Schubert, Peter J.2019-07-122019-07-122018Schubert, P. J. (2018). Complete Hydrogen Storage System by ISRU. In 2018 AIAA SPACE and Astronautics Forum and Exposition. https://doi.org/10.2514/6.2018-5367https://hdl.handle.net/1805/19878New technologies make it possible to build in space a complete hydrogen storage system using ISRU methods and techniques. Hydrogen can be stored in a solid-state form on the surface atoms of high surface area matrices such as those of porous silicon. Silicon is abundant in regolith and can be purified using a purely mechanical means which results in particulates in the scale range of tens of nanometers. Reagents used to porosify these nano-particles can be regenerated thermally to essentially eliminate the need for resupply from earth. Catalysts are needed to divide dihydrogen gas into atomic hydrogen for solid-state adsorption and to mediate the temperatures and pressures of charge and discharge into ranges easily achievable with simple equipment. Recent research has identified the utility of non-platinum group catalyst materials which are widespread on the moon. Rapid discharge, needed for propulsion, is possible with infra-red illumination at wavelengths which pass through pure silicon but are absorbed by the silicon-hydrogen bond. Such IR emitters can be fabricated by embossing of silica and additive manufacturing of metals. Control and power electronics can be fabricated using a patented process designed for space operations, and built on either silicon or silicon carbide substrates derived from regolith. Bringing these five technologies together for the first time allows a system which can be fed with moderate pressure gaseous hydrogen at moderate temperatures, stored for long durations with minimum loss, then released upon demand across a wide range of controllable rates. Such a system can displace the need for cryogenic hydrogen storage. Being suitable to bottom-up fabrication using only in-space materials makes this a “green” ISRU technology to store hydrogen for fuel cells, rocket engines, and chemical processes.enPublisher Policyinsitu resource utilizationcomplete hydrogen storage systemspaceComplete Hydrogen Storage System by ISRUConference proceedings