Pellman, Jessica J.Hamilton, JamesBrustovetsky, TatianaBrustovetsky, Nickolay2017-06-052017-06-052015-08Pellman, J. J., Hamilton, J., Brustovetsky, T., & Brustovetsky, N. (2015). Ca2+ Handling in Isolated Brain Mitochondria and Cultured Neurons Derived from the YAC128 Mouse Model of Huntington’s Disease. Journal of Neurochemistry, 134(4), 652–667. http://doi.org/10.1111/jnc.13165https://hdl.handle.net/1805/12851We investigated Ca(2+) handling in isolated brain synaptic and non-synaptic mitochondria and in cultured striatal neurons from the YAC128 mouse model of Huntington's disease. Both synaptic and non-synaptic mitochondria from 2- and 12-month-old YAC128 mice had larger Ca(2+) uptake capacity than mitochondria from YAC18 and wild-type FVB/NJ mice. Synaptic mitochondria from 12-month-old YAC128 mice had further augmented Ca(2+) capacity compared with mitochondria from 2-month-old YAC128 mice and age-matched YAC18 and FVB/NJ mice. This increase in Ca(2+) uptake capacity correlated with an increase in the amount of mutant huntingtin protein (mHtt) associated with mitochondria from 12-month-old YAC128 mice. We speculate that this may happen because of mHtt-mediated sequestration of free fatty acids thereby increasing resistance of mitochondria to Ca(2+)-induced damage. In experiments with striatal neurons from YAC128 and FVB/NJ mice, brief exposure to 25 or 100 μM glutamate produced transient elevations in cytosolic Ca(2+) followed by recovery to near resting levels. Following recovery of cytosolic Ca(2+), mitochondrial depolarization with FCCP produced comparable elevations in cytosolic Ca(2+), suggesting similar Ca(2+) release and, consequently, Ca(2+) loads in neuronal mitochondria from YAC128 and FVB/NJ mice. Together, our data argue against a detrimental effect of mHtt on Ca(2+) handling in brain mitochondria of YAC128 mice. We demonstrate that mutant huntingtin (mHtt) binds to brain synaptic and nonsynaptic mitochondria and the amount of mitochondria-bound mHtt correlates with increased mitochondrial Ca(2+) uptake capacity. We propose that this may happen due to mHtt-mediated sequestration of free fatty acids thereby increasing resistance of mitochondria to Ca(2+)-induced damage.en-USPublisher PolicyHuntington’s diseaseStriatumMitochondriaNeuronCalciumPermeability transition poreCa(2+) handling in isolated brain mitochondria and cultured neurons derived from the YAC128 mouse model of Huntington's diseaseArticle