Hauck, Paula M.Wolf, Eric R.Olivos, David J.McAtarsney, Ciaran P.Mayo, Lindsey D.2018-08-032018-08-032017-11-06Hauck, P. M., Wolf, E. R., Olivos, D. J., McAtarsney, C. P., & Mayo, L. D. (2017). The fate of murine double minute X (MdmX) is dictated by distinct signaling pathways through murine double minute 2 (Mdm2). Oncotarget, 8(61), 104455–104466. https://doi.org/10.18632/oncotarget.223201949-2553https://hdl.handle.net/1805/16984Mouse double minute 2 (Mdm2) and MdmX dimerize in response to low levels of genotoxic stress to function in a ubiquitinating complex, which signals for destabilization of p53. Under growth conditions, Mdm2 functions as a neddylating ligase, but the importance and extent of MdmX involvement in this process are largely unknown. Here we show that when Mdm2 functions as a neddylating enzyme, MdmX is stabilized. Furthermore, we demonstrate that under growth conditions, MdmX enhances the neddylation activity of Mdm2 on p53 and is a substrate for neddylation itself. Importantly, MdmX knockdown in MCF-7 breast cancer cells resulted in diminished neddylated p53, suggesting that MdmX is important for Mdm2-mediated neddylation. Supporting this finding, the lack of MdmX in transient assays or in p53/MdmX-/- MEFs results in decreased or altered neddylation of p53 respectively; therefore, MdmX is a critical component of the Mdm2-mediated neddylating complex. c-Src is the upstream activator of this Mdm2-MdmX neddylating pathway and loss of Src signaling leads to the destabilization of MdmX that is dependent on the RING (Really Interesting New Gene) domain of MdmX. Treatment with a small molecule inhibitor of neddylation, MLN4924, results in the activation of Ataxia Telangiectasia Mutated (ATM). ATM phosphorylates Mdm2, converting Mdm2 to a ubiquitinating enzyme which leads to the destabilization of MdmX. These data show how distinct signaling pathways engage neddylating or ubiquitinating activities and impact the Mdm2-MdmX axis.en-USAttribution 3.0 United StatesATMMLN4924Mdm2MdmXneddylationThe fate of murine double minute X (MdmX) is dictated by distinct signaling pathways through murine double minute 2 (Mdm2)Article