Hassan, IrajLuo, QianyiMajumdar, SreeparnaDominguez, James M.Busik, Julia V.Bhatwadekar, Ashay D.2017-05-082017-05-082017-05-01Hassan, I., Luo, Q., Majumdar, S., Dominguez, J. M., Busik, J. V., & Bhatwadekar, A. D. (2017). Tumor Necrosis Factor Alpha (TNF-α) Disrupts Kir4.1 Channel Expression Resulting in Müller Cell Dysfunction in the RetinaDiurnal Rhythm of Kir4.1 in the Retina. Investigative Ophthalmology & Visual Science, 58(5), 2473–2482. https://doi.org/10.1167/iovs.16-207121552-5783https://hdl.handle.net/1805/12482Purpose: Diabetic patients often are affected by vision problems. We previously identified diabetic retinopathy (DR) as a disease of clock gene dysregulation. TNF-α, a proinflammatory cytokine, is known to be elevated in DR. Müller cells maintain retinal water homeostasis and K+ concentration via Kir4.1 channels. Notably, Kir4.1 expression is reduced in diabetes; however, the interplay of TNF-α, Kir4.1, and clock genes in Müller cells remains unknown. We hypothesize that the Kir4.1 in Müller cells is under clock regulation, and increase in TNF-α is detrimental to Kir4.1. Methods: Long-Evans rats were made diabetic using streptozotocin (STZ). Retinal Kir4.1 expression was determined at different time intervals. Rat Müller (rMC-1) cells were transfected with siRNA for Per2 or Bmal1 and in parallel treated with TNF-α (5–5000 pM) to determine Kir4.1 expression. Results: Kir4.1 expression exhibited a diurnal rhythm in the retina; however, with STZ-induced diabetes, Kir4.1 was reduced overall. Kir4.1 rhythm was maintained in vitro in clock synchronized rMC-1 cells. Clock gene siRNA-treated rMC-1 exhibited a decrease in Kir4.1 expression. TNF-α treatment of rMCs lead to a profound decrease in Kir4.1 due to reduced colocalization of Kir4.1 channels with synapse-associated protein (SAP97) and disorganization of the actin cytoskeleton. Conclusions: Our findings demonstrate that Kir4.1 channels possess a diurnal rhythm, and this rhythm is dampened with diabetes, thereby suggesting that the increase in TNF-α is detrimental to normal Kir4.1 rhythm and expression.en-USAttribution-NonCommercial-NoDerivs 3.0 United StatesMüller CellCircadianKir4.1TNF-alphaTumor Necrosis Factor Alpha (TNF-α) Disrupts Kir4.1 Channel Expression Resulting in Müller Cell Dysfunction in the RetinaDiurnal Rhythm of Kir4.1 in the RetinaArticle