Batte, AnthonyStarr, Michelle C.Schwaderer, Andrew L.Opoka, Robert O.Namazzi, RuthPhelps Nishiguchi, Erika S.Ssenkusu, John M.John, Chandy C.Conroy, Andrea L.2021-05-282021-05-282020-09-29Batte, A., Starr, M. C., Schwaderer, A. L., Opoka, R. O., Namazzi, R., Phelps Nishiguchi, E. S., Ssenkusu, J. M., John, C. C., & Conroy, A. L. (2020). Methods to estimate baseline creatinine and define acute kidney injury in lean Ugandan children with severe malaria: A prospective cohort study. BMC Nephrology, 21(1), 417. https://doi.org/10.1186/s12882-020-02076-11471-2369https://hdl.handle.net/1805/26053Background Acute kidney injury (AKI) is increasingly recognized as a consequential clinical complication in children with severe malaria. However, approaches to estimate baseline creatinine (bSCr) are not standardized in this unique patient population. Prior to wide-spread utilization, bSCr estimation methods need to be evaluated in many populations, particularly in children from low-income countries. Methods We evaluated six methods to estimate bSCr in Ugandan children aged 6 months to 12 years of age in two cohorts of children with severe malaria (n = 1078) and healthy community children (n = 289). Using isotope dilution mass spectrometry (IDMS)-traceable creatinine measures from community children, we evaluated the bias, accuracy and precision of estimating bSCr using height-dependent and height-independent estimated glomerular filtration (eGFR) equations to back-calculate bSCr or estimating bSCr directly using published or population-specific norms. Results We compared methods to estimate bSCr in healthy community children against the IDMS-traceable SCr measure. The Pottel-age based equation, assuming a normal GFR of 120 mL/min per 1.73m2, was the more accurate method with minimal bias when compared to the Schwartz height-based equation. Using the different bSCr estimates, we demonstrated the prevalence of KDIGO-defined AKI in children with severe malaria ranged from 15.6–43.4%. The lowest estimate was derived using population upper levels of normal and the highest estimate was derived using the mean GFR of the community children (137 mL/min per 1.73m2) to back-calculate the bSCr. Irrespective of approach, AKI was strongly associated with mortality with a step-wise increase in mortality across AKI stages (p < 0.0001 for all). AKI defined using the Pottel-age based equation to estimate bSCr showed the strongest relationship with mortality with a risk ratio of 5.13 (95% CI 3.03–8.68) adjusting for child age and sex. Conclusions We recommend using height-independent age-based approaches to estimate bSCr in hospitalized children in sub-Saharan Africa due to challenges in accurate height measurements and undernutrition which may impact bSCr estimates. In this population the Pottel-age based GFR estimating equation obtained comparable bSCr estimates to population-based estimates in healthy children.en-USAttribution 4.0 InternationalAcute kidney injuryBaseline creatinineSchwartzPottelSevere malariaSub-Saharan AfricaMethodsMortalityUndernutritionPediatricMethods to estimate baseline creatinine and define acute kidney injury in lean Ugandan children with severe malaria: a prospective cohort studyArticle