Zhou, JunyiZhang, YingTu, Wanzhu2024-11-012024-11-012023Zhou J, Zhang Y, Tu W. A reference-free R-learner for treatment recommendation. Stat Methods Med Res. 2023;32(2):404-424. doi:10.1177/09622802221144326https://hdl.handle.net/1805/44413Assigning optimal treatments to individual patients based on their characteristics is the ultimate goal of precision medicine. Deriving evidence-based recommendations from observational data while considering the causal treatment effects and patient heterogeneity is a challenging task, especially in situations of multiple treatment options. Herein, we propose a reference-free R-learner based on a simplex algorithm for treatment recommendation. We showed through extensive simulation that the proposed method produced accurate recommendations that corresponded to optimal treatment outcomes, regardless of the reference group. We used the method to analyze data from the Systolic Blood Pressure Intervention Trial (SPRINT) and achieved recommendations consistent with the current clinical guidelines.en-USPublisher PolicyHeterogeneous treatment effectR-learnerSimplexTreatment recommendationA reference-free R-learner for treatment recommendationArticle