Chen, WeijianAbbasi, MaryamHa, ByungErdamar, SerraJoglekar, Yogesh N.Murch, Kater W.2023-11-072023-11-072022-03-17Chen, W., Abbasi, M., Ha, B., Erdamar, S., Joglekar, Y. N., & Murch, K. W. (2022). Decoherence-Induced Exceptional Points in a Dissipative Superconducting Qubit. Physical Review Letters, 128(11), 110402. https://doi.org/10.1103/PhysRevLett.128.110402https://hdl.handle.net/1805/36970Open quantum systems interacting with an environment exhibit dynamics described by the combination of dissipation and coherent Hamiltonian evolution. Taken together, these effects are captured by a Liouvillian superoperator. The degeneracies of the (generically non-Hermitian) Liouvillian are exceptional points, which are associated with critical dynamics as the system approaches steady state. We use a superconducting transmon circuit coupled to an engineered environment to observe two different types of Liouvillian exceptional points that arise either from the interplay of energy loss and decoherence or purely due to decoherence. By dynamically tuning the Liouvillian superoperators in real time we observe a non-Hermiticity-induced chiral state transfer. Our study motivates a new look at open quantum system dynamics from the vantage of Liouvillian exceptional points, enabling applications of non-Hermitian dynamics in the understanding and control of open quantum systems.en-USPublisher Policyopen quantum system dynamicscoherent Hamiltonian evolutionLiouvillian superoperatortransmon circuitDecoherence-Induced Exceptional Points in a Dissipative Superconducting QubitArticle