles. This method has been tested on naturalistic driving videos lasting for hours. The counted vehicle numbers can be interpolated as a flow of opposite lanes from a patrol vehicle for traffic control. The mobile counting of traffic is more flexible than the traffic monitoring by cameras at street corners.enPublisher Policycomputer visionvehicle detectionmotion analysisVisual Counting of Traffic Flow from a Car via Vehicle Detection and Motion AnalysisArticle